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We investigate convergence behavior of a spectral element method based on Legendre polynomial shape
functions solving linear elasticity equations for a range of Poisson’s ratios of a material. We document
uniform convergence rates independent of Poisson’s ratio for a wide class of problems with both straight
and curved elements in two and three dimensions, demonstrating locking-free properties of the spectral
element method with nearly incompressible materials. We investigate computational efficiency of the
current method without a preconditioner and with a simple mass-matrix preconditioner, however no
attempt to optimize a choice of a preconditioner was made.
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1. Introduction

Spectral element methods (SEM), which essentially represent a
hybrid between finite-element methods (FEM) and spectral
methods, have received increased attention during the past two
decades because they retain an exponential accuracy of global
spectral methods while allowing for a geometrical flexibility of h-
type FEM. Originally introduced in the field of computational fluid
dynamics (Patera, 1984; Fischer and Patera, 1991; Deville et al.,
2002), spectral element methods have been adopted for elasto-
statics (Pavarino and Widlund, 2000a, 2000b) and elastodynamics
(Casadei et al., 2002; Stupazzini and Zambelli, 2005; Dong and
Yosibash, 2009) problems, modeling of elastic wave propagation
in seismology (Komatitsch et al., 1999; Chaljub et al., 2003;
Komatitsch et al., 2005), medical diagnostics (Brigham et al.,
2011), and damage detection (Ha and Chang, 2010) by high-
frequency ultrasound excitation. In addition to forward problems,
SEM methods have also been applied to a solution of adjoint
problems (Tromp et al., 2008) as those encountered in tomography,
inverse acoustics, data assimilation and optimization.

Spectral element methods are similar to hp finite-element
methods (Szabó and Babu�ska, 1991) in which grid refinement can
be achieved both by increasing the number of elements
atter, Transport and Energy,
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(h-refinement) and by increasing the polynomial order of approx-
imation within each element (p-refinement). The advantage of
higher-order p and hp finite-element methods is that they are able
to eliminate the phenomenon of locking present with low-order
FEM (Vogelius, 1983; Babu�ska and Suri, 1992a, 1992b; Suri, 1996).
Locking is defined as significant deterioration or complete loss of
convergence when a certain parameter approaches its limiting
value (Babu�ska and Suri, 1992a, 1992b; Suri, 1996; Hughes, 1987).
One important type of locking is volumetric, or Poisson, locking,
which occurs when Poisson’s ratio n of an isotropic elastic material
approaches 0.5. As this situation occurs, the divergence of a
displacement field approaches zero, representing the condition of
material incompressibility. Nearly incompressible behavior is
peculiar to viscoelastic materials such as rubberlike polymers and
elastomers (polyamide, polystyrene, polycarbonate, polyurethane,
butadiene, natural rubber, etc.) (Mott et al., 2008). In addition, soft
biological tissues such as endothelium, smooth muscle cells, and
adventitia forming the blood vessel walls exhibit similar rubberlike
behavior (Humphrey, 2003) and are often modeled as elastic
incompressible materials (Shim and Kamm, 2002; Figueroa et al.,
2006; Valencia and Solis, 2006).

When nearly incompressible materials are modeled with low-
order h-type finite elements, Poisson locking results in a poor nu-
merical solution that does not improve, or improves very slowly,
with grid refinement (Suri, 1996; Gopalakrishnan, 2002). Locking
occurs because of the need to satisfy the divergence-free constraint
on displacements, one per element, which, in the case of h-
refinement with low p, results in a number of constraints compa-
rable to the number of degrees of freedom (Szabó et al., 1989; Yu
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et al., 1993). To remedy the situation, one must reduce the number
of constraints per degree of freedom (Nagtegaal et al., 1974). One
way to do it is to enforce the constraints in a variational, rather than
exact form, as is done with the reduced/selective integration
(Malkus and Hughes, 1978), field-consistent approach (Prathap,
1993) and mixed methods, where the divergence constraint is
introduced through a Lagrange multiplier (Brezzi and Fortin, 1991).
Additionally, in casewhen the Poisson’s ratio is equal to 0.5, a scalar
potential (displacement potential) formulation can be used, as in
the case of acoustic wave propagation in a fluid media (Cristini and
Komatitsch, 2012).

Higher-order p and hp methods present an alternative solution
for eliminating locking by satisfying the appropriate constraints
exactly; they are able to do so because of the elevated number of
degrees of freedom per element and inherently low constraint ra-
tio. It has been shown theoretically (Vogelius, 1983; Babu�ska and
Suri, 1992a; Suri, 1996) and demonstrated numerically (Suri,
1996; Szabó et al., 1989; Heisserer et al., 2008) that in p and hp
versions of FEM the error measured in the energy norm converges
at the same rate independent of Poisson’s ratio. Spectral element
methods are closely related to hp finite element methods. They
both employ high-order polynomial shape functions to discretize
the solution. The important difference is the form of the shape
functions: they are constructed from Legendre polynomials and are
of hierarchical type for hp finite elements (Szabó and Babu�ska,
1991; Babu�ska and Suri, 1994), while they correspond to Lagrange
interpolating polynomials defined on GausseLobattoeLegendre
points and constitute a nodal basis for spectral element methods
(Deville et al., 2002; Pavarino and Widlund, 2000a). This results in
different quadrature rules and different structure of a mass matrix:
it is full for hp finite-element methods, while it is diagonal for
spectral elements. This allows SEM methods to benefit from more
efficient inversion and tensor-product factorizations, while hierar-
chical hp-FEM methods are better suited for adaptive refinement
(Sprague and Geers, 2007). Due to a closely-related high-order
foundation of bothmethods, spectral element and hp finite element
methods are expected to possess similar locking-free properties
associated with the higher-order approximation; however, due to
important differences in formulation and numerics, a separate
study verifying this fact in a spectral element formulation is
needed. In spite of a popularity of spectral element methods, their
behavior with nearly incompressible materials in its original
(displacement) formulation have not been documented.

Pavarino et al. (Pavarino and Widlund, 2000a, 2000b; Pavarino,
1997; Pavarino et al., 2010) theoretically investigated behavior of
several preconditioning schemes for Legendre spectral element
discretization of displacement formulation for compressible ma-
terials (Pavarino and Widlund, 2000a) and mixed formulation for
incompressible materials (Pavarino and Widlund, 2000b; Pavarino,
1997; Pavarino et al., 2010). Sprague et al. (Sprague and Geers,
2007; Brito and Sprague, 2012) documented computational
studies of convergence of Legendre spectral element formulation
for a 1D Timoshenko beam (Sprague and Geers, 2007) and 2D
Reissner-Mindlin plate (Brito and Sprague, 2012) using Poisson’s
ratio n ¼ 0.3. Dong and Yosibash (2009) computationally investi-
gated convergence of Jacobi spectral element formulation with 3D
elasticity equations, also using n ¼ 0.3. Few other studies with
spectral elements, mostly with application to seismology, consid-
ered Earth-like solids with Poisson’s ratios of 0.25e0.33
(Stupazzini and Zambelli, 2005; Komatitsch et al., 1999; Chaljub
et al., 2003; Komatitsch et al., 2005). The main goal of this paper
is to investigate convergence properties of Legendre spectral
element formulation for steady linear elasticity problems for a
range of Poisson’s ratios, from compressible (n ¼ 0.3) to nearly
incompressible (up to n ¼ 0.4999999999). We also look at the
computational efficiency of the method and compare the iteration
counts of a conjugate gradient solver with and without a pre-
conditioner with the mixed spectral-element formulation of
Pavarino (1997). No attempt at finding a good preconditioner has
been made in the current study. This point will be addressed in the
future works.

