
Distributed Monitoring and Management of
Exascale Systems in the Argo Project

Swann Perarnau1, Rajeev Thakur1, Kamil Iskra1, Franck Cappello1, Pete
Beckman1, Marc Snir1, Martin Schulz2, and Henry Hoffmann3

1 Argonne National Laboratory
2 Lawrence Livermore National Laboratory

3 University of Chicago

Abstract New computing technologies are expected to change the high-
performance computing landscape dramatically. Future exascale systems
will comprise hundreds of thousands of compute nodes linked by complex
networks—resources that need to be actively monitored and controlled,
at a scale difficult to manage from a central point as in previous systems.
In this context, we describe here on-going work in the Argo exascale soft-
ware stack project to develop a distributed collection of services working
together to track scientific applications across nodes, control the power
budget of the system, and respond to eventual failures. Our solution
leverages the idea of enclaves: a hierarchy of logical partitions of the
system, representing groups of nodes sharing a common configuration,
created to encapsulate user jobs as well as by the user inside its own
job. These enclaves provide a second (and greater) level of control over
portions of the system, can be tuned to manage specific scenarios, and
have dedicated resources to do so.

1 Introduction

Disruptive new computing technology has already begun to change the scientific
computing landscape. Hybrid CPUs, many-core systems, and low-power system-
on-a-chip designs are being used in today’s most powerful high-performance
computing (HPC) systems. As these technology shifts continue and exascale ma-
chines emerge, the Argo research project aims to provide an operating system
and runtime (OS/R) designed to support extreme-scale scientific computations.
To this end, it seeks to efficiently leverage new chip and interconnect technologies
while addressing the new modalities, programming environments, and workflows
expected at exascale. At the heart of the project are four key innovations: dy-
namic reconfiguring of node resources in response to workload changes, allowance
for massive concurrency, a hierarchical framework for management of nodes, and
a cross-layer communication infrastructure that allows resource managers and
optimizers to communicate efficiently across the platform. These innovations will
result in an open-source prototype system that is expected to form the basis of
production exascale systems deployed in the 2020 timeframe.



Argo is designed with a hierarchical approach. The system is organized in
enclaves, a set of resources that share the same configuration and can be con-
trolled as a whole. Enclaves can monitor their performance, respond to failures,
and control power usage according to a budget. These enclaves form a hierarchy,
with the top enclave acting over the whole system and jobs contained in their
own enclave that the user can subdivide further.

We describe here the early stages of an ongoing effort, as part of Argo, to
design the services that will take care of creating, keeping track of, and destroy-
ing enclaves, as well as monitoring and controlling the resources and failures
happening in those enclaves. Our design is influenced by two factors. First, we
expect that future machines will differ significantly from current HPC systems
in size, failure rate, and fine-grained access to resources. Second, we don’t ex-
pect the Argo system to behave as commonly available distributed systems such
as peer-to-peer or cloud infrastructures. Indeed, an HPC machine will still be
composed of known, dedicated resources over which we have total control (as
low level as necessary). As a result, we believe that several services typical of
a distributed infrastructure can benefit from this unique setup and from being
distributed across the hierarchy of enclaves.

In Section 2 we describe more fully the components of the Argo system. In
Section 3 we detail typical services we identified as critical to Argo, while also
representing distinct communication and control patterns that could benefit from
our unique setup. In Section 4 we review related work, and in Section 5 we briefly
discuss future work.

2 The Argo Machine: Architecture, Enclaves and
Underlying Services

While predicting the exact architecture of future exascale systems is difficult,
the Argo project bases its designs on general trends such as those highlighted
in the Exascale Software Project Roadmap [2]. We expect the Argo machine
to be composed of hundreds of thousands of compute nodes, with each node
containing hundreds of cores. Furthermore, those nodes will be linked together by
dedicated and highly efficient networks, integrating smart control and monitoring
interfaces. We also expect that, in order to meet the U.S. DOE exascale budget
limits, complex power management interfaces will be available at all levels of the
machine.

