
Parallel algebraic modeling for stochastic optimization

Joey Huchette
Operations Research Center

Massachusetts Institute of
Technology

77 Massachusetts Avenue
Cambridge, MA 02139
huchette@mit.edu

Miles Lubin
Operations Research Center

Massachusetts Institute of
Technology

77 Massachusetts Avenue
Cambridge, MA 02139
mlubin@mit.edu

Cosmin Petra
Mathematics and Computer

Science Division
Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL 60439

petra@mcs.anl.gov

ABSTRACT
We present scalable algebraic modeling software, StochJuMP,
for stochastic optimization as applied to power grid eco-
nomic dispatch. It enables the user to express the prob-
lem in a high-level algebraic format with minimal boiler-
plate. StochJuMP allows efficient parallel model instantia-
tion across nodes and efficient data localization. Compu-
tational results are presented showing that the model con-
struction is efficient, requiring roughly one percent of solve
time. StochJuMP is configured with the parallel interior-point
solver PIPS-IPM but is sufficiently generic to allow straight
forward adaptation to other solvers.

Keywords
optimization, parallel programming, high performance com-
puting, mathematical model, Power system modeling, scal-
ability

1. INTRODUCTION
Algebraic modeling languages (AMLs) for optimization

are widely used by both academics and practitioners for
specifying optimization problems in a human-readable, math-
ematical form, which is then automatically translated by
the AML to the low-level formats required by efficient im-
plementations of optimization algorithms, known as solvers.
For example, a classical family of optimization problems is
linear programming (LP), that is, minimization of a linear
function of decision variables subject to linear equality and
inequality constraints. As input, LP solvers expect vectors
c, l, u, L, and U and a sparse constraint matrix A defining
the LP problem,

minimize
x

cTx

subject toL ≤ Ax ≤ U
l ≤ x ≤ u,

where inequalities are componentwise.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPTCDL November 16-21, 2014, New Orleans, Louisiana, USA
Copyright 2014 ACM 978-1-4799-5500-8/14 ...$15.00.

In practice, it is tedious and error-prone to explicitly form
a sparse constraint matrix and corresponding input vectors;
this process often involves concatenating different classes of
decision variables, each indexed over multidimensional sym-
bolic sets or numeric ranges, into a single x decision vector.
Instead, AMLs, which may be considered domain-specific
languages in the vocabulary of computer science, handle
these transformations automatically.

Notable AMLs include AMPL [1], GAMS [2], YALMIP [3],
Pyomo [4], and CVX [5]. While commercial AMLs (AMPL
and GAMS) offer standalone environments, open-source AMLs
are typically embedded in high-level dynamic languages; CVX
and YALMIP are both toolboxes for MATLAB, and Pyomo
is a package for Python. Indeed, dynamic languages pro-
vide convenient platforms for AMLs, and domain-specific
languages in general, because they make development eas-
ier (no need for a customized parser), and promote the ease
of use by being accessible from a language that is already
familiar to users and has its own tools for processing and
formatting data.

Historically, speed has been a trade-off for using AMLs
embedded in high-level dynamic languages, primarily be-
cause of their extensive use of operator overloading within
an interpreted language. These AMLs may be orders of
magnitude slower at generating the optimization model be-
fore passing it to a solver; in some reasonable use cases, this
model generation time may perversely exceed the time spent
in the solver.

The Julia programming language [6] presented an oppor-
tunity to address this performance gap. Lubin and Dunning
developed JuMP [7], an AML embedded in Julia. By ex-
ploiting Julia’s metaprogramming and just-in-time compi-
lation functionality, they achieved performance competitive
with that of commercial AMLs (AMPL and Gurobi/C++)
and an improvement of one to two orders of magnitude over
open-source AMLs (Pyomo and PuLP [8]) in model genera-
tion time for a benchmark of LP problems.