The paper is organized as follows. In Section 2, we present the
governing equations and the spectral element discretization. In
Section 3, we verify that the discretization scheme passes the inf-
sup test. In Section 4, we follow Refs. (Babu�ska and Suri, 1992a,
1992b; Suri, 1996) to arrive at a computable measure of locking.
In Section 5, we use this measure to report the locking properties of
the spectral element method in two and three dimensions with
straight and curved elements, as well as on highly distorted
meshes. In Section 6, we look at the computational efficiency of the
current method and compare the iteration counts with mixed
spectral-element methods (Pavarino, 1997). In Section 7, we draw
conclusions.

2. Problem formulation

In this section, we present the problem formulation, including
governing equations and their numerical discretization.

2.1. Equations and the variational form

We consider linear elasticity equations

V$sþ f ¼ 0; (1)

where s is the Cauchy stress tensor, and f is the body force per unit
volume. The method proceeds by casting Eq. (1) into an equivalent
variational form. Let U˛Rd, d ¼ 2, 3, be a domain of interest and
vU ¼ vUDWvUN be its boundary decomposed into the parts with
Dirichlet and Neumann (traction) boundary conditions. Define the
following proper subspaces of the H1(U)d Sobolev space (space of
vector-valued functions square-integrable over U whose de-
rivatives are also square-integrable over U):

X ¼
n
vðxÞ˛H1ðUÞd : vðxÞ��

vUD
¼ uDðxÞ

o
;

X0 ¼
n
vðxÞ˛H1ðUÞd : vðxÞ��

vUD
¼ 0

o
:

(2)

The variational formulation of the linear elasticity problem is as
follows: Find the displacement field uðxÞ˛X such that c vðxÞ˛X0

�
Z
U

sðuÞ : 3ðvÞdUþ
Z

vUN

t$vdGþ
Z
U

f$vdU ¼ 0: (3)

Here t is the external traction force applied on v UN , and 3ðvÞ ¼
1
2 ½Vv þ ðVvÞT � is the linearized strain tensor. The vector and tensor
inner products are defined as

u$v ¼
Xd
i¼1

uivi; (4)

sðuÞ : 3ðvÞ ¼
Xd
i¼1

Xd
j¼1

sijðuÞ3ijðvÞ: (5)

For linear elasticity, constitutive equations arise from Hooke’s
law,

s ¼ 2m3þ ltrð3ÞI; (6)
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where

m ¼ E
2ð1þ nÞ ; (7)

l ¼ En
ð1þ nÞð1� 2nÞ (8)

for 3D isotropic materials and 2D plane strain formulation, and

l ¼ En
ð1þ nÞð1� nÞ (9)

for 2D plane stress formulation, E is Young’s modulus, n is Poisson’s
ratio, tr() denotes the trace, and I is the identity matrix. Introducing
constitutive relations (6) into Eq. (5) leads to

sðuÞ : 3ðvÞ ¼ 2mð3ðuÞ : 3ðvÞÞ þ ldivu divv: (10)

We denote

Bnðu; vÞ ¼
Z
U

½2mð3ðuÞ : 3ðvÞÞ þ ldivu divv�dU (11)

as the bilinear form of linear elasticity.
2.2. Spectral element discretization

In the spectral element method, the computational domain U is
decomposed into a set of nonoverlapping subdomains (elements)
U ¼ Wε

e¼1U
e. In the current method, we assume that for each U e

there exists an affine transformation bU ¼ feðUeÞ into the reference
element bU ¼ ½�1;1�d, implying that U e are hexahedral. Other
choices (prismatic, tetrahedral, etc.) are available (Dong and
Yosibash, 2009; Karniadakis and Sherwin2nd ed., 2005), but they
will not be pursued here. On the reference element bU we introduce
QpðbUÞ, the space of polynomial functions of degree p in each spatial
variable, and restrict the trial and test functions u and v in each
element Ue to the finite-dimensional spaces Xp and Xp

0,

Xp ¼
n
vðxÞ˛X : vi

���Ue ¼ j+fe;j˛Qp

�bU�
; i ¼ 1;.d

o
;

Xp
0 ¼

n
vðxÞ˛X0 : vi

���Ue ¼ j+fe;j˛Qp

�bU�
; i ¼ 1;.d

o
;

(12)

where f+g denotes a function composition. The basis functions for
the polynomial space QpðbUÞ are chosen to be the tensor product of
one-dimensional Lagrange interpolating polynomials hi(r),
r ˛ [�1,1], on the GausseLobattoeLegendre (GLL) quadrature
points xm˛½�1;1�, i,m ¼ 0,.,p, satisfying hiðxmÞ ¼ dim. Every
function in QpðbUÞ is represented as a tensor product

f xð Þ
����bU ¼

Xp
i¼0

Xp
j¼0

Xp
k¼0

( )
f e
ij kf ghi rð Þhj rð Þ hk rð Þf g; (13)

where f eijfkg are unknown expansion coefficients, and curly brackets
contain the extra terms that arise in three dimensions. Derivatives
of a function in QpðbUÞ can be defined analogously through the
derivatives of the corresponding Lagrange polynomials:

vf
vx1

xð Þ
����bU ¼

Xp
i¼0

Xp
j¼0

Xp
k¼0

( )
f e
ij kf gh

0
i rð Þhj rð Þ hk rð Þf g: (14)

The current choice of basis functions allows for an efficient
quadrature implementation. In addition, it is continuous across
subdomain interfaces (Fischer, 1997). The quadrature rules are
defined as

Z
bU

f gdbU ¼
Xp
i¼0

Xp
j¼0

Xp
k¼0

( )
f eij kf gg

e
ij kf gsisj skf g (15)

and

Z
U

f gdU ¼
Xε
e¼1

Xp
i;j;fkg¼0

�
f+fe�

ijfkg
�
g+fe�

ijfkgjJejijfkgsisjfskg;

(16)

where si is the GLL quadrature weight associated with xi and jJejijfkg
is the Jacobian of the transformation fe at the point (xi,xj,{xk}). Thus,
for an inner product

R
U
u$vdU we can writeZ

U

u$vdU ¼ vTBu; (17)

where u, v are the vectors with dimensionsN ¼ dN,N¼ ε ( pþ 1) d,
of the corresponding expansion coefficients ueijfkgm, veijfkgm,
i; j; fkg ¼ 0;.; p;m ¼ 1;.; d; e ¼ 1;.; ε, and B is the (diagonal)
mass matrix. Quadrature for the surface integral

R
v UN

t$vdG is
defined similar to Eq. (16) using summation over the surface nodes
on v UN with the corresponding surface quadrature weights and
surface Jacobians in place of the volumetric ones. Using the defi-
nition of Eq. (14) for derivatives, one can analogously define
discrete quadrature for a bilinear form of linear elasticity Bn(u,v) of
Eq. (11), resulting in a symmetric, positive-definite stiffness matrix
A. Although the stiffness matrix is no longer diagonal, the corre-
sponding matrix-vector products can be efficiently evaluated in
O(pdþ1) operations if one retains the matrix tensor-product form in
favor of its explicit formation (Orszag, 1980). Applying the corre-
sponding numerical quadrature rules to every integral in the Eq.
(3), one can reformulate the original variational problem in discrete
form: Find U˛UN

0 such that cv˛UN
0

vTMAMU ¼ vTM
�
Bf þ BNt� AMuD

�
; (18)

where an additional mask matrix M is introduced to account for
Dirichlet boundary conditions, vðxÞ��

vUD
¼ uDðxÞ ;M is the diagonal

matrix having zeros at the nodes corresponding to vUD and ones
everywhere else; UN

