Swann Perarnau, Mitsuhisa Sato

RIKEN AICS, University of Tsukuba

» Algorithm for dynamic load balancing. » Fully distributed.
» Increasingly popular in shared and distributed memory. » Most of the scheduling overhead occurs on idle processes.
» Work is divided in items or tasks. » Provably efficient.

» An idle process steals work from a busy one.

while not finished do » lgnore data transfers costs.
while task < getWork(myStack) do

task.run()

end while
while myStack is empty do - OurWork

v < selectVictim()

» Traditionally assumes uniform access times between processes.

» Load balancing performance degrades at very large scale.

steal(v) » Change the victim selection process to improve average search time.
end while » Use network topology knowledge.
end while » Large scale execution on the K Computer.

C
» Each node is composed of one SPARCVIIIfx with 8 cores.

-
» 300004+ compute nodes, in 8004 racks. A/ - é

» Tofu proprietary network: 6D mesh torus.

T
C

Figure: Coordinate system in a Tofu network: A B C inside a Tofu unit, XY ,Z between them.

Most implementations use a random selection

Process.

<

~—~
<

~—
—
=1

(D

~—~
-
~—
N
O

o

o1

<

H

o)
A~
—~—
—
—r
—
N
—~
.
—
~—
—~
N
S
'—l
(@]
&

» Uniform probability to steal each process.

2
~—~
<
~—

—
—
D
~—~
-
~—
]
O
W
o1
<

» Provably efficient for shared memory systems.

J > 3-107°
% 25.1073 | - -
L - =
Our |dea: use network topology information to 15-103&?. T -

—

weight the probab|||’Fy of a steal. o(i.j): probability of rank i stealing rank | 02| U w]
» Still a random, efficient selection process. xi, Vi, i, @i, b, ¢ coordinates in the Tofu of / 5.10-4| |

» Ensures eventual discovery/balancing of work. e(/,): euclidean distance between i and | 0 100 200 300 400 0 500 700 800 900 1,000
an

» Compensate for response latencies between nodes
at large scale.

Figure: Example of the probability distribution function of a rank being
stolen by 0, for a deployment on the K Computer over 1024 MP]
processes, 1 per node.

200 T T T T 260 T T T T ‘ ‘ ‘ ‘ 140

240 | |® Original 26| |-+ Original | "« Original
180 | | m Tofu 2l —=-Half+Rand | —=-Half+Rand
220 | -@- Half_|_Or|g|na| ' —o— Ha|f+TOfU 120 + e Ha|f+TO'FU
160 i 200 | |7 Half+Rand 2.2 ¢)
- Half+Tofu 7| 100l
140 | 180 | ;
& 1.8+
— —~
- 120}) “n L = 1.6} \:)_: 80 |
) o 140 IS 14l £
g 100 E R —
= 2 120 5 12| T ogof
= w0 [: 8
60 | 1 80 | 0.8
@ Original 40
40 | - Tofu i 60 0.6
-® Half+Original 40 | | 0.4 20|
20| |7 Half+Rand | sl
- Half+Tofu 20 :
| | | | | | | | 0 ‘ ! ! O | | | |
T 2048 4096 8192 004 2048 4096 8192 1024 2048 4096 8192 1024 2048 4096 8192
MPI Processes # MPI Processes MPI Processes MPI Processes
Figure: 1 MPI process per node. Figure: 8 consecutive MPI ranks per node. Figure: Number of failed steals. Figure: Avg search time per process.

Results were obtained by access to the K computer at the RIKEN AICS.

> Public, pure MPI 2 implementation of UTS. This work was supported by the JSPS Grant-in-Aid for JSPS Fellows Number 24.02711.

» UTS input is a tree with 157 billions of nodes.
» Default parameters for benchmark and platform scheduler.