In this paper, we present an extension to JuMP, called
StochJuMP, for modeling a class of stochastic optimization
problems, namely, two-stage stochastic optimization with
recourse, a popular paradigm for optimization under uncer-
tainty [9]. These problems are computationally challenging
and at the largest scale require the use of specialized solvers
employing distributed-memory parallel computing. These
solvers require structural information not provided by stan-
dard AMLs, and because of memory limits, it may not be
feasible to build up the entire instance in serial and then dis-
tribute the pieces. Instead, StochJuMP generates the model

in parallel according to the data distribution across processes
required by the specialized solvers. We present numerical re-
sults demonstrating that StochJuMP can effectively generate
these structured models in a small fraction (≈ 1.5%) of the
solution time. To our knowledge, these results are among
the first reports of employing Julia on a moderately sized
MPI-based cluster.

2. BLOCK-ANGULAR STRUCTURE
The structured optimization problems considered in this

paper are known in the optimization community as dual
block angular problems, which means that they have sep-
arable objective function and block angular, or half-arrow
shaped constraints. In particular, we consider dual block an-
gular problems with quadratic objective function and affine
constraints, which can be mathematically expressed as

min 1
2
xT0 Q0x0 + cT0 x0 +

∑N
i=1

(
1
2
xTi Qixi + cTi xi

)
s.t. Ax0 = b0,

T1x0+ W1x1 = b1,
T2x0+ W2x2 = b2,

...
. . .

...
TNx0+ WNxN = bN ,
x0 ≥ 0, x1 ≥ 0, x2 ≥ 0, . . . , xN ≥ 0.

(1)

The decision variables are the vectors xi, i = {0, 1, . . . , N}.
The data of the problem consist of the coefficients vectors ci,
right-hand sides bi, symmetric matrices Qi, and rectangular
matrices A, Ti, Wi (i = {1, . . . , N}).

Problems of the form (1) arise in stochastic optimization
with recourse. Stochastic programming problems with re-
course (in (2) we show two-stage quadratic problems [10])
provide optimal decisions to be made now that minimize the
expected cost in the presence of future uncertain conditions:

min
x0

(
1

2
xT0 Q0x0 + cT0 x0

)
+ Eξ[G(x0, ξ)]

s.t. Ax0 = b0, x0 ≥ 0.

(2)

The recourse function G(x0, ξ) is defined by

G(x0, ξ) = min
y

1

2
yTQξy + cTξ y

s.t. Tξx0 +Wξy = bξ, y ≥ 0,

(3)

and the expected value E[·], which is assumed to be well de-
fined, is taken with respect to the random variable ξ, which
contains the data (Qξ, cξ, Tξ,Wξ, bξ). Some of the elements
in ξ can be deterministic. The matrix Qξ is assumed to be
symmetric for all possible ξ. Wξ, the recourse matrix, and
Tξ, the technology matrix, are random matrices. The sym-
metric matrix Q0, the matrix A0, and the linear coefficients
c0 are deterministic. The variable x0 is called the first-stage
decision, which is a decision to be made now. The second-
stage decision y is a recourse or corrective decision that one
makes in the future after some random event occurs.

The recourse problems (2) take the form of the dual-
block angular problems (1) when the probability distribu-
tion of ξ has finite support. When ξ does not have fi-
nite support, problems (1) arise from the use of the sample
average approximation (SAA) method, in which a sample

(ξ1, ξ2, . . . , ξN) is used to estimate Eξ[G(x0, ξ)] ≈ 1
N

∑N
i=1G(x0, ξi)

and the minimization and expectation operators are com-
muted [11]. In this case, the data (Qi, ci, Ti,Wi, bi) of (1),

i = {1, . . . , N}, correspond to the sample (ξ1, ξ2, . . . , ξN)
used to approximate (2), and xi correspond to the deci-
sion y of the recourse problem (3) given by the sample ξi,
i = {1, . . . , N}.

While the modeling framework presented in this paper can
be used to specify any quadratic dual block angular prob-
lem (1), the optimization solver handles only convex prob-
lems; thus, the matrices Qi, i = {0, 1, . . . , N}, are required
to be positive semidefinite. In addition, the interior-point
algorithm used by the solver requires the matrices A, W1,
. . ., WN to have full row rank.