0 is the subspace of the vector space R N

enforcing homogeneous Dirichlet boundary conditions. The term
BNt in the right-hand side accounts for the surface integralR
vUN

t$vdG arising from the traction boundary conditions, where BN

is obtained from the mass matrix B by zeroing out all the entries
except the entries corresponding to the nodes of vUN . This discrete
variational problem is equivalent to solving the linear system of
equations for the vector U˛UN

0 ,

KU ¼ F; (19)

where K ¼ MAM is the global stiffness matrix and the right-hand
side F ¼ MðBf þ BNt� AMuDÞ. Since the matrix K is symmetric
positive-definite (SPD), classical Conjugate Gradient approach,
which is one of the most efficient iterative techniques for solving
SPD linear systems (Saad, 2003), is applied to solve the matrix
Equation (19). Note that, for example, with the mixed formulation
of linear elasticity, a corresponding saddle-point problem results in
a symmetric indefinite or even non-symmetric (depending on a
preconditioner) system which prohibits the use of the classical
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Conjugate Gradient method and calls for more sophisticated ap-
proaches, such as CR (Conjugate Residual), Bi-CGStab (Biconjugate
Gradient Stabilized) or GMRES (Generalized Minimum Residual)
(Pavarino, 1997).

The composite solution satisfying inhomogeneous Dirichlet
boundary conditions is obtained as

u ¼ Uþ uD: (20)
Fig. 1. Element shape for inf-sup test.
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Fig. 2. Inf-sup results. Diamonds, straight element; squares, curved element with
amplitude a ¼ 1; circles, curved element with amplitude a ¼ 5; pluses, curved element
with amplitude a ¼ 10; stars, curved element with amplitude a ¼ 15; triangles, curved
element with amplitude a ¼ 50.
3. Inf-sup test

We first show that the displacement-based spectral-element
discretization scheme satisfies the inf-sup condition of Brezzi and
Babu�ska (Brezzi and Fortin, 1991)

inf
q˛L2ðUÞ

sup
v˛X0

Z
U

qðV$vÞdU
����q����L2 ����v����H1

� d > 0: (21)

Inf-sup condition (21) is the condition of optimal convergence
and, when satisfied, guarantees the absence of locking (Chapelle
and Bathe, 1993). For mixed formulation, analytical proof of the
inf-sup condition is available for Stokes problem for spectral-
element formulation (Maday et al., 1992) and for elasticity prob-
lem for more general discrete mixed spaces (Suri and Stenberg,
1996). For displacement formulation, to the authors’ knowledge,
analytical results are not available.

In spite of the absence of an analytical proof, a convenient nu-
merical test of the inf-sup condition can be applied (Chapelle and
Bathe, 1993; Bathe, 1996; Jensen and Vogelius, 1990). We follow
the approach of Chapelle and Bathe (1993) who write a discrete
form of the inf-sup condition (21) for a displacement method as

inf
W˛UN

0

sup
U˛UN

0

WTGUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WTGW

q ffiffiffiffiffiffiffiffiffiffiffiffi
UTSU

q � d > 0; (22)

where the vectors W˛UN
0 are discrete representations of the

functions w(x) ˛ X0 whose divergence equals to qðxÞ˛L2ðUÞ ; see
(Bathe, 1996) for the details of constructing the matrices G and S.
Numerical test follows by evaluating the inf-sup constant

dN ¼ inf
W˛UN

0

sup
U˛UN

0

WTGUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WTGW

q ffiffiffiffiffiffiffiffiffiffiffiffi
UTSU

q (23)

on a sequence of successively-refined meshes (Chapelle and Bathe,
1993). This numerical evaluation is possible due to the result
proven in (Brezzi and Fortin, 1991) stating that the inf-sup constant
dN in Eq. (23) equals to the square-root of the first non-zero
eigenvalue l1 of the generalized eigenvalue problem GU ¼ lSU,
dN ¼

ffiffiffiffiffi
l1

p
. We have tested two element shapes: a straight element

and a curved element where we have varied the curvature by
changing the amplitude of the curved side a, see Fig. 1. The results
of the numerical inf-sup test for different values of amplitude a are
shown in Fig. 2. Following Chapelle and Bathe (Chapelle and Bathe,
1993), we plot results in the form logðdNÞ ¼ f ðlogð1=pÞÞ, where dN
is the calculated value of the inf-sup expression, and p is the
polynomial order. In order to pass the inf-sup test, the inf-sup
constant must stay bounded away from zero as the mesh is
refined. It is seen that the straight element and curved elements
with relatively large amplitudes of up to a< 15 pass the inf-sup test.
When the amplitude reaches the values of a� 15 representing high
to extreme levels of distortion, the element starts failing at large
polynomials orders.
4. Measure of locking

In this section, we follow Refs. (Babu�ska and Suri, 1992a, 1992b;
Suri, 1996) to define a computable measure of locking.

Let us first introduce several relevant concepts.

� Solution space Hn is the set of exact solutions of Eq. (3).
� Error functional En(u) is the considered error measure.
� Extension procedure F is the rule defining how the space
dimension N is to be increased.

� Parameter set S is the range of the values of the parameter. In our
case, the parameter is the Poisson’s ratio n and the parameter set
is S ¼ [0,0.5).

For the extension procedure F , one can define the asymptotic
rate of best approximation F0(N) of functions in X0 by functions in
Xp
0 as

F0 Nð Þ ¼ sup
w˛X0

inf
v˛Xp

0



w � v



H1 :

One would expect F0ðNÞ/0 as N/N for the viable methods.
According to (Babu�ska and Suri, 1992a), a procedure F is called free
from locking, with respect to the solution sets Hn, and error mea-
sures En, if the following property holds uniformly for all 0 � n � n0,
with 0 < n0 < 0.5,
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C1ðn0ÞF0ðNÞ � sup
un˛Hn

Enðun � uN
n Þ � C2ðn0ÞF0ðNÞ; (24)

where C1(n0), C2(n0) are independent of n and N.
Related to the concept of locking is the concept of robustness.

The extension procedure F is called robust with respect to the so-
lution sets Hn, and error measures En, n ˛ S, if and only if

lim
N/N

sup
n

sup
un˛Hn

Enðun � uN
n Þ ¼ 0:

It is called robust with uniform order g(N) if and only if

lim
N/N

sup
n

sup
un˛Hn

Enðun � uN
n Þ � gðNÞ;

where gðNÞ/0 as N/N.
The following theorem leads to a characterization of locking in

therms of the loss in the asymptotic rate of convergence (Babu�ska and
Suri, 1992a, 1992b; Suri, 1996).

Theorem 1. F is free from locking if and only if it is robust with
uniform order F0(N). Moreover, let f(N) be such that

f ðNÞF0ðNÞ ¼ gðNÞ/N as N/N:

Then, F shows locking of order f(N) if and only if it is robust with
uniform order g(N).

