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» Algorithm for dynamic load balancing. » Fully distributed.
» Increasingly popular in shared and distributed memory. » Most of the scheduling overhead occurs on idle processes.
» Work is divided in items or tasks. » Provably efficient.

» An idle process steals work from a busy one.

while not finished do » lgnore data transfers costs.
while task < getWork(myStack) do

task.run()

end while
while myStack is empty do - OurWork

v < selectVictim()

» Traditionally assumes uniform access times between processes.

» Load balancing performance degrades at very large scale.

steal(v) » Change the victim selection process to improve average search time.
end while » Use network topology knowledge.
end while » Large scale execution on the K Computer.

C
» Each node is composed of one SPARCVIIIfx with 8 cores.

-
» 300004+ compute nodes, in 8004 racks. A/ - é

» Tofu proprietary network: 6D mesh torus.
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Figure: Coordinate system in a Tofu network: A B C inside a Tofu unit, XY ,Z between them.

Most implementations use a random selection

Process.
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» Uniform probability to steal each process.
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» Provably efficient for shared memory systems.
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weight the probab|||’Fy of a steal. o(i.j): probability of rank i stealing rank | 02| U w ]
» Still a random, efficient selection process. xi, Vi, i, @i, b, ¢ coordinates in the Tofu of / 5.10-4| |

» Ensures eventual discovery/balancing of work. e(/,): euclidean distance between i and | 0 100 200 300 400 0 500 700 800 900 1,000
an

» Compensate for response latencies between nodes
at large scale.

Figure: Example of the probability distribution function of a rank being
stolen by 0, for a deployment on the K Computer over 1024 MP]
processes, 1 per node.
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Figure: 1 MPI process per node. Figure: 8 consecutive MPI ranks per node. Figure: Number of failed steals. Figure: Avg search time per process.

Results were obtained by access to the K computer at the RIKEN AICS.

> Public, pure MPI 2 implementation of UTS. This work was supported by the JSPS Grant-in-Aid for JSPS Fellows Number 24.02711.

» UTS input is a tree with 157 billions of nodes.
» Default parameters for benchmark and platform scheduler.