3. PIPS-IPM
Solving practically sized instances of (1) requires the use

of memory-distributed computing environments and special-
ized optimization solvers capable of efficiently exploiting the
dual block angular structure. One such solver, PIPS-IPM,
developed in the past few years by some of the authors of
this paper, achieves data parallelism inside the numerical
Mehrotra predictor-corrector optimization algorithm [12] by
distributing the data and computations required by the opti-
mization across computational nodes. The data distribution
is done by partitioning the scenarios and assigning a parti-
tion to a computational node. The first-stage data are repli-
cated on all nodes to avoid communication overhead. The
computations follow a similar distribution scheme: the in-
trascenario computations (factorizations of sparse matrices,
solving with the factors, matrix-matrix and matrix-vector
products, and vector-vector operations) are performed in
parallel, independently for each scenario, while the com-
putations corresponding to the first-stage (factorizations of
dense matrices, solve with the factors and matrix-vector and
vector-vector operations) are replicated across all computa-
tional nodes [13].

Several algorithmic and implementation developments were
targeted at reducing the time to solution and increasing
the parallel efficiency of PIPS-IPM. In particular, the aug-
mented incomplete factorization approach [14] considerably
reduced the time to solution by making better use the cores
inside each node and by fully exploiting the sparsity of the
scenario data. Additional implementation developments,
such as hardware-tuned communication and adoption of GPUs
in the dense first-stage calculations [15], enabled real-time
solutions of stochastic economic dispatch problems with very
good parallel scaling on a variety of HPC platforms: Cray
XK7, Cray XC30, IBM BG/P, and IBM BG/Q [15]. How-
ever, the algebraic specification and instantiation of the eco-
nomic dispatch problems were done serially and required con-
siderably longer time than the time spent in the optimization
process. Removing this capability limitation and being able
to process and instantiate the optimization models in times
that are negligible—that is, a few percent of total solution
time—are the main motivations behind the existing work.

4. STOCHJUMP
StochJuMP is an extension built on top of the JuMP alge-

braic modeling language [7]. Extending AMLs to deal with
structured problems such as multistage stochastic optimiza-
tion presents additional challenges for expressing problem
structure, both technically and conceptually. Conceptually,
one must choose a syntax that is clean and offers an intu-
itive, high-level encapsulation of the problem. From a tech-

nical perspective, efficiently handling the highly structured
problem in a parallelized setting requires care.

The SML project [16] is an extension built on top of
AMPL for conveying multistage structure to solvers by us-
ing a new block keyword. SML is implemented as a pre- and
post-processor to AMPL itself; as a result, the subproblems
must be constructed as intermediary AMPL problem files on
disk. The more recent work on PSMG [17] parses SML files
and provides parallel model instantiation, avoiding the mem-
ory bottleneck that can arise when attempting to construct
massive problem instances on a single node. While PSMG
aims to address the same technical challenge as StochJuMP,
we emphasize that PSMG is a large C++ project that re-
quired considerable development effort, based on our discus-
sions with the authors. The development of StochJuMP, on
the other hand, was greatly accelerated by being written in
a high-level dynamic language at no significant penalty in
total solution time.

We will describe details of the implementation and the
use of StochJuMP. Throughout, we will refer to the code in
Listing 1, which is the entirety of the Illinois model used in
the computational results section. For brevity, we omit the
somewhat tedious code that reads the problem data from
file into memory.

JuMP represents all data required to describe an opti-
mization problem in a Model data type in Julia; StochJuMP
extends this by attaching new data to the Model: parent, a
reference to the parent block, and children, a vector of refer-
ences to children blocks. Since each block is a bona fide Model
object, all methods to describe variables and constraints ap-
ply to blocks in a StochJuMP model. Additionally, using Ju-
lia’s scoping rules, it is possible to structure the model spec-
ification such that a child block can include variables from
parent blocks in constraints. This allows the description of
arbitrary nested block structure in the model, all within a
very lightweight extension to the existing JuMP infrastruc-
ture. Note that no alteration to the JuMP source code is
made to accommodate this; an “extension dictionary” is at-
tached to the Model by default, allowing third-party packages
to attach arbitrary structured data for external use.

As a brief primer on JuMP and StochJuMP syntax, we dis-
cuss the functions and macros that appear in the example
code in Listing 1. The StochasticModel(NS) method de-
fines a stochastic model container object with NS scenarios.
Similarly, the StochasticBlock(m) method is a thin wrapper
around a Model constructor, specifying that m is the parent
model.