Based on the above theorem, we are going to judge about the
locking properties of the spectral element extension procedure F
described above by looking at the order of robustness g(N). For this,
the corresponding valueof theerrormeasure Enðun � uN

n Þ fordifferent
test cases is calculated, and its limit, lim

N/N
sup
n

sup
un˛Hn

Enðun � uN
n Þ, is

compared to the asymptotic rate of best approximation F0(N), which,
for the spectral-element discretization is (Deville et al., 2002; Szabó
and Babu�ska, 1991)

F0ðNÞ ¼ O
�
hN

1=d
�

(25)

with the constant h < 1.
In the current study, we define the error functional En(u) to be

the error in the energy norm (Babu�ska and Suri, 1992a; Suri, 1996;
Szabó et al., 1989; Heisserer et al., 2008; Chilton and Suri, 1997;
Yosibash, 1996)

EnðuÞ ¼ ðBnðu;uÞÞ1=2; (26)

where Bn(u,u) is the bilinear form of linear elasticity defined by Eq.
(11).
0 5 10

-2

-1

0

P

Fig. 3. Bent beam and deflection of the centerline compared with the exact solution
(symbols).
5. Numerical results

In this section, we use the definition of locking given in the
previous section to demonstrate locking and convergence proper-
ties of the displacement-based spectral element method on several
test cases.

5.1. Straight elements: bending of a beam (plane stress)

In the first test problem, we consider a bending of a narrow
cantilever beam of rectangular cross-section under the end load.
For this configuration, plane stress conditions can be assumed,
reducing the problem to a two-dimensional case with Lamé co-
efficients given by Eqs. (7) and (9). An exact solution to this problem
exists (Wang, 1953) and is given in Appendix A.1. We use length
L ¼ 10, width d ¼ 1, Young’s modulus E ¼ 10,000, and end load
P ¼ �3IE/L3 (I is the cross-sectional moment of inertia) giving the
end beam deflection v ¼ �1. The boundary conditions are stress-
free at the upper and lower edges, with parabolic shear stress
distribution sxy ¼ �P(d2/4�y2)/(2I) at the left edge (x ¼ 0) and
displacements (or Dirichlet) boundary conditions at the right edge
(x ¼ L). The computational domain consists of ε ¼ 5 rectangular
elements. The bent beam and the deflection of the beam centerline
compared with the exact solution are shown in Fig. 3 for n ¼ 0.3,
p¼4. The agreement is excellent. To quantify the error with p-
refinement, we plot the L2(u) error versus the polynomial order in
Fig. 4 for the values of n ¼ 0.3 and n ¼ 0.5.

Since the analytical solution is the polynomial of degree 3, the
SEM recovers it with machine accuracy for p ¼ 3 and higher. Note
that for plane stress elasticity, the incompressibility condition
n¼ 0.5 does notmake the governing equations singular because it is
1 � n, and not 1 � 2n that appears in the denominator of l (cf. Eqs.
(8) and (9)). That explains why the solution is recovered exactly for
n ¼ 0.5 as well as for n ¼ 0.3 (Fig. 4). Thus, plane stress loading does
not represent a challenging test for Poisson locking and will not be
considered further.

5.2. Straight elements: unit square (plane strain)

To consider a more challenging test for Poisson locking, we look
at a two-dimensional plane strain problem, with m and l defined by
Eqs. (7) and (8). We consider a deformation of a unit square
[0,1] � [0,1], with an exact solution for displacements listed in
Appendix A.2. We choose the values A ¼ (1 � n)/a, B ¼ �n/b. This
choice corresponds to the most general but realistic loading with
nonzero divergence

divu ¼ ð1� 2nÞcosðaxÞcosðbyÞ;

which reduces to zero in the incompressible case n ¼ 0.5; and with
nonzero shear

gxy ¼ �½ð1� nÞb=a� na=b�sinðaxÞsinðbyÞ:
We set a ¼ p/2, b ¼ p/3, E ¼ 1000, and we decompose the

domain into four square elements of size 0.5 � 0.5.
To document the locking properties according to the definition

presented in Section 4, we plot the percentage relative error in the
energy norm versus N1/d in Fig. 5 for traction and displacement
boundary conditions. The plot of relative errors shows that the
procedure is robust with the order F0ðNÞ ¼ OðhN1=d Þ, since all the
error curves are parallel to the asymptotic rate of best approxi-
mation F0ðNÞ ¼ hN

1=d
(h ¼ 0.15), which, by Theorem 1, confirms the

locking-free behavior of the current method.
Results of Fig. 5 correspond well to the results obtained with the

p-version FEM (Szabó et al., 1989). The results of (Szabó et al., 1989)
indicate that the rate of convergence for n ˛ [0,0.5) is exponential
with the relative error proportional to CðnÞhN1=d

, where the rate of
convergence h does not depend on n, but the multiplication



Fig. 4. L2(u) error versus the polynomial order for a narrow beam in plane stress.
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constant C does, which results in convergence curves being parallel
but shifted upwards as n/0:5. They also noted the existence of the
bounding envelope shown schematically in Fig. 5(a) and (b), rep-
resenting the error bound when n/0:5, which decreases with N at
the rate of F0ðNÞ. Another result is the existence of pcrit, the poly-
nomial order for which convergence starts as n/0:5. The value of
pcrit depends on various factors, such as whether the elements are
curved; whether they are triangles or quadrilaterals etc. (pcrit is
smaller for triangles than for quadrilaterals).
5.3. Straight elements: unit cube

To document the spatial convergence in the full 3D case, we
consider the deformation of a unit cube [0,1]� [0,1]� [0,1], with an
exact solution given in Appendix A.3. With A¼ (1� n)/a, B¼�0.5n/
b, C ¼ �0.5n/c, we again recover a general loading situation with
nonzero divergence,
Fig. 5. Locking properties for the unit square: error in the energy n
div u ¼ ð1� 2nÞcosðaxÞcosðbyÞcosðczÞ;

approaching zero at n/0:5, and nonzero shear strain components
gxy, gxz, gyz. We set a ¼ p/2, b ¼ p/3, c ¼ p/4, E ¼ 1000 and
decompose the domain into eight cubic elements 0.5 � 0.5 � 0.5.
Note that most of the previous studies on locking with hp-FEM
were confined to two dimensions and did not consider three-
dimensional cases (Suri, 1996; Szabó et al., 1989; Chilton and Suri,
1997; Yosibash, 1996). Convergence in the energy norm versus
N1/d is plotted in Fig. 6 for traction and displacement boundary
conditions. The results are almost identical to those of a unit square,
showing that the problem dimension by itself does not influence
the convergence and locking properties of the spectral element
method, at least for straight elements.

5.4. Curved elements: hollow cylinder under internal pressure
(plane strain)

To investigate the influence of curved elements on the method’s
spatial convergence, we look at the problems in cylindrical and
spherical configurations. We first consider a long, thick-walled,
hollow cylinder under internal pressure resulting in a plane strain
loading, with an exact solution given, for example, in (Gao, 2003)
and documented in Appendix A.4. We set E ¼ 1000, internal
pressure P ¼ 100, the inner and outer radius of the cylinder ri ¼ 0.5
and ro ¼ 1. Because of the plane strain loading, this problem can be
considered in 2D. The computational domain consists of a hollow
disk with six circumferential elements of the radial width Dr ¼ 0.5.
The computational domain and solution (radial displacement for
n ¼ 0.3) are shown in Fig. 7(a). Note that in order to achieve ex-
pected exponential convergence rates for the hollow cylinder,
boundary grid nodes and GLL points need to be located precisely on
the surface of the cylinder (within the machine accuracy of the
numerical computation) in the undeformed configuration. This is
required to make sure that boundary conditions are imposed at the
correct locations to ensure convergence of the numerical solution
to the exact solution, which otherwisewould be deteriorated by the
numerical errors coming from the boundaries. The required
placement of GLL points onto the surface of the cylinder within the
machine precision can be ensured by shifting them along the radii
to conform to the surface after the elements are initially populated
with the GLL points by the automatic mesh partitioning tools in the
orm. Dashed line represents the asymptotic curve hN
1/2, h ¼ 0.15.