The software stack designed by the Argo project to manage such a ma-
chine is divided into four key components. First, each compute node will use a
customized operating system derived from Linux (NodeOS ). Second, a runtime
taking advantage of massive intranode parallelism (Argobots) will be available.
Third, a global information bus or backplane will provide advanced communica-
tion services on top of the native network. In particular, a distributed key-value
store and a pub-sub system will be available to other components. Fourth, the
GlobalOS—the focus of this paper—will manage enclaves and their services.



As we stated in the introduction, enclaves are logical groups of nodes sharing
the same configuration. They are organized in a tree, whose root is the enclave
containing all nodes. Inside an enclave, at least one node (master) hosts the ser-
vices specific to this enclave. Masters communicate with each other to distribute
control of the nodes in the system. We note that nodes are members of all the
enclaves above them in the hierarchy. In other words, a master node controls
all nodes in its subtree in the hierarchy of enclaves, and not just the masters
of its subenclaves. Enclaves cannot be created inside a compute node: enclaves
are logical constructs intended to manage only the distributed part of the Argo
machine. Figure 1 gives an example of a hierarchy of four enclaves distributed
across a system, with each enclave having its master replicated across several
nodes.

This enclave concept is critical to the design of the distributed services man-
aging the Argo machine. In particular, we organize responsibilities so that as
much of the node management as possible is made by the deepest master in
the hierarchy. Conversely, the higher in the hierarchy, the less the interaction
between the master and nodes, and the more coarse-grained this interaction is.
We give typical examples in the next section.

root

blue

green

red

Figure 1. Example of a hierarchy of 4 enclaves. On the left, the squares represent
compute nodes, with the filled ones representing the master and its replica. On the
right, the hierarchy of enclaves is represented as a tree. Names match colors on the
left.

3 Typical Services in the Argo Machine

Three services critical to GlobalOS can serve as examples of the different ways
the enclave hierarchy is used in Argo.



3.1 Hierarchical Control Bus for Enclaves

The Argo system is used like any other HPC system: a user submits to the system
a job comprising at least the number of nodes required, the time duration, the
configuration (to be deployed across the job), and the script or application to
run. In our infrastructure, each job is an enclave, a direct child of the root enclave
(which contains all nodes). Furthermore, the user can create enclaves inside its
job, if he needs distinct parts of the allocated nodes to have different features.
This process distributes the responsibilities of node management between the
masters at different levels of the hierarchy. The root master has the exclusive
role of creating enclaves at its level, and does so only when receiving commands
from the job scheduler. The master at the job enclave level might be responsible
only for creating subenclaves; and so on. Similarly, since the user has control
over all nodes in a job enclave, commands to reconfigure an enclave, a subtree
of an enclave, or just one node might happen at different levels of the hierarchy.

Thus, the chain of command between the root master and a node can be
seen as a bus, where commands flow from master to master, going deeper into
the hierarchy, with each master affecting the process or injecting new commands
until they reach a node. Some commands might be of higher priority (e.g., the
root enclave asking for job termination) or be altered (e.g., a command that
must span an entire enclave instead of just one node). Nevertheless, all enclave
masters are responsible for the continuous working of their enclaves, from the
moment the enclave management is delegated to them until the enclave exits (all
nodes gracefully exit the enclave, including the master) or is destroyed (massive
failure, forceful exit). We are designing this control bus on top of two mecha-
nisms: a logical naming scheme that allows a message or command to be sent
to different stages of the control bus (an enclave, a master, or a specific node)
and a message broker dedicated to the control bus, present on each node, and
forwarding messages across the bus in the right order.

The naming scheme is similar to paths in a filesystem: each enclave is a
directory with the root enclave at the top, and nodes are files in those directories.
A few special names also exists: ’..’ (parent enclave), ’.’ (closest enclave), and
’*’ (all enclaves/nodes). This naming scheme simplifies sending a command to
a specific part of the system, even from a node having only partial knowledge of
the hierarchy: it is enough to know the next master in the path. This knowledge
is kept in the key-value store available in the Argo system, so that every node
knows its own path and how to contact parent and children enclaves. As an
example, a node in the green enclave will have the path /blue/green/node.