The macro @defVar defines a variable or dictionary of vari-
ables, attached to a particular model, for use in describing
the problem constraints and objective. The first argument is
the model object; the second argument is a description of the
variable name, the index set used for indexing into the dic-
tionary of variables, and appropriate variable bounds. For
instance,

1 @defVar(m, 0 <= Pgen_f[i=GENTHE] <= np_capThe[i])

constructs a dictionary named Pgen_f, attached to the model
m, for which indexing is defined by the iterable object GENTHE.
The lower bound is zero for every component, and the ith
entry has an upper bound from the ith entry in the array
np_capThe.

The @addConstraint macro adds a set of constraints to a
specified model. For instance,

1 @addConstraint(bl, t_w_con2[g=GENWIN],
2 tw[g] >= gen_cost_win[g]*PgenWin_f[

g])

adds a set of constraints to the model bl. The second argu-
ment specifies a constraint identifier that is indexed into in
the same way as in @defVar. The third argument takes an
algebraic description of constraints to be added. Similarly,
the @setObjective macro takes an algebraic description of
the objective function, as well as an associated Model object
and a value specifying whether the model is a minimization
or maximization problem.

Again, we stress that minimal additions to JuMP have
been made for this feature set: no new types have been
introduced. A series of Model objects has been constructed
with corresponding constraints (containing variables owned
by other Models), and the hierarchical structure of the model
is disentangled immediately prior to passing the problem
data to PIPS-IPM. Furthermore, the nested structure can be
arbitrarily more complex than that of the two-stage example
illustrated here.

The @second_stage macro abstracts data localization in
the model specification, allowing concise, rank-agnostic code
to be distributed across the cores. The first argument m
specifies the Model object to which to add the second stage
structure. The second argument node is a global index for
the particular scenario assigned to a particular node. More
specifically, the macro expands to construct the global in-
dices assigned to a particular compute node, and wraps the
body of @second_stage (denoted with the begin and end
delimiters) in a loop over these particular values. In this
example, the loop index is node.

Since the blocks in a StochJuMP model are specified with
JuMP models themselves, one can easily adapt the existing
JuMP functions to construct the problem data needed by a
particular solver. The repository for StochJuMP is available
at https://github.com/joehuchette/StochJuMP.jl. All told,
the code to specify nested model structure takes less than
100 lines of Julia code, whereas the interface to PIPS-IPM
requires roughly 300 lines.

5. COMPUTATIONAL RESULTS
We present here computational results and analyze the

efficiency of the construction of a model arising in the opti-
mization of power grid.

5.1 Model
To test StochJuMP, we consider the economic wind dis-

patch model presented in [18], which we briefly describe
here. The model attempts to capture the impact that wind
supply correlation information has on economic dispatch, a
problem solved in real-time by power grid operators in or-
der to set market prices. The model uses data describing the
power transmission grid in the state of Illinois. The model
problem is as follows.

Listing 1: An implementation in StochJuMP of the stochastic economic dispatch model described in Sec-
tion 5.1

1 m = StochasticModel(NS)
2
3 # Stage 0
4 @defVar(m, 0 <= Pgen_f[i=GENTHE] <= np_capThe[i])
5 @defVar(m, 0 <= PgenWin_f[i=GENWIN] <= np_capWin[i])
6 @defVar(m, -lineCutoff*Pmax[i] <= P_f[i=LIN] <= lineCutoff*Pmax[i])
7