Fig. 6. Locking properties for the unit cube: error in the energy norm. Dashed line represents the asymptotic curve hN
1/3, h ¼ 0.15.
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code. Note that Suri (1996) also used a special blending technique
for the boundary segments to ensure convergence to the exact
solution on a segment of an annulus.

Convergence in the energy norm versus N1/d is shown in Fig. 8
for traction and displacement boundary conditions. In the previ-
ous studies with hp finite-element methods, a decrease in accuracy
has been observed for curved elements as compared to straight
elements when n/0:5 (Suri, 1996; Chilton and Suri, 1997) due to
the fact that it is harder for the trial functions (which under general
mappings may no longer be polynomials) to satisfy the incom-
pressibility constraint (Suri, 1996). The effect seemed to be more
severe for an h version than for a p version; for the latter the main
deterioration could be summarized as a shift in convergence curves
from Cp�k to C(p � a)�k when n is close to 0.5, where C, k and a are
some constants, a depended on the nature of the curved side
(Babu�ska and Suri, 1990). With a spectral-element formulation,
increase in error with curved elements has also been observed in
Fig. 7. Meshes with curved elements.
various problems (Deville et al., 2002; Schneidesch and Deville,
1993), due to the fact that the quadrature evaluation in the pres-
ence of Jacobian matrices of a general mapping is no longer exact.
However, despite the increase in errors, an exponential conver-
gence with p was still attained with the SEM in the presence of
curvilinear meshes (Schneidesch and Deville, 1993). In our tests
with the spectral-element method with curved elements for linear
elasticity, we reached similar conclusions. The value of a slope in
the exponential rate of convergence OðhN1=dÞ is increased from
h ¼ 0.15 for straight elements to h ¼ 0.5 for the hollow cylinder,
which indicates an overall increase in error with curved elements
while retaining exponential convergence, consistent with the ob-
servations of Schneidesch and Deville (1993). In addition, the value
of pcrit, the polynomial order for which convergence starts as
n/0:5, is increased compared to straight elements, consistent with
the shift in convergence curves from Cp�k to Cðp� aÞ�k when
n/0:5 observed by Babu�ska and Suri (1990) with p-FEM. Both
Radial displacement ur is shown.



Fig. 8. Locking properties for the hollow cylinder: error in the energy norm. Dashed line represents the asymptotic curve hN
1/2, h ¼ 0.5.
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these effects, however, do not manifest a change in convergence
rates with the increase in n (all curves in Fig. 8 are still parallel to
each other) and therefore do not represent locking.
5.5. Curved elements: hollow sphere under internal pressure

Our next example is a 3D loading case with curved elements,
namely, that of a thick-walled hollow sphere under internal pres-
sure, with an exact solution given in Appendix A.5.We set E¼ 1000,
P¼ 100, spherical shell radii ri¼ 0.5, and ro¼ 1; the domain consists
of 24 elements with the radial width Dr ¼ 0.5. Two orthogonal
cross-sections of the sphere and the radial displacement for n ¼ 0.3
are shown in Fig. 7(b). The same argument about the necessity of
initial placement of GLL boundary points onto the surface of the
sphere with the machine precision, as in the hollow cylinder case,
applies here, otherwise boundary errors will impair an exponential
convergence to the analytical solution.

Convergence in the energy norm versus N1/d is shown in Fig. 9
for traction and displacement boundary conditions. Conclusions
similar to that of the cylindrical shell domain stay valid, confirming
Fig. 9. Locking properties for the hollow sphere: error in the energy
the absence of the effect of problem dimension on the locking
properties of the method, as observed with the straight elements.
5.6. Calculation on distorted meshes

To further test the effect of mesh distortion on convergence and
locking, we repeat the calculations of Section 5.2 corresponding to a
deformation of a unit square under plain strain conditions, on
highly-skewed non-orthogonal meshes. The schematic of a skewed
mesh configuration as well as that of a base straight element mesh
is shown in Fig. 10. We tested two values of the parameter a/L for
the skewed mesh configuration: a/L ¼ 0.1 and a/L ¼ 0.01. These
values roughly correspond to the element aspect ratios of 10 and
100, respectively, which represents a very strong value of distortion
for quadrilateral elements (Cubit User Documentation, http://cubit.
sandia.gov).

Percentage relative error in the energy norm versus N1/d is
shown for a/L ¼ 0.1 in Fig. 11 for traction and displacement
boundary conditions. We see that the general effect of the mesh
skewness largely resembles the effect of curvilinear elements:
norm. Dashed line represents the asymptotic curve hN
1/3, h ¼ 0.55.

http://cubit.sandia.gov
http://cubit.sandia.gov


Fig. 10. Schematic of the meshes tested.

Fig. 12. Comparison between the distorted meshes and a straight mesh for the Poisson
ratios of n ¼ 0.3 and n ¼ 0.4999999999. Filled symbols, straight mesh; hollow symbols,
distorted mesh with a/L ¼ 0.1; no symbols, distorted mesh with a/L ¼ 0.01.
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convergence for all Poisson ratios slows down (represented by the
change of slope in convergence curves from h ¼ 0.15 for straight
elements to h ¼ 0.2 for distorted elements); however, exponential
convergence is retained for all Poisson ratios still showing no
locking, albeit that, as with curvilinear elements, the onset of
convergence is delayed to higher polynomial orders for large values
of the Poisson ratios. The comparison of performance of the two
distorted meshes of different aspect ratios with that of a straight
mesh is shown in Fig. 12. The conclusions stated above remain
valid; highly-distorted mesh with a very large aspect ratio of 100
behaves quite poorly in a nearly incompressible situation of
n ¼ 0.4999999999 showing a significant delay in the onset of
convergence with the polynomial order.

5.7. Order of locking

In the current section, we summarize the order of robustness
deduced from the error plots in all the cases and calculate the order
of locking from the order of robustness. Results are printed in
Table 1. Order of locking for all the test cases is zero.

6. Computational effort

Incompressibility condition of n/0:5 can not only influence the
solution accuracy and the rate of error decay but also the compu-
tational efficiency due to the fact that the condition number of the
Fig. 11. Locking properties for the unit square on a distorted mesh with a/L ¼ 0.1: err
stiffness matrix grows with the polynomial order and with the
Poisson’s ratio (Pavarino and Widlund, 2000a). As a consequence,
iterative solution of the linear system (19) can take increasingly
large number of iterations to converge. To investigate the influence
of the Poisson’s ratio on the convergence of the conjugate gradient
method (CG), we plot the number of iterations of the CG method
versus the polynomial degree for several test problems: for square
and cube in Fig. 13, and for cylinder and sphere in Fig. 14. Following
a study of Pavarino (1997) for mixed spectral element methods, we
take the initial guess to be zero and the stopping criterion to be
krikL2=kr0kL2 < 10�6, where ri is the ith residual. Figures on the left
represent the case when no preconditioning is employed, and fig-
ures on the right use a simple preconditioner (inexact mass-matrix
preconditioner) equal to the numerical value of the mass matrix
obtained by discretizing the term

R
Uu$vdU on GLL grid. Note that

no attempt to optimize the choice of a preconditioner was made in
the current study. It is seen that even this simple preconditioner
works very well for the problems with curved elements (cylinder
and sphere) reducing the number of iterations by about two orders
or in the energy norm. Dashed line represents the asymptotic curve hN
1/2, h ¼ 0.2.



Table 1
Order of robustness and order of locking for the calculated test cases.

