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Fermion mass through SSB

Fermion “bilinear” mass terms In the action
violate some symmetry.

Folk-Lore:
It symmetries forbid fermion “bilinear” mass terms,
then those symmetries must break spontaneously
for fermions to become massive.

This Talk: There is more to the story!
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Review of the “well known results”

/> Higgs-Yukawa models
S = /ddx {(8ugb(x))2 + m? (gb(x))2 + )\(gb(x))4
+ ()0t (x) + 8 S(X)P()(x) |
Symmetry that protects the mass term:

Y(x) = ivs(x), P(x) = ib(x)s, d(x) = —¢(x)

Y5 =1 5% =~
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s = [ a% { Bema0) - U (90900) '}

Related to the Yukawa model:
M=o, U « g2

Phase Diagram Simpler
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In the late 1980°s many lattice field theory
studies showed the existence of a
new symmetric massive fermion phase
at strong Yukawa couplings!

both phases have the same lattice symmetries!
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A simpler model showed that the
existence of the PMS phase was model dependent!

Lee,Shigemitsu and Shrock
NPB 334 (1990) 265

SB = E‘i);z:_- 2k Z ¢n¢n+ep+ A2(¢le _ 1)2’
S=8g+ S+ Sy, n o n

SF=% 2 )_(n,fnn,p(Xn+ep,fﬂane“,f) + me)_(n,erz,f’
n.ou,f n,f

SY: SY,hc= 2_dyhc2¢n Z in’,an’,f’ SY = SY J=y(>:¢’n2in an )
n n'€he(n); f ’ " 7 ’ ’
hyper cubic local

K=0 Is a four-fermion mode|
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What does all this mean?

In the presence of a “cutoft”
fermion masses can arise without SSB,
as a purely dynamical mechanism!

both phases have the same lattice symmetries!

U=0 < > U=

However, past studies found the broken phase to be wide
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How can fermions become massive without SSB?

Because the vacuum is “trivial”
since original degrees of freedom are bound
INnto local singlets.

fermionic excitations are “composite” particles
In terms of “original™ degrees of freedom.

In CMP, the PMS phase would be called a “trivial” insulator.

Thus, the PMS phase seemed like a “lattice artifact”
and hence abandoned by the lattice community!
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Yes! If the fermion mass can be made
light compared to the cutoff?

|

“‘Continuum limit” of the PMS phase!
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Continuum Limit?

A direct second order phase transition
between the PMW and PMS phases

Sy Symj‘
M Mas
\ U / U=
C

phases with same lattice symmetries!

U=0

A non-Landau Ginzburg type, “exotic” transition!



Such transitions also seem to be at the heart
of formulating chiral fermions on the lattice!
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in the Eichten—Preskill model

Maarten F.L. Golterman !, Donald N. Petcher ¢ and Elena Rivas *
Department of Physics, Washington University, St. Louis, MO 63130-4899, USA
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6. Conclusion

When Eichten and Preskill originally presented their model, a clear element of
the scenario they envisaged for it to successfully produce a continuum theory of
(asymptotically free) chiral fermions entailed the existence of a phase transition for
which the fermion mass was an order parameter, and over which no symmetry

breaking occurred.



M.F.L. Golterman et al. / Absence of chiral fermions

We have analyzed the model in several regions of the phase diagram, and all
indications are that no such phase transition exists. Indeed, we do find phases with
massive and massless fermions, but always a broken phase appears in between. In
the symmetric phase with massive fermions (a paramagnetic phase in strong
Yukawa coupling, or PMS phase), bound states are formed which pair up with the
original chiral fields to form Dirac representations, all of which are massive
(although one massless Dirac fermion can be arranged by tuning). The fermions
remain massive across the symmetry breaking phase boundary to the broken phase
(ferromagnetic or FM phase), and finally across the phase boundary to the second
symmetric phase (paramagnetic phase at weak Yukawa coupling, or PMW phase),
all fermions become massless, including the doublers. The crucial ingredient for

the failure of the emergence of a chiral theory of fermions as originally imagined 1s
the existence of the broken phase separating the two symmetric phases. Through
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Symmetry Protected Topological (SPT) states of matter
s the new paradigm to understand such transitions.

Same symmetry properties
SPT states of matter = but different due to a
topological guantum numlber

Senthil, Ann.Rev.Condensed Matter Phys. 6 (2015) 299
Witten,arXiv:1508.04715, 1510.07698,

Instead of a local order parameter, some
topological order parameter, governed by symmetries
distinguishes the phases.
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N R
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8 s S
fransition

necessary!

T Interactions that preserve symmetries? I

U=0 U=c0

with 16 Majorana (2-component) fermions
In 2+1d and 3+1d

Kitaev-Wen Mechanism for Kitaev, AIP Conf. Proc. 1134 (2009)
fermion mass generation on the edge Yen. Chin.Phys Lett. 30 (2013)
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Can we test the Wen-Kitaev mechanism
within a simple lattice field theory model?

1
S =22 X Meyxy — UD XLx3 X5 X
X,y X

Contains 16-Majorana (2-component) fermions
INn 3d and 4d!

Same as Lee, Shigemitsu, Shrock model (at k = 0) in 4d

No past work in 3d!
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V. Ayyar and SC, Phys.Rev. D91 (2015) 6, 065035

Partition function lllustration of configuration [n]
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Observables:

Monomer Density

Correlation Function

Correlation Ratios

Susceptibilities

1
pm = U 75 <xix§x§xi>

X

G1(0,x) = <xéx3 xix§>

G(0.x) = (x§x3 xixt)

R, = C1(0,L/2 — 1)/ (0, 1)

Ry = (5(0, L/2)/ (0, 0)

Xa — Z Ca(01 X)
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Strong evidence for the exotic transition!




Monte Carlo Results in 3+1D
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, Lee,Shigemitsu and Shrock
Summary of Past Work: NPB 334 (1990) 265

Mostly done with mean field analysis.

Monte Carlo calculations up to 84 lattices used
to confirm results qualitatively.
(found slow convergence of CG!)

Found a wide intermediate FM phase.
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Monomer Density

Very narrow FM phase
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No indication of a strong 09

first order transition

Possible FM phase is quite narrow
16<U<1.8
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Condensate is naturally
small in lattice units!
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Conclusions

e Fermion mass generation can be a dynamical
phenomena not connected with SSB, on the lattice.

e Can such fermion masses be light w.r.t to lattice cutoft?
o Yes, in2+1d. Maybe, in 3+1d (narrow FM phase!).
e | ots of unanswered questions!
o What is the QFT in the continuum limit?
o Could there be emergent gauge fields?
o Can we formulate chiral fermions using these ideas?

o Are there applications to BSM phenomenology?