8 # (forward) power flow equations
9 @addConstraint(m, pfeq_f[j=BUS],

10 +sum{P_f[i], i=LIN; j==rec_bus[i]}
11 -sum{P_f[i], i=LIN; j==snd_bus[i]}
12 +sum{Pgen_f[i], i=GENTHE; j==bus_genThe[i]}
13 +sum{PgenWin_f[i], i=GENWIN; j==bus_genWin[i]}
14 -sum{loads[i], i=LOAD; j==bus_load[i]} >= 0)
15
16 @second_stage m node begin
17 bl = StochasticBlock(m)
18 # variables
19 @defVar(bl, 0 <= Pgen[i=GENTHE] <= np_capThe[i])
20 @defVar(bl, 0 <= PgenWin[i=GENWIN] <= windPower[node,i])
21 @defVar(bl, -lineCutoff*Pmax[i] <= P[i=LIN] <= lineCutoff*Pmax[i])
22 @addConstraint(bl, rampUpDown[g=GENTHE],
23 -0.1np_capThe[g] <= Pgen[g] - Pgen_f[g] <= 0.1np_capThe[g])
24 # (spot) power flow equations
25 @addConstraint(bl, pfeq[j=BUS],
26 +sum{P[i]-P_f[i], i=LIN; j==rec_bus[i]}
27 -sum{P[i]-P_f[i], i=LIN; j==snd_bus[i]}
28 +sum{Pgen[i]-Pgen_f[i], i=GENTHE; j==bus_genThe[i]}
29 +sum{PgenWin[i]-PgenWin_f[i], i=GENWIN; j==bus_genWin[i]} >= 0)
30 @defVar(bl, t[GENTHE] >= 0)
31 @addConstraint(bl, t_con1[g=GENTHE],
32 t[g] >= gen_cost_the[g]*Pgen_f[g] +
33 1.2gen_cost_the[g]*(Pgen[g]-Pgen_f[g]))
34 @addConstraint(bl, t_con2[g=GENTHE],
35 t[g] >= gen_cost_the[g]*Pgen_f[g])
36 @defVar(bl, tw[GENWIN] >= 0)
37 @addConstraint(bl, t_w_con1[g=GENWIN],
38 tw[g] >= gen_cost_win[g]*PgenWin_f[g] +
39 1.2gen_cost_win[g]*(PgenWin[g]-PgenWin_f[g]))
40 @addConstraint(bl, t_w_con2[g=GENWIN],
41 tw[g] >= gen_cost_win[g]*PgenWin_f[g])
42
43 @setObjective(bl, Min, sum{t[g], g=GENTHE} + sum{tw[g], g=GENWIN})
44 end

min
x,Xi(ω)

∑
i∈G

(pixiEω
[
p+i (Xi(ω)− xi)+ − p−i (Xi(ω)− xi)−

]
)

s.t. τn(f) +
∑

i∈G(n)

xi = dn, ∀n ∈ N

τn(F (ω))− τn(f) +
∑

i∈G(n)

(Xi(ω)− xi) = 0,

∀n ∈ N , ω ∈ Ω

f, F (ω) ∈ U , ω ∈ Ω

(xi, Xi(ω)) ∈ Ci(ω), i ∈ G,ω ∈ Ω

For this model, N is the number of nodes or buses, L is
the set of transmission lines, C is the set of buses, and G
is the set of all energy suppliers. We use the subset G(n)
to denote all those providers connected to a given node n.
The forward dispatch values are xi for each provider, and
their spot quantity for a given scenario ω is Xi(ω). Forward
power flow through a line ` is f`. The demand for each node
is dn, which is assumed to be deterministic and inelastic.
The function τn maps the flow vector to a node n. We use
v1(n) and v0(n) to denote the inflow and outflow lines, re-
spectively, to node n. Bid prices are denoted by pi, and p+i
and p−i denote bid prices for real-time corrections. More ex-
plicitly, supplier i is capable of selling additional power at
price p+i > pi or of buying power at p−i < pi. The random
scenarios ω represent the randomness in the model and live
in a probability space (Ω,F ,P). Using standard notation,
(z)+ := max z, 0 and (z)− := min−z, 0. Here, U is a poly-
hedral set that constrains the maximum flow constraints on
individual lines.

5.2 Weak-scaling experiment
We present a weak-scaling study on Blues, a cluster at Ar-

gonne National Laboratory with 310 compute nodes, each
with two Sandy Bridge 2.6 GHz Pentium Xeon, for a total
of 4, 960 cores. The PIPS-IPM interior-point solver is used,
with MA57 [19] as the underlying sparse linear algebra li-
brary.

The weak scaling study runs from 4 to 2, 048 scenarios.
The data for the first scenario are from empirical measure-
ment, and the remaining scenarios are artificially generated
from normally distributed perturbations of the first. We
compare the model load time, modeling time, and solver
computation time in Table 1; explanations of the interpre-
tations of these timing blocks are detailed below. Note that
we use MPI barrier commands at the end of each timing
block to ensure representative results.