Best approximation
rate

Order of
robustness

Order of
locking, r

F0(N) g(N) f(N) ¼ O(Nr)

2D, straight elements 0.15N
1/2

0.15N
1/2

0
2D, skewed elements 0.2N

1/2
0.2N

1/2
0

3D, straight elements 0.15N
1/3

0.15N
1/3

0
2D, curved elements 0.5N

1/2
0.5N

1/2
0

3D, curved elements 0.55N
1/3

0.55N
1/3

0
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of magnitude in some cases. This preconditioner, however, does not
seem to be effective for the problems with straight elements
(square and cube). As can be judged from the logelog plots, the
number of iterations of the preconditioned method grows as a
power of the polynomial degree p (with linear growth in most
cases), comparable to the results of Pavarino for mixed methods
(Pavarino, 1997). Unlike in the study of Pavarino (1997), the
dependence on the Poisson’s ratio shows non-monotonic behavior.

To compare the efficiency of the present displacement-based
algorithm with that of mixed methods, we compare the number
of iterations taken by our method with the number of iterations in
Qn � Pn�1 mixed spectral-element method in the study of Pavarino
(1997). Tomaximize thematch of the computational conditions, we
report results obtained on a cube [�1,1]3 and compare them to the
results of Pavarino (1997) obtained on a cube [�1,1]3, one element
is used in both studies. Unfortunately, exact match of the
Fig. 13. Number of iterations of the conjugate gradient method for the square (4 elements) an
figures correspond to CG without preconditioner; right, with preconditioner.
computational conditions is not possible, since, as mentioned
before, Conjugate Gradientmethod is not applicable to a symmetric
indefinite system of a mixed formulation that was solved with the
closely related Conjugate Residual method by Pavarino (1997). In
addition, preconditioners were different: inexact mass-matrix
preconditioner in this study, and inexact stiffness-matrix pre-
conditioner in Pavarino (1997).

Results for this comparison are presented in Table 2. We put the
data obtained with n ¼ 0.4999999999 in the column with n ¼ 0.5,
since the exact value of n ¼ 0.5 would make the system singular in
our method. The table shows that the displacement method with
its particular combination of iterative solver/preconditioner is
slightly more efficient at low polynomial orders than the mixed
method with its particular combination of iterative solver/pre-
conditioner, as described above, but becomes less efficient at large
polynomial orders and Poisson’s ratios in the range of
0.499�0.49999. The recovery of the currentmethod for n> 0.49999
is an interesting attribute and deserves further investigation in the
future.

We admit that comparing these two methods with different
iterative solvers and preconditioners does not allow us to make
definite conclusions about the superiority of one method versus
another in terms of computational efficiency. Rather, it tells us that
both methods, in their unoptimized form, show roughly similar
iteration counts and don’t differ by orders of magnitudes in effi-
ciency. We also acknowledge that there is a potential for both
methods to improve in efficiency. Indeed, inexact preconditioner in
the study of Pavarino (1997) is the worst-case scenario: better
d the cube (8 elements). Top figures correspond to the square; bottom, to the cube. Left



Fig. 14. Number of iterations of the conjugate gradient method for the cylinder (6 elements) and the sphere (24 elements). Top figures correspond to the cylinder; bottom, to the
sphere. Left figures correspond to CG without preconditioner; right, with preconditioner.
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iteration counts are obtained when exact block-diagonal pre-
conditioner is used. The preconditioner used in the current study
has not been optimized, and likely better efficiency can be obtained
in the current method as well once this is done. We note that
studies addressing the choice of a good preconditioner for the
current method and comparing results with mixed methods with a
better match of the computational conditions would be beneficial
and will be performed in the future.
Table 2
Comparison of the number of iterations between the displacement (direct) and the
mixed Qn � Pn�1 (Pavarino, 1997) spectral element methods.

p n 0.3 0.4 0.49 0.499 0.4999 0.49999 0.499999 0.5

3 Direct 2 2 2 2 2 2 2 2
Mixed 14 14 14 14 14 14 14 14

4 Direct 7 7 8 8 8 8 8 8
Mixed 27 30 36 37 37 37 37 37

5 Direct 13 15 16 17 15 14 12 12
Mixed 34 40 56 61 61 61 61 61

6 Direct 18 21 36 41 39 35 22 22
Mixed 42 49 68 75 75 75 75 75

7 Direct 22 27 45 48 48 41 23 23
Mixed 46 54 80 87 87 87 87 87

8 Direct 27 33 67 99 107 95 61 36
Mixed 52 61 92 102 103 103 103 104

9 Direct 32 39 77 97 121 78 53 33
Mixed 55 65 97 109 109 109 109 109

10 Direct 37 46 97 163 201 150 86 49
Mixed 57 69 107 121 121 121 122 122
7. Conclusions

In this paper, we investigate convergence properties of the
Legendre spectral element approximation with displacement
formulation of linear elasticity equations for a range of Poisson’s
ratios from a compressible regime (n ¼ 0.3) to nearly incompress-
ible regime (n ¼ 0.4999999999). Several numerical examples are
considered, including problems with straight elements in 2D and
3D as well as problems with curved elements in 2D and 3D and on
distorted meshes. Following the mathematical definition of locking
(Babu�ska and Suri, 1992a, 1992b; Suri, 1996), we calculate a
computable measure of locking, the order of robustness. The order
of locking calculated from the order of robustness is zero for all the
cases. This shows the absence of Poisson locking in the energy
norm for displacement-based spectral-element discretization of
linear elasticity equations, consistent with previous observations
with p and hp finite elements. Although the procedure is free from
locking in the asymptotic sense, the polynomial order at which
convergence starts increases as the Poisson’s ratio gets close to 0.5,
and it further increases when the curved elements or highly-
distorted meshes are used. Preliminary comparison of computa-
tional efficiency of the current method with Qn � Pn�1 mixed
spectral-element method of Pavarino (1997) shows similar itera-
tion counts of the iterative solver. Future studies will address
comparing different preconditioning techniques for the current
method and choosing an optimum preconditioner, as well as per-
forming comparison with other methods at a closer match of
computational conditions.
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Appendix A. Exact Solutions to the Test Problems

Appendix A.1. Bending of a narrow cantilever beam

For the bending of a narrow cantilever beam with rectangular
cross-section of length L and height d, under the end load P applied
at x ¼ 0 and fixed at the point x ¼ L, y ¼ 0, the following exact
solution exists for the horizontal displacement u and the vertical
displacement v (Wang, 1953):

u ¼ � P
2EIx

2yþ P
3EI

�
1þ n

2

�
y3 þ P

2EI

�
L2 � ð1þ nÞ d2

2

�
y;

v ¼ nP
2EI xy

2 þ P
6EIx

3 � PL2
2EI xþ PL3

3EI:

Here I ¼ d3/12 is the cross-sectional moment of inertia.

