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Abstract 

Numerical method for the direct simulation of the 
large-scale turbulence is proposed based on 
Smagorinsky model for subgrid-scale turbulence. An 
experience of 2D and 3D numerical modeling of 
supersonic shear layer using the given method at Alpha 
XL 266 workstation is presented. Numerical and 
experimental results are compared and an analysis of 
this comparison is given. A special attention is paid to 
the significant difference in 2D and 3D calculations 
and the reason for this difference is discussed. The 
possibility of using personal computer for such 
calculations is investigated. In particular, processor 
time and virtual memory used are estimated for each 
calculation. 

 
Introduction 

 
Several methods exist at the present time enabling 

to calculate numerically turbulent flows with complex 
geometry.  

The first method deals with time-averaged 
Navier-Stokes equation system closed with some semi-
empirical turbulence model. But there is a significant 
disadvantage of this method lying in the nature of time-
averaging: all turbulent motions including the largest 
ones are averaged. So, all pulses including large-scale 
ones are modeled. But it’s well known that large-scale 
features of the flow depend strongly on the flow 
geometry and there can’t be any universal model for 
them in principal. 

Direct Numerical Simulation (DNS) is the 
obvious alternative to this method. It deals only with 
instantaneous values and doesn’t imply any averaging. 
But it’s very expensive in the terms of computer 
resources and hardly can be used for turbulent flows 
with high Reynolds numbers.  

The third method – Large Eddy Simulation – is 
the compromise between these two methods. Only 
small-scale turbulence is modeled in this method while 
large-scales are computed directly. It is in agreement 
with the nature of the turbulence. Indeed, large scales 
depend on the mean flow characteristics and there is no 
way to model it, so they are computed. But small scales 
(or subgrid scales – SGS) are much more universal 
with their properties remaining practically the same for 
flows of various configurations. It enables to hope that 
models for them (or SGS models) will work rather 
good for the wide range of flows.  

This paper is devoted to the application of LES 
method based on Smagorinsky model for SGS 
turbulence to the problem of supersonic mixing. A 
special attention is given to the difference between 2D 
and 3D calculations and the reasons for this difference. 

 
1. LES method based on Smagorinsky model 
 

1.1. Separation procedure. The basic idea of LES 
method consists in mathematical separation of large 
and small eddies: 

 
dV)r(f)r,r(G)r(f ′′= ∫  (1), 

( )rrG ′, -filter function with characteristic width Δ. It 
can assume various forms. We used 
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If  (i=1,2,3), and Vii h=Δ 0 is equal to the cell 
volume, this filtration corresponds to the averaging 
over the cell volume. So, turbulent motions with 
character linear scale larger than the cell size are 
considered to be 'large-scale' ones.  

The filtration procedure (1) is applied to the 
Navier-Stokes equation system. This system can be 
more compact if Favre averaging is used for all 
parameters except p и ρ .  

 
1.2. SGS model. The most popular approach based on 
Businesk hypothesis is used in this work for the 
approximation of subgrid turbulent fluxes. Heat and 
momentum fluxes are described by the following 
formula in such approach:  
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Turbulent viscosity is calculated with the 
Smagorinsky formula (1): 
 S

~
lCρμ 2

ST ⋅=  (3). 
We used 020.CS = . 

In LES the turbulent viscosity displays the 
influence of SGS turbulence, not the pulses of all 
turbulence scales. So it’s natural to connect the 
turbulent viscosity with the SGS scale, which has the 

  



 

same magnitude as the grid size when the filter 
function (2) is used. Therefore we calculate the linear 
scale l in (3) as follows  
 ( )zyx h,h,hminl = .  

Algebraic method for modeling the SGS kinetic 
energy k~  based on universal balance hypothesis is 
proposed in this work. If small (SGS) eddies are 
supposed to be in the range of universal balance then 
the SGS turbulence has the quasi-steady structure. It 
signifies that the ratio of the turbulence production to 

its dissipation const~ρ
P

=
ε

. These considerations lead 

to the following formula for k~  in the result: 
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The value of the constant  is calculated from the 
paper 

C
(3) and constitutes 46≈C . 

Such approach was used earlier in (2) for the 
estimation of time-averaged turbulence kinetic energy 
k . 
 
1.3. Numerical method. We used the following 
numerical method in our calculations (4): 
− explicit monotone Godunov-Kolgan-Rodionov 

scheme (5-8) for the approximation of convective 
fluxes. It has the 2nd order of approximation for all 
variables. Original iterative non-linearised solution 
of the Riemann problem is used. The principle of 
the minimal values of derivatives is used to achieve 
the 2nd order of approximation in space (8). This 
principle is the Russian analogue of the widely used 
TVD principle (9). The 2nd order of approximation 
in time is achieved with the “predictor-corrector” 
procedure; 

− explicit 2nd order approximation for the diffusive 
fluxes (modifies central-difference scheme) (4). 

