Argo: An Exascale Operating System and Runtime

Swann Perarnau
swann@anl.gov

Keywords

High-Performance Computing, Supercomputers, Exascale,
Operating System, Runtime

1. INTRODUCTION

Exascale supercomputers are expected to comprise hun-
dreds of thousands of heterogeneous compute nodes linked
by complex networks. Those compute nodes will have an in-
tricate mix of general-purpose multi-cores and special-purpose
accelerators targeting compute-intensive workloads with deep
multi-level memory hierarchies. As such, the HPC commu-
nity expects exascale systems to require new programming
models, to take advantage of both intra-node and inter-node
parallelism.

The Argo project, funded under the DOE ExaOSR ini-
tiative, aims to provide an Operating System and Runtime
(OS/R) designed to support extreme-scale scientific compu-
tations. With this goal in mind, Argo seeks to efficiently ex-
ploit new processor, memory and interconnect technologies
while addressing the new modalities, programming environ-
ments, and workflows expected at exascale. At the heart
of this project are four key innovations: dynamic reconfig-
uring of node resources in response to workload changes,
allowance for massive concurrency, a hierarchical framework
for management of nodes, and a cross-layer communication
infrastructure that allows resource managers and optimizers
to communicate efficiently across the platform. These inno-
vations will result in an open-source prototype system that
is expected to form the basis of production exascale systems
deployed in the 2020 timeframe.

We provide here a overall description of the project, be-
fore highlighting recent achievements in performance and
integration with existing systems.

2. THE ARGO PROJECT

Providing a complete software stack for exascale systems,
the Argo components span all levels of the machine: a par-
allel runtime seats on top of a HPC-aware operating system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC’15 November 15-20, 2015, Austin, TX, USA

Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Rinku Gupta
rgupta@anl.gov

Pete Beckman
beckman@anl.gov

for each node, while a distributed collection of services man-
ages all nodes, using a global communication bus.

NodeOS is the operating system running on each node
of an Argo machine. It is a based on the Linux kernel,
tuned and extended for HPC use on future architectures.
In particular, we leverage the control groups interface and
extend it to provide lightweight compute containers with ex-
clusive access to hardware resources. To limit OS noise on
the node, system services are restricted to a small dedicated
share of cores and memory nodes. Additionally, the NodeOS
provides custom memory and scheduling policies, as well as
specialized interfaces for parallel runtimes.

Argobots is the runtime component of Argo. It imple-
ments of low-level threading and tasking framework entirely
in user-space, giving users total control over their resource
utilization, and provides data movement infrastructure and
tasking libraries for massively concurrent systems.

GlobalOS is a collection of services implementing a dis-
tributed, dynamic control of the Argo machine. It divides
the system into enclaves, groups of nodes sharing the same
configuration and managed as a whole. Those enclaves can
be subdivided, forming a hierarchy, with dedicated nodes
(masters) at each level to respond to events. Among the
provided services, the GlobalOS includes distributed algo-
rithms for power management and fault management mim-
icking exceptions across the enclave tree.

The Global Information Bus(GIB) is a scalable com-
munication infrastructure taking advantage of modern high
performance networks to provide applications and system
services efficient reporting and resource monitoring services.

In its current state, the Argo project has prototype im-
plementations of most of its components:

1. A prototype design and implementation of Global OS
built on top of OpenStack services. This current imple-
mentation relies on bare metal provisioning of compute
nodes, and provides enclave creation and tracking, con-
figuration of system services and job launching.

2. The GlobalOS also includes distributed enclave and
system-wide power management algorithms.

3. BEACON, the pub/sub framework of the Global Infor-
mation bus is available in its 1.0 version. A prototype

implementation on top of EVPATH and the RIAK key
value store is also available.

4. The Argobots runtime has been successfully integrated
with several existing programming models: MPI, Open
MP, Charm++, Cilk Plus, PTGE.

5. In addition, collaboration with RIKEN in Japan led to
a highly scalable OpenMP implementation for nested
and irregular loops/tasks on top of Argobots.

6. The NodeOS currently provides partitioning of CPU
and memory ressources, a prototype implementation of
its compute containers as well as a custom scheduling
policy for modern HPC runtimes.

7. DI-MMAP, a tool to integrate NVRAM into the mem-
ory hierarchy of the system and use it for parallel ap-
plication is also integrated.

For the near future, the Argo project will focus on greater
integration between its components, aiming for scalability
and functionality testing on large scale DOE facilities and
applications. In particular, we will focus on the following
points:

1. Refining the functionality of Global OS to include:
failure management, fault tolerance, recursive enclave
management and user customization of enclaves.