Appendix A.2. Deformation of a unit square

For a unit square [0,1] � [0,1] in plane strain conditions under
forcing

fx ¼ AxsinðaxÞcosðbyÞ;
fy ¼ AycosðaxÞsinðbyÞ;

where

Ax ¼ �
Aa2 þ Bab

�ðlþ mÞ þ A
�
a2 þ b2

�
m;

Ay ¼ �
Bb2 þ Aab

�ðlþ mÞ þ B
�
a2 þ b2

�
m;

the following exact solutions exist:

u ¼ A sinðaxÞcosðbyÞ;
v ¼ B cosðaxÞsinðbyÞ:

Appendix A.3. Deformation of a unit cube

For a unit cube [0,1] � [0,1] � [0,1] under forcing

fx ¼ AxsinðaxÞcosðbyÞcosðczÞ;
fy ¼ AycosðaxÞsinðbyÞcosðczÞ;
fz ¼ AzcosðaxÞcosðbyÞsinðczÞ;

where

Ax ¼ �
Aa2 þ Babþ Cac

�ðlþ mÞ þ A
�
a2 þ b2 þ c2

�
m;

Ay ¼ �
Bb2 þ Aabþ Cbc

�ðlþ mÞ þ B
�
a2 þ b2 þ c2

�
m;

Az ¼ �
Cc2 þ Aacþ Bbc

�ðlþ mÞ þ C
�
a2 þ b2 þ c2

�
m;
the solutions are

u ¼ A sinðaxÞcosðbyÞcosðczÞ;
v ¼ B cosðaxÞsinðbyÞcosðczÞ;
w ¼ C cosðaxÞcosðbyÞsinðczÞ:
Appendix A.4. Hollow cylinder under internal pressure

For a plane strain hollow cylinder with the inner radius ri and
the outer radius ro under internal pressure P and zero external
pressure (satisfying boundary conditions sr(ri) ¼ �P,sr(ro) ¼ 0), the
displacements in cylindrical coordinates have the form (Gao, 2003)

ur ¼ 1þn
E

Pr2i
r2o�r2i

�
ð1� 2nÞr þ r2o

r

�
;

uq ¼ 0;uz ¼ 0:
Appendix A.5. Hollow sphere under internal pressure

For a hollow sphere with the inner radius ri and the outer radius
ro under internal pressure P and zero external pressure (satisfying
boundary conditions sr(ri) ¼ �P,sr(ro) ¼ 0), the displacements in
spherical coordinates have the form (see (Fung, 1965))

ur ¼ 1
E

Pr3i
r3o�r3i

�
ð1� 2nÞr þ ð1þ nÞ r3o

2r2

�
;

uq ¼ 0;uf ¼ 0:
References

Babu�ska, I., Suri, M., 1990. The p and hep versions of the finite element method, an
overview. Comp. Meth. Appl. Mech. Eng. 100, 249e273.

Babu�ska, I., Suri, M., 1992. Locking effects in the finite element approximation of
elasticity problems. Numer. Math. 62, 439e463.

Babu�ska, I., Suri, M., 1992. On the locking and robustness in the finite element
method. SIAM J. Numer. Anal. 29, 1261e1293.

Babu�ska, I., Suri, M., 1994. The p and hep versions of the finite element method,
basic principles and properties. SIAM Rev. 36, 578e632.

Bathe, K.J., 1996. Finite Element Procedures. Prentice Hall.
Brezzi, F., Fortin, M., 1991. Mixed and Hybrid Finite Element Methods. Springer,

Berlin.
Brigham, J.C., Aquino, W., Aguilo, M.A., Diamessis, P.J., 2011. A spectral finite element

approach to modeling soft solids excited with high-frequency harmonic loads.
Comp. Meth. Appl. Mech. Eng. 200, 692e698.

Brito, K.D., Sprague, M.A., 2012. Reissner-Mindlin Legendre spectral finite elements
with mixed reduced quadrature. Fin. El. Anal. Des. 58, 74e83.

Casadei, F., Geabellini, E., Fotia, G., Maggio, F., Quarteroni, A., 2002. A mortar
spectral/finite element method for complex 2D and 3D elastodynamics prob-
lems. Comp. Meth. Appl. Mech. Eng. 191, 5119e5148.

Chaljub, E., Capdeville, Y., Vilotte, J.-P., 2003. Solving elastodynamics in a fluid-solid
heterogeneous sphere: a parallel spectral element approximation on non-
conforming grids. J. Comp. Phys. 187, 457e491.

Chapelle, D., Bathe, K.J., 1993. The inf-sup test. Comput. Struct. 47, 537e545.
Chilton, L., Suri, M., 1997. On the selection of a locking-free hp element for elasticity

problems. Int. J. Numer. Meth. Eng. 40, 2045e2062.
Cristini, P., Komatitsch, D., 2012. Some illustrative examples of the use of the

spectral-element method in ocean acoustics. J. Acoustic. Soc. Am. 131 (3),
EL229eEL235.

Deville, M.O., Fischer, P.F., Mund, E.H., 2002. High-order Methods for Incompressible
Fluid Flow. Cambridge University Press, Cambridge, UK.

Dong, S., Yosibash, Z., 2009. A parallel spectral element method for dynamic three-
dimensional nonlinear elasticity problems. Comput. Struct. 87, 59e72.

Figueroa, C.A., Vignon-Clementel, I.E., Jansen, K.E., Hughes, T.J.R., Taylor, C.A., 2006.
A coupled momentum method for modeling blood flow in three-dimensional
deformable arteries. Comput. Methods Appl. Mech. Eng. 195, 5685e5706.

Fischer, P.F., 1997. An overlapping Schwarz method for spectral element solution of
the incompressible NaviereStokes equations. J. Comp. Phys. 133, 84e101.

Fischer, P.F., Patera, A.T., 1991. Parallel spectral element solution of the Stokes
problem. J. Comp. Phys. 92, 380e421.

Fung, Y.C., 1965. Foundations of Solid Mechanics. Prentice Hall, Englewood Cliffs,
N.J.

http://refhub.elsevier.com/S0997-7538(13)00117-4/sref1
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref1
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref1
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref1
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref1
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref2
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref2
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref2
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref2
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref3
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref3
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref3
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref3
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref4
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref4
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref4
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref4
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref4
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref5
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref6
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref6
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref7
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref7
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref7
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref7
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref8
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref8
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref8
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref9
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref9
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref9
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref9
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref10
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref10
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref10
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref10
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref11
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref11
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref12
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref12
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref12
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref13
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref13
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref13
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref13
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref14
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref14
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref15
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref15
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref15
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref16
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref16
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref16
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref16
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref17
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref17
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref17
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref17
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref18
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref18
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref18
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref19
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref19


Y.T. Peet, P.F. Fischer / European Journal of Mechanics A/Solids 44 (2014) 91e103 103
Gao, X.-L., 2003. Elasto-plastic analysis of an internally pressurized thick-walled
cylinder using a strain gradient plasticity theory. Int. J. Sol. Struct. 40, 6445e
6455.

Gopalakrishnan, S., 2002. Behavior of isoparametric quadrilateral family of
Lagrangian fluid elements. Int. J. Numer. Meth. Eng. 54, 731e761.

Ha, S., Chang, F.-K., 2010. Optimizing a spectral element for modeling PZT-induced
Lamb wave propagation in thin plates. Smart Mater. Struct. 19.

Heisserer, U., Hartmann, S., Duster, A., Yosibash, Z., 2008. On volumetric locking-free
behavior of p-version finite elements under finite deformations. Comm. Numer.
Meth. Eng. 24, 1019e1032.

Hughes, T.J.R., 1987. The Finite Element Method. Prentice Hall.
Humphrey, J.D., 2003. Review paper: continuum biomechanics of soft biological

tissues. Proc. R. Soc. Lond. A 459, 3e46.
Jensen, S., Vogelius, M., 1990. Divergence stability in connection with the p-version

of the finite element method. Math. Mod. Num. Anal. 25, 737e764.
Karniadakis, G.E., Sherwin, S.J., 2005. Spectral/hp Element Methods for Computa-

tional Fluid Dynamics, second ed. Oxford University Press, New York.
Komatitsch, D., Vilotte, J.-P., Vai, R., Castillo-Covarrubias, J.M., Sánchez-

Sesma, F.J., 1999. The spectral-element method for elastic wave equations e
application to 2D and 3D seismic problems. Int. J. Numer. Meth. Eng. 45,
1139e1164.