 
1.4. The way of setting random initial and boundary 
conditions. Parameters calculated in each cell are 
instant random values in the numerical simulation of 
large-scale turbulence. They oscillate over the mean 
values with some definite law. Mean values can be 
obtained from the calculation of time-averaged Navier-
Stokes equation system. We assumed that pulses were 
distributed in time with the Gauss law with some 
dispersion. We consider the way of determination of 
this dispersion in the next part of this section. 

Instant value of large-scale field parameter in each 
point of space can be represented as the sum of its 

time-averaged value and the pulsation: fff ′+=
~~~

. 
Let's consider large-scale turbulence as the 

collection of large vortexes interacting with each other. 
We take that the position, size and intensity of these 
vortexes are known at the given moment. The 
influence of each vortex on the given point is 
determined by the correlation  
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 - vortex center position, ηΔ
r

 - radius-
vector, defining the position of the given point with 
respect to the vortex center, 
( ) ( ) ( )0,0,, ftftR ′ηΔ′=ηΔ

rr
, λ - some characteristic 

scale defining the rate of decline in influence of the 
given vortex, ω  - characteristic frequency of pulses.  

Large vortexes are taken to be located uniformly 
with the interval λ/2 in space at the given work. 
Generally, the scale λ isn’t connected with the cell size 
of the computational grid (Fig.1). 

 

 
FIG. 1. The structure of boundary disturbances 
 

2. Calculation of the test task with LES method 

2.1. The formulation of the problem. It’s necessary to 
check the adequacy of the proposed method on simple 
test problems with known experimental or theoretical 
results before applying it to 3D turbulent flows of the 
complex geometry. 

The problem of mixing of two parallel supersonic 
air flows was chosen as the test task. The scheme of the 
flow is presented at the Fig.2. 
 

 
FIG. 2. Flat supersonic mixing layer 

One of the most important characteristic of the 
mixing layer is its growth rate db/dx where b is the 
mixing layer width.  

The following regime was chosen: 

The upper stream: M=2,    T=163 K; 

The lower stream: М=1.4, T=214 K; 

P=50 кПа for both streams. 

Compressibility effects can be neglected at such 
regime and the generalization of experimental data 
leads to the following formula for the growth rate of 
the mixing layer (10): 
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Here 1212 , ρρ== suur . 
So the growth rate for the considered regime must be 

.  018.0~/ dxdb

2.2. Boundary conditions. The most part of calculations 
by LES method is quasi-2D in this work i.e. only one 
cell is given at z direction. The cell size along z-axis -

 - is the same for all cells and taken as the minimal 
value  for all cells. 

zh
hh , уx

Non-stationary random disturbances were imposed 
on the parameters of undisturbed flows at the left 
boundary. New values of disturbances are set at each 
time step. Turbulent Mach number МТ is taken as 0.3 
for both flows. Disturbances of all parameters 
constitute approximately 10% from its mean value.  

Linear extrapolation of flow parameters is used at 
the right boundary. Parameters of undisturbed flows or 
mirror reflection of parameters are set at the upper and 
lower boundaries depending on the computational 
region configuration.  

2.3. Computation results. The main problem in using 
LES method consists in necessity to find the structure 
and cell size for the computational grid allowing SGS 
pulses to lie in the range of universal balance.  

The grid must be as fine as possible in the region 
of the initiation of the turbulence in order to describe 
the development of turbulence in detail. This region is 
near the tangential discontinuity. The grid must be 
however much coarser in the layer where the 
turbulence is quite developed. Therefore the uniform 
grid is not the right choice: one can achieve better 
results with the same number of cells if they are 
widened with the distance from the surface of 
tangential discontinuity.  

Computational grid configuration chosen in the 
result of acquaintance with the work (11) is shown in 
Fig.3.  

 

 

FIG. 3. Structure of non-uniform computational grid 

The basic part of the computational region where 
the mixing layer are to be obtained is the rectangular 
(BEHK in Fig.3) with the length L and width 

( )theorydxdbLH ⋅≈ 21 . The layer of width 

10 25/1 HH =  with the uniform grid containing  
cells in the transverse direction (the layer CDIJ in 
Fig.3) is located along the longitudinal axis of 
symmetry in order to describe in details the origin of 
the instability. Variable grid containing  cells in the 
transverse direction is made in the upper and lower 
layers (DEHI and BCJK). “Buffer” subregions EFGH 
and ABKL are added to the rectangular BEHK. Their 
role is to preclude the reflecting of the small 
disturbances due to the mixing layer from 
computational region boundaries. The computational 
region length is L=1м. The number of cells in the 
longitudinal direction is . 

minN

1N

600=xN 8min =N  cells in 