The message broker infrastructure is also simple. A message broker runs
on each node and uses the key-value store to route messages to the various
masters on the bus. This broker also inspects each message to decide whether
commands need to be triggered locally or whether the message needs to be
altered or redirected. This design avoids specifying how those messages should
be transported. Indeed, as several communication services are made available by
the backplane, several communication channels might be available at the same
time. For example, it might be more efficient to distribute a command across all



nodes of an enclave by using a reliable publish-subscribe interface rather than
using point-to-point. Such choices are being evaluated but might depend on the
specific architecture our system is deployed on.

3.2 Distributed Power Management

Since we expect the size of an exascale machine to involve hundreds of thousands
of compute nodes, controlling the total power consumption of the system is
critical. Indeed, such systems represent tens of megawatts in consumption and
a significant cost to any organization. Therefore, idle parts of the system or
underutilized resources should be put in low-power modes as much as possible.
To do so, we expect the architecture to provide meters distributed across the
system to measure the current power usage and interfaces, similar to dynamic
frequency scaling or Intel’s RAPL [?] on each node. We therefore are designing
a distributed power management service as part of GlobalOS.

This service comprises two components: a reader service, running on each
node, that periodically reports power consumption to its enclave master and
a power control service, installed on enclave masters, that distributes a global
power budget across the enclave hierarchy.

The power consumption reader design is straightforward. On each node, pe-
riodically the local measuring interface are used to gather information, which is
then sent to the closest master. Each master then aggregates the data coming
from its enclave and sends it to its parent, and so on. This information gathering
is made possible by the publish-subscribe service of the backplane, and likewise
for the aggregation. The power control service reacts to information coming from
the consumption reader as well as global power budget limits set by the machine
administrators. The exact algorithms used to distribute this power budget across
the hierarchy will be derived from previous work [?].

3.3 Managing Failures as Exceptions

Given the expected size of an exascale machine, failures–in both hardware and
software—will have a statistically greater chance of occurring than in previous
systems. Consequently, all components of Argo are being designed with faults
in mind. This effort includes replication of masters across the enclave hierarchy,
for example.

While failure detection is a complex issue in itself, our focus here is on reac-
tions to failures. We designed a service distributed across the enclave hierarchy
that, when notified of failures, acts like an exception system: each master on the
path between the failed component and the root enclave will receive the notifi-
cation one by one, from the deepest to the hierarchy to the highest, and have
a chance to act on it. If a master cannot act or resolve the failure, the parent
master will take control, and so on.

The specific action a master takes will depend on the component that failed
and on the recovering/reaction strategy active on the failure manager. We plan
to design several strategies, ranging from restarting the component to destroying



the enclave, that users will be able to configure inside their enclaves. We expect
the root enclave to have the most complex strategy, with the additional role of
notifying administrators in case of unrecoverable hardware failures, and having
sole control of powering off and on nodes, for example.

4 Related Work

Similar projects on a new software stack for exascale systems have recently
emerged, including the Hobbes project directed by Sandia National Laboratories
in the United States and the post-K project directed by RIKEN in Japan. We
are collaborating with them on the design of several components, and we expect
these efforts to result in robust and versatile components to manage an entire
machine. Recent cloud technologies also have started to address the issues in
orchestrating and monitoring distributed resources. We cite OpenStack [1] as an
example. These technologies are, however, targeted to systems where the number
of compute nodes is smaller, and without any static knowledge of the available
hardware or dedicated high-performance networks.

5 Conclusion

We are still in the design phase of our distributed framework for the provisioning,
management, and monitoring of an exascale machine. Our goal is to build on
the features of the future architecture and Argo’s communication component,
focusing on a hierarchical and lightweight solution that is tuned as issues become
apparent as the project advances. We hope that in the coming year, with an
integrated Argo prototype implemented, our research will move its focus to the
study and design of efficient management strategies to be implemented into the
various services of the GlobalOS.

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computer Research, under Contract DE-AC02-
06CH11357.

References

1. OpenStack: Open source software for creation private and public clouds. http:
//www.openstack.org/

2. Dongarra, J., Beckman, P., et al.: The International Exascale Software Project
Roadmap. International Journal of High Performance Computing Applications
25(1), 3–60 (2011)

http://www.openstack.org/
http://www.openstack.org/

	Distributed Monitoring and Management of Exascale Systems in the Argo Project