Komatitsch, D., Tsuboi, S., Tromp, J., 2005. The spectral-element method in seis-
mology. Geophys. Monogr. 57, 205e227.

Maday, Y., Patera, A., Rønquist, E., 1992. The Pn � Pn�2 Method for the Approxi-
mation of the Stokes Problem. Tech. Rep. 92009. Dept. of Mech. Engr., MIT.

Malkus, D.S., Hughes, T.J.R., 1978. Mixed finite element mehtods e reduced and
selective integration techniques: a unification of concepts. Comp. Meth. Appl.
Mech. Eng. 12, 67e76.

Mott, P.H., Dorgan, J.R., Roland, C.M., 2008. The bulk modulus and Poisson’s ratio of
“incompressible” materials. J. Sound Vibr. 312, 572e575.

Nagtegaal, J.C., Parks, D.M., Rice, J.R., 1974. On numerically accurate finite element
solutions in the fully plastic range. Comp. Meth. Appl. Mech. Eng. 4, 153e177.

Orszag, S.A., 1980. Spectral methods for problems in complex geometries. J. Comput.
Phys. 37, 70e92.

Patera, A.T., 1984. A spectral element method for fluid dynamics: laminar flow in a
channel expansion. J. Comp. Phys. 54, 468e488.

Pavarino, L.F., 1997. Preconditioned mixed spectral element methods for elasticity
and Stokes problems. SIAM J. Sci. Comp. 19, 375e402.

Pavarino, L.F., Widlund, O.B., 2000. Iterative substructuring methods for spectral
element discretizaion of elliptic systems, I: compressible linear elasticity. SIAM
J. Numer. Anal. 37 (2), 375e402.
Pavarino, L.F., Widlund, O.B., 2000. Iterative substructuring methods for spectral
element discretizaion of elliptic systems, II: mixed methods for linear elasticity
and Stokes flow. SIAM J. Numer. Anal. 37 (2), 353e374.

Pavarino, L.F., Widlund, O.B., Zampini, S., 2010. BDDC preconditioners for spectral
element discretizations of almost incompressible elasticity in three dimensions.
SIAM J. Numer. Anal. 32 (6), 3604e3626.

Prathap, G., 1993. The Finite Element Methods in Structural Mechanics. Kluwer
Academic Press, Dordrecht.

Saad, Y., 2003. Iterative Methods for Sparse Linear Systems, second ed. SIAM,
Philadelphia, PA.

Schneidesch, C., Deville, M., 1993. Chebyshev collocation method and multi-domain
decomposition for NaviereStokes equations in complex curved geometries.
J. Comput. Phys. 106, 234e257.

Shim, E.B., Kamm, R.D., 2002. Numerical simulation of steady flow in a compliant
tube or channel with tapered wall thickness. J. Fluids Struct. 16, 1009e1027.

Sprague, M.A., Geers, T.L., 2007. Legendre spectral finite elements for structural
dynamics analysis. Comm. Numer. Meth. Eng. 00, 1e13.

Stupazzini, M., Zambelli, C., 2005. GeoELSEvp: a spectral element approach for
dynamic elasto-viscoplastic problems. Riv. It. Geotec. 4, 71e81.

Suri, M., 1996. Analytical and computational assessment of locking in the hp finite
element method. Comp. Methods Appl. Mech. Eng. 133, 347e371.

Suri, M., Stenberg, R., 1996. Mixed hp finite element methods for problems in
elasticity and Stokes flow. Numer. Math. 72, 367e390.

Szabó, B., Babu�ska, I., 1991. Finite-element Analysis. John Wiley & Sons, New York.
Szabó, B.A., Babu�ska, I., Chayapathy, B.K., 1989. Stress computations for nearly

incompressible materials by the p-version of the finite element method. Int. J.
Numer. Meth. Eng. 28, 2175e2190.

Tromp, J., Komatitsch, D., Liu, Q., 2008. Spectral-element and adjoint methods in
seismology. Comm. Comp. Phys. 3, 1e32.

Valencia, A., Solis, F., 2006. Blood flow dynamics and arterial wall interaction in a
saccular aneurysm model of the basilar artery. Comput. Struct. 84, 1326e1337.

Vogelius, M., 1983. An analysis of the p-version of the finite element method for
nearly incompressible materials: uniformly valid, optimal error estimates.
Numer. Math. 41, 39e53.

Wang, C.-T., 1953. Applied Elasticity. McGraw-Hill, New York.
Yosibash, Z., 1996. Accurate stress extraction for nearly incompressible materials by

the displacement formulation of the p-version FEM. Comm. Numer. Meth. Eng.
12, 807e826.

Yu, H.S., Houlsby, G.T., Burd, H.J., 1993. A novel isoparametric finite element
displacement formulation for axisymmetric analysis of nearly incompressible
materials. Int. J. Numer. Meth. Eng. 36, 2454e2472.

http://refhub.elsevier.com/S0997-7538(13)00117-4/sref20
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref20
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref20
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref21
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref21
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref21
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref22
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref22
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref23
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref23
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref23
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref23
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref24
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref25
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref25
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref25
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref26
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref26
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref26
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref27
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref27
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref28
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref28
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref28
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref28
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref28
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref29
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref29
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref29
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref30
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref30
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref30
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref30
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref30
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref30
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref31
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref31
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref31
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref31
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref31
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref32
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref32
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref32
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref33
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref33
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref33
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref34
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref34
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref34
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref35
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref35
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref35
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref36
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref36
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref36
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref37
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref37
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref37
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref37
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref38
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref38
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref38
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref38
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref39
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref39
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref39
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref39
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref40
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref40
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref41
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref41
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref42
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref42
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref42
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref42
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref42
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref43
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref43
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref43
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref44
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref44
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref44
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref45
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref45
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref45
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref46
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref46
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref46
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref47
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref47
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref47
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref48
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref48
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref49
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref49
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref49
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref49
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref49
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref50
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref50
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref50
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref51
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref51
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref51
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref52
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref52
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref52
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref52
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref53
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref54
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref54
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref54
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref54
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref55
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref55
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref55
http://refhub.elsevier.com/S0997-7538(13)00117-4/sref55

	Legendre spectral element method with nearly incompressible materials
	1 Introduction
	2 Problem formulation
	2.1 Equations and the variational form
	2.2 Spectral element discretization

	3 Inf-sup test
	4 Measure of locking
	5 Numerical results
	5.1 Straight elements: bending of a beam (plane stress)
	5.2 Straight elements: unit square (plane strain)
	5.3 Straight elements: unit cube
	5.4 Curved elements: hollow cylinder under internal pressure (plane strain)
	5.5 Curved elements: hollow sphere under internal pressure
	5.6 Calculation on distorted meshes
	5.7 Order of locking

	6 Computational effort
	7 Conclusions
	Acknowledgments
	Appendix A Exact Solutions to the Test Problems
	Appendix A.1. Bending of a narrow cantilever beam
	Appendix A.2. Deformation of a unit square
	Appendix A.3. Deformation of a unit cube
	Appendix A.4. Hollow cylinder under internal pressure
	Appendix A.5. Hollow sphere under internal pressure

	References