the layer CDIJ, 121 =N  cells in the layers DEHI and 
BCJK. 10buf =N  cells in “buffer” zones.  

Two turbulent vortexes are given at the section CD 
adjacent to the interface between two mixing flows 
(Fig.3) to initiate the development of Helvin-Helmholtz 
instability. Undisturbed flow parameters are set at the 
left boundary out of the section CD.  

The surface of discontinuity begins to oscillate 
after 3-4 thousand time steps and the region of non-
stationary flow with large vorticity is formed between 
two mixing flows (Fig.4) over the some time 
(approximately 20 thousand steps after the beginning 
of the calculation). 

 
FIG. 4. Instantaneous field of Mach-Number 

2.4. Investigation of time-averaged flow. All available 
experimental data for the mixing layers deal with time-
averaged flow characteristics. Therefore it's necessary 
to average non-stationary flow field in time in order to 
compare our calculations with these experimental data.  

Time-averaged flow parameters are determined by 

the formula , ),( 1  )(
2/
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 where the time 

averaging interval T  must be much larger than the 
character time of energy-containing turbulent motions. 
It was shown in our calculations that minimal time 
averaging interval T must be about 5 thousands time 
steps. We used averaging interval twice as big as the 
minimal one – 10 thousand time steps. Steady flow 
averaged by such a way is shown in the Fig. 5. It’s 
seen that developed shear layer is formed in the 
computational region.  
 

  



 

 
FIG. 5. Time-averaged field of Mach number 

Growth rate and width are important 
characteristics of the shear layer as it was mentioned 
above. Therefore these parameters will be used further 
for the comparison of the results of various calculations 
between each other and with experimental data. 

Comparison of computational and experimental 
distribution of the shear layer width is shown in fig.6. 
It’s seen that the growth rate of the shear layer at the 
self-similar section is equal 03.0~xdbd , which is 
approximately 1.5 times greater than the value 
predicted by the formula (4).  
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FIG. 6. Comparison of computational and experimental 
dependencies b(x) 

 
To estimate the contribution of the SGS 

turbulence we made the calculation for the case 
, i.e. excluded SGS turbulence at all and 

switched to the inviscid flow model described by Euler 
system of equations. Only large-scale turbulence 
connected with Helvin-Helmholtz instability and 
generated by non-stationary disturbances in the 
boundary conditions left in the result. The mixing layer 
growth rate decreased 1.2 times because of elimination 
of additional mixing due to SGS turbulence (Fig.7). On 
the one hand, it shows that SGS turbulence still plays 
the significant role in our calculations. On the other 
hand, the shear layer growth rate has the larger value 

than in the reality even after the full elimination of 
SGS turbulence. It means that one of the components 
of the “total” turbulent viscosity – large-scale 
turbulence – isn’t described rightly.  

0=SC
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FIG. 7. Calculations for various values of . SC

There are two possible reasons for improper 
description of the large-scale turbulence.  
The 1st reason: computational grid is too coarse. As 
the result we model only the biggest motions generated 
by Helvin-Helmholtz instability. But they are not the 
real turbulence; actual large-scale turbulence must 
contain several levels of vortexes. Only one level can 
be found in calculations described above (see Mach 
number isolines in Fig. 8,a). The absence of smaller 
levels can lead to the accumulation of turbulent energy 
in large eddies. The result of the energy accumulation 
in the large eddies will be the overvaluation of the 
intensity of turbulent diffusion and, respectively, the 
shear layer growth rate. The grid must be fined further 
in order to achieve the simulation of smaller level 
eddies. 

Unfortunately, the possibilities of the grid 
refining are quite limited if modern personal computers 
are used for calculations. For example, calculations 
with the length of the computational region L=1 m 
require about 50 Mb of the virtual memory and one 
time step is equal to approximately 0.5 min for the 
workstation Alpha XL266. No less that 20 thousand 
time steps or 7 days of ceaseless calculation are 
necessary for the time-averaged flow to become steady. 

But nevertheless the calculation with the following 
computational grid parameters was made: 
L=1 м, Nx=48, Nmin=16, N1=1200, H0= m. 4108 −⋅

“Buffer” subregions were removed with the aim 
of the economy of computational resources. Such a 
problem requires 190 Mb of the virtual memory and 
each time has more than 2 min duration. Moreover, 

time step limitation (
ν

≤τ
4

2h ) became stronger 

because of the cell size diminution, i.e. more number of 
steps are now required to obtain the developed flow 

  



 

pattern. One can see the results of this calculation and 
the comparison with the calculation using the primary 