Because of current limitations in Julia, external packages
loaded in a script (e.g., StochJuMP) must be compiled before
execution of a program, and this is recorded in the module
load time field. As development of Julia continues, precom-
pilation of packages will likely be introduced into the core
language, removing this additional cost.

In order to force compilation of the appropriate methods,
a common technique in Julia is the “JIT warm-up,” where a
much smaller instance of a trial is performed first in order
to ensure that all appropriate methods have been compiled
by the just-in-time (JIT) compiler for a fair timing. Specifi-
cally, we perform a JIT warm-up run with a single scenario
and abort just before calling PIPS-IPM to solve the problem.
Note that this warm-up run includes reading and broadcast-

N Load Module Generate Model Solve
4 12.161 4.857 344.716
8 13.661 5.234 369.796

16 7.780 2.728 233.337
32 7.570 2.732 297.940
64 7.866 2.737 274.795

128 12.486 2.770 360.695
256 10.348 2.856 394.954
512 13.163 3.157 458.392

1024 13.056 3.414 888.038
2048 - 3.221 644.705

Table 1: Weak scaling results (in seconds) for the
Illinois power generation model.

N Load Module Generate Model
4 3.528 1.409
8 3.694 1.415

16 3.334 1.169
32 2.541 0.917
64 2.863 0.996

128 3.462 0.768
256 2.620 0.723
512 2.871 0.689

1024 1.470 0.384
2048 - 0.500

Table 2: Ratio of StochJuMP timings over solve
time (×100).

ing data, building the model, and constructing the appro-
priate callbacks to pass to the solver. For reference, the
JIT warm-up runs took roughly twice as long as the model
generation time.

Model generation time records how long it takes for the
internal representation to be built up in memory, as well as
the transformations necessary to construct the data required
by PIPS-IPM for the solve process. This is performed in
parallel across the cluster, independently for each scenario.

Table 2 shows that model generation time takes at worst
1.5% of the solve time for all experiments in the weak scaling
trial. Additionally, the model generation displays favorable
scalable properties compared to the PIPS-IPM underlying
solver. This timing includes the time it takes to read the
problem data from file on a single core and broadcast it to
all worker cores.

There are two regimes in the data presented: the small
trials with 4 and 8 scenarios take roughly twice as long as
larger instances across the timing metrics. We believe this
result is attributable to the saturation of the 16 cores on
each node. All experiments assigned one MPI process per
core. We use the MPI.jl Julia package to interface with
MPI in Julia code. MPI is used for all internode communi-
cation, both in StochJuMP to distribute data during model
generation and to synchronize nodes via MPI_Barrier, and
internally in PIPS-IPM. Figure 1 shows this change in per-
formance clearly, as well as the nice scaling behavior for
StochJuMP.

Finally, we emphasize again that the infrastructure in
StochJuMP is designed with solver independence in mind.
The problem data is stored abstractly as a structured set
of JuMP Models, and it is only at solve time (not model

�������������������

� � �� �� �� ��� ��� ��� ���� ����

�����������

��������������

�
��
�
��
�
�
�
�
�
�
�
�

�

�

��

��

Figure 1: Timing results for the weak-scaling trials.

construction time) that the data is converted to a format
specific to PIPS-IPM. In the future we envision a straightfor-
ward adaptation for support for other stochastic optimiza-
tion solvers, as well as add a framework for solving such
problems using traditional LP and MIP solvers.

6. CONCLUSION
In this paper we presented StochJuMP, algebraic modeling

software for multi-stage stochastic optimization. StochJuMP
is built as an extension to JuMP, a fully-featured and per-
formant algebraic modeling language embedded in the Julia
programming language. It is implemented as a front-end
for the PIPS-IPM solver and supports model instantiation
in parallel. In a weak-scaling experiment we observe ex-
tremely good scaling and modeling times which are a very
small fraction of solve times (≈ %1.5). In addition to perfor-
mance, we emphasize the fast prototyping and development
that made StochJuMP possible, due to Julia and the JuMP
framework.