2. Add functionality to EXPOSE, the performance mon-
itoring component, and integrate it with TAU.

3. Research new features in NodeOS, Argobots runtime
and the GIB that may arise as more information on
future systems is made available.

4. Prepare and demonstrate at future conferences a com-
plete integrated software stack on a large scale system.

3. ADDITIONAL AUTHORS

Argonne National Laboratory: Judicael Zounmevo, Hui-
wei Lu, Kenneth Raffenetti, Sangmin Seo, Pavan Balaji,
Franck Cappello, Kamil Iskra, Rajeev Thakur, Kazutomo
Yoshii, Marc Snir.

University of Illinois at Urbana-Champaign: Cyril Bor-
dage, Laxmikant Kale, Yanhua Sun, Jonathan Lifflander.

University of Tennessee: George Bosilca, Jack Dongarra,
Damien Genet, Thomas Herault.

University of Oregon: Sameer Shende, Xuechen Zheng,
Wyatt Spear, Daniel Ellsworth, Allen D. Malony.

Lawrence Livermore National Laboratory: Maya Gokhale,
Barry Rountree, Martin Schulz, Brian Van Essen, Edgar
Leon.

University of Chicago: Henry Hoffman, Nikita Mishra,
Huazhe Zhang

Pacific Northwest National Laboratory: Sriram Krish-
namoorthy, Roberto Gioiosa, David Callahan, Gokcen Kestor.

4. REFERENCES

[1] A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and
J. Dongarra. PTG: An abstraction for unhindered
parallelism. In International Workshop on
Domain-Specific Languages and High-Level
Frameworks for High Performance Computing
(WOLFHPC), New Orleans, LA, 11/2014 2014. IEEE
Press, IEEE Press.

[2] D. Ellsworth, A. Malony, M. Schulz, and B. Rountree.
POW: System-wide Dynamic Reallocation of Limited
Power in HPC. In 24th International ACM
Symposium on High-Performance Distributed
Computing (HPDC 2015), 2015.

[3] H. Hoffmann and M. Maggio. PCP: A generalized
approach to optimizing performance under power
constraints through resource management. In ICAC,
2014.

[4] C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann.
Poet: A portable approach to minimizing energy
under soft real-time constraints. In RTAS, 2015.

[5] N. Mishra, H. Zhang, J. D. Lafferty, and H. Hoffmann.
A probabilistic graphical model-based approach to
minimizing energy under performance constraints. In
ASPLOS, 2015.

[6] T. Patki, D. Lowenthal, A. Sasidharan, M. Maiterth,
B. Rountree, M. Schulz, and B. de Supinski. Practical
resource management in power-constrained, high
performance computing. In 24th International ACM
Symposium on High-Performance Distributed
Computing (HPDC 2015), 2015.

[7] S. Perarnau, R. Thakur, K. Iskra, K. Raffenetti,

F. Cappello, R. Gupta, P. Beckman, M. Snir,

H. Hoffmann, M. Schulz, and B. Rountree. Distributed
Monitoring and Management of Exascale Systems in
the Argo Project. In 15th IFIP International
Conference on Distributed Applications and
Interoperable Systems (DAIS 2015), June 2015.

[8] B. Van Essen, M. Jiang, and M. Gokhale. Developing
a framework for analyzing data movement within a
memory management runtime for data-intensive
applications. In Non-Volatile Memories Workshop,
San Diego, CA, Mar. 2015.

[9] W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and
J. Dongarra. Hierarchical dag scheduling for hybrid
distributed systems. In 29th IEEE International
Parallel € Distributed Processing Symposium
(IPDPS), Hyderabad, India, 05/2015 2015. IEEE,
IEEE.

[10] H. Zhang and H. Hoffmann. A quantitative evalution
of the RAPL power control system. In Feedback
Computing, 2015.

[11] J. A. Zounmevo, K. Iskra, K. Yoshii, R. Gioiosa,

B. C. V. Essen, M. B. Gokhale, and E. A. Leon. A
single-kernel approach to OS specialization and node
resource partitioning for exascale computing. 11th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI '14), Oct. 2014. (Poster).

[12] J. A. Zounmevo, S. Perarnau, K. Iskra, K. Yoshii,

R. Gioiosa, B. C. V. Essen, M. B. Gokhale, and E. A.
Leon. A container-based approach to OS specialization
for exascale computing. In 1st International Workshop
on Container Technologies and Container Clouds
(WoC ’15), held in conjunction with IEEE
International Conference on Cloud Engineering (IC2E
’15), Tempe, AZ, Mar. 2015.