grid in Fig.8. Instant Mach number isolines with the 
step 0.01 are shown in this figure.  

 а) 

 b) 
FIG.8.  Comparison of the instant field of 

Mach number for the primary and refined grids 
 a) Primary grid 
 b) Refined grid 

It can be seen that we caught only one level of 
eddies at the primary grid. The second level appears at 
the 4 times finer grid and the fist level eddies are 
resolved more precisely.  

The comparison of shear layer width for these two 
configurations is shown in Fig.9. 
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FIG. 9.Calculations for two grid configurations  

The basic difference is in the fact that sharp 
growth of the shear layer begins now at the lower value 
of x (x~0.1 m, not x~0.4 m). It’s evident since the value 
of turbulent viscosity is smaller in each cell when the 
grid is finer. Therefore eddies closer to the beginning 
of mixing of the flow smeared earlier by the turbulent 
viscosity start to develop now. But the shear layer 

growth rate hasn’t changed practically. Perhaps, it 
means that the grid is still too coarse resulting in the 
representation of the insufficient number of eddy 
motion levels and incorrect description of the turbulent 
energy transition trough the cascade of eddies.  

We transit now to the second possible reason for 
improper large-scale turbulence representation. 
 
The 2nd reason: calculations were two-dimensional 
(computational region contained only one cell along 
the z-axis). It’s known that properties of the turbulence 
differ to the great extent in 2D and 3D flows (12-14). 

Characteristic feature of 2D turbulence is 
conservation of not only energy, but enstrophy (mean 
square vorticity) during the interaction of turbulent 
eddies. It’s shown in paper (14) that enstrophy flux in 
the balance range must be directed from the large 
eddies to the small ones. Then it follows from the 
conservation laws that the energy must be transmitted 
trough the cascade of eddies in the opposite direction.  

So, energy is accumulated in the large scales in 2D 
turbulence. Oversized value of the shear layer growth 
can be the result of such accumulation that is observed 
in our calculation.  

3D calculation of the given problem was made to 
check this supposition. Computational region was in 
the form of the rectangular parallelepiped. Its 
projections on the plane (x, y) coincided with the 
rectangular BEHK (Fig.3), i.e. with the computational 
region configuration without "buffer" subregions used 
in 2D calculations. The width of the parallelepiped 
along the z-axis was equal to its height ( ) with 16 
uniform cells given along it.  

1H

The following boundary conditions was set: 25 
eddies was given along the z-axis above and below the 
discontinuity surface at the left boundary of the layer 
with small cells (values of parameters in the center of 
cells was determined using the linear extrapolation). 
Supersonic inflow condition was set at the remaining 
part of the left boundary; mirror reflection condition - 
at the upper, lower and lateral boundaries.  

The calculation was made at the limit of 
possibilities of available PC (Alpha XL 266 
workstation). The task occupied 190 Mb of the virtual 
memory. Each time step required about 5 minutes of 
the processor time with 30000 time steps necessary for 
obtaining the stationary averaged flow.  

Calculation results are shown in the Fig.10. One 
can see rather good agreement with the experimental 
data. So, incorrect value of the shear layer growth rate 
obtained in calculations described above was really 
connected with two-dimensional problem setting.  
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FIG.10. Comparison of curves b(x) for 2D 
and 3D calculations 

 

The following can be recommended for the further 
improvement of the calculation results: a) to use more 
detailed grid in the vicinity of the shear layer; b) to use 
more elaborated SGS model. Certainly, all these 
improvements will require certain computational 
resources, which are beyond the possibilities of modern 
personal computers. So, we are forced to accept that 
it’s still impossible to make turbulent flow calculations 
using LES method at PCs. 

 
Conclusions 

1. Numerical method for direct modeling of large-
scale turbulence based on Smagorinsky model is 
proposed. The method contains a number of 
original elements: 1) the way of direct modeling 
of SGS turbulence; 2) an algorithm for setting 
random boundary conditions with the account of 
neighbor vortexes. 

2. 2D and 3D calculations of the test task about 
turbulent mixing of two supersonic flows were 
performed using this method. Comparison of 2D 
and 3D numerical results with the experimental 
ones was made. 2D calculations proved to be 
rather inaccurate while 3D results displayed good 
correspondence with the experiment. This 
comparison and theoretical insight into the nature 
of 2D and 3D turbulence demonstrate the 
evidence of the necessity for LES calculation to 
be essentially three-dimensional. 

3. Possibilities of modern Personal Computers are 
still insufficient for performing turbulent flow 
calculations using LES method.  
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