Acknowledgments
We gratefully acknowledge the use of computing resources
provided on the Blues high-performance computing cluster
operated by the Laboratory Computing Resource Center at
Argonne National Laboratory. This material is based upon
work and resources supported by the U.S. Department of
Energy Office of Science under Contract No. DE-AC02-
06CH11357. This material is based upon work supported
by the National Science Foundation Graduate Research Fel-
lowship under Grant No. 1122374. Any opinion, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the authors(s) and do not necessarily reflect
the views of the National Science Foundation. M. Lubin
was supported by the DOE Computational Science Gradu-
ate Fellowship, which is provided under grant number DE-
FG02-97ER25308.

References
[1] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL:

A Modeling Language for Mathematical Programming,
2nd edition. 2002.

[2] A. Brooke, D. Kendrick, A. Meeraus, and R. Raman,
GAMS: A User’s Guide. Scientific Press, 1999.

[3] J. Löfberg, “YALMIP: a toolbox for modeling and op-
timization in MATLAB,”in Proceedings of the CACSD
Conference, 2004.

[4] W. Hart, J.-P. Watson, and D. Woodruff, “Pyomo:
modeling and solving mathematical programs in Python,”
Math. Prog. Comp., vol. 3, pp. 219–260, 2011.

[5] M. Grant and S. Boyd, CVX: MATLAB software for
disciplined convex programming, version 2.1, http://
cvxr.com/cvx, 2014.

[6] J. Bezanson, S. Karpinski, V. Shah, and A. Edelman,
“Julia: a fast dynamic language for technical comput-
ing,” CoRR, vol. abs/1209.5145, 2012.

[7] M. Lubin and I. Dunning, “Computing in operations
research using Julia,”ArXiv e-prints, vol. abs/1312.1431,
2013.

[8] S. Mitchell, M. O’Sullivan, and I. Dunning, “PuLP: a
linear programming toolkit for python,” 2011, unpub-
lished manuscript. [Online]. Available: https://code.
google.com/p/pulp-or/.

[9] J. R. Birge and F. Louveaux, Introduction to stochastic
programming. Springer-Verlag, 1997.

[10] S. Mehrotra and M. G. Ozevin, “Decomposition based
interior point methods for two-stage stochastic convex
quadratic programs with recourse,”Oper. Res., vol. 57,
no. 4, pp. 964–974, 2009.

[11] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lec-
tures on Stochastic Programming: Modeling and The-
ory. Philadelphia, PA: MPS/SIAM Series on Opti-
mization 9, 2009.

[12] S. Mehrotra, “On the implementation of a primal-dual
interior point method,” SIAM Journal on Optimiza-
tion, vol. 2, no. 4, pp. 575–601, 1992.

[13] M. Lubin, C. G. Petra, M. Anitescu, and V. Zavala,
“Scalable stochastic optimization of complex energy
systems,” in Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking,
Storage and Analysis, Seattle, WA: ACM, 2011, pp.
64:1–64:64.

[14] C. G. Petra, O. Schenk, M. Lubin, and K. Gärtner,
“An augmented incomplete factorization approach for
computing the Schur complement in stochastic op-
timization,” SIAM Journal on Scientific Computing,
vol. 36, no. 2, pp. C139–C162, 2014.

[15] C. G. Petra, O. Schenk, and M. Anitescu, “Real-time
stochastic optimization of complex energy systems on
high performance computers,” Computing in Science
and Engineering, vol. 99, no. PrePrints, pp. 1–9, 2014.

[16] M. Colombo, A. Grothey, J. Hogg, K. Woodsend, and
J. Gondzio,“A structure-conveying modelling language
for mathematical and stochastic programming,” Math.
Prog. Comp., vol. 1, pp. 223–247, 2009.

[17] A. Grothey and F. Qiang, “PSMG: A parallel problem
generator for structure conveying modelling language
for mathematical programming,” presentation at IC-
COPT 2013, 2009.

[18] C. G. Petra, V. Zavala, E. Nino-Ruiz, and M. An-
itescu, “Economic impacts of wind covariance estima-
tion on power grid operations,” Preprint ANL/MCS-
P5M8-0614, 2014.

[19] I. S. Duff, “MA57—a code for the solution of sparse
symmetric definite and indefinite systems,”ACM Trans.
Math. Softw., vol. 30, no. 2, pp. 118–144, Jun. 2004.

