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In optimization, a homogeneous model is an artificial transformation of a given

problem. The transformation is done such that the homogeneous problem has always

a solution even if the original problem does not. Moreover, without having any

assumption on the feasibility of the original problem, the homogeneous model is

able to provide the solution if it exists, or a certificate of infeasibility otherwise.

The first part of the thesis will introduce a homogeneous model for mixed linear

complementarity problems which represent a generalization of the standard linear

complementarity problems. We also study the properties of the model and show that

the interior-point methods can be efficiently used for the numerical solutions of the

homogenous problem.

The second part of the thesis is concerned with a computational study on the

use of an optimization-based method in the simulation of fuel motion in a pebble bed

reactor. The performance of several optimization packages (BLMVM, TRON, OOQP,



and Mosek) for quadratic problems needed to simulate the system is investigated

and reported. OOQP will be presented with both the default solver MA27 and

our implementation based on CHOLMOD. CHOLMOD-based OOQP version is the

fastest of all the packages tested. It consistently uses only about three times more

memory than BLMVM, while achieving far higher precision levels. Both solvers

behave predictably with the number of pebbles and can be used as robust software

solutions in the simulation of the pebble bed reactor.
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Chapter 1

Introduction

In mathematical optimization, the complementarity condition or simply the comple-

mentarity requires that the product of two or more nonnegative quantities be zero.

The simplest example of complementarity can be seen in contact physics. When

two bodies come or are about to come in contact, complementarity arises between

the contact force and the distance between the bodies. The force is positive only if

the bodies are in contact, i.e., the distance is zero; also the distance is positive when

the force is zero, that is, there is no contact.

In economics, for example, the classical Walras’ law describes an equilibrium of

a commodities exchange market by enforcing a complementarity condition between

the price and excess demand, that is, excess demand must be zero when the price is

positive and the price must be zero if there is excess demand.

In fact, a wide range of practical problems in the economics, engineering, and nat-

ural sciences are modeled as complementarity problems: contact mechanics, struc-

tural mechanics, obstacle problems, traffic equilibrium problem, structural design,

elastohydrodynamic lubrication problems, network design, optimal control, invariant

capital stock, game theory, etc, see for example [19, 34, 37] for a list of applications

1
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of complementarity problems. Moreover, optimization problems involving inequality

constraints can be reduced to and often are solved as complementarity problems. The

complementarity conditions are given by the Karush-Kuhn-Tucker conditions which,

in fact, state that the optimal solution to the optimization problem is the solution of

a complementarity problem, provided some regularity conditions are satisfied.

Complementarity problems can be numerically solved using nonsmooth Newton

methods, Lemke-type algorithms, or interior-point methods. In this thesis we will

use interior-point methods for the numerical solution of complementarity problems.

Interior point methods, initially developed for linear programming, have been success-

fully generalized for the solution of several classes of complementarity problems. The

study of interior point methods has been a very active area of research in optimiza-

tion over the past two decades and has contributed to great advances in mathemat-

ical optimization. On the theoretical side, interior point methods have been used to

prove polynomial complexity of several classes of optimization problems, such as lin-

ear programming, quadratic programming, semidefinite programming, second-order

cone programming, etc. On the practical side, interior point methods have been

implemented in highly efficient software packages that are now routinely used by

practitioners working in different fields of science and technology.

1.1 Complementarity problems

In this section we introduce the basic terminology and concepts related to the com-

plementarity problems studied in this thesis.

The explicit complementarity problem over the non-negative orthant consists of
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finding vectors x ∈ Rn and s ∈ Rn satisfying

xs = 0, s = f(x), x, s ≥ 0, (1.1)

where f(x) is assumed to be a continuous mapping from Rn to Rn. The comple-

mentarity problem (1.1) is called monotone if the function f(x) is monotone, i.e., for

every x1, x2 ∈ Rn
++ we have:

(x1 − x2)T (f(x1)− f(x2)) ≥ 0. (1.2)

In 1.2 the multiplication uv of two vectors u, v ∈ Rn refers to the componentwise

product [u1v1, u2v2, . . . , unvn], also known as Hadamard product. Often the comple-

mentarity conditions are described using the regular inner product < ·, · > in Rn, but

it can be easily observed that under the nonegativeness condition x, s ≥ 0, we have

xs = 0 if and only if < x, s >= 0.

In this thesis, we employ a slightly more general type of complementarity. We

also allow unknowns that satisfy no complementarity condition and have no sign

constraints as part of the problem. These unknowns are called free variables. We

will use the term mixed whenever the problem contains both complementarity and

free variables. Also, the complementarity variables s will not be defined as a function

of the other group of complementarity variables x and free variables y, but they are

altogether described implicitly by a continuous, possibly nonlinear, mapping F (x, s, y)

from R2n+m to Rn+m.

The problem corresponding to this type of complementarity will be called an

implicitly defined (mixed) complementarity problem, formally described by:

xs = 0, F (x, s, y) = 0, x, s ≥ 0. (1.3)

The above complementarity problem is called monotone (or (x, s)-equilevel-monotone

as in [84, 61]) if for any (x1, s1, y1), (x2, s2, y2) ∈ R2n+m satisfying F (x1, s1, y1) =
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F (x2, s2, y2), the following inequality holds:

(x1 − x2)T (s1 − s2) ≥ 0. (1.4)

The complementarity problem (1.3) is called feasible if there exists a point (x, s, y) ∈

Rn
+ × Rn

+ × Rm such that F (x, s, y) = 0. Any such point is called a feasible point.

The problem is said to be infeasible if it has no feasible point. The ”feasibility” or

”feasibility equations” will refer to the system of equations F (x, s, y) = 0.

A point (x∗, s∗, y∗) ∈ Rn
+×Rn

+×Rm is a solution to the complementarity problem

if it is feasible and satisfies the complementarity condition, that is xs = 0. In this

case the complementarity problem (1.3) is called solvable.

1.1.1 Linear complementarity problems

The linear complementarity problems are the complementarity problems whose fea-

sibility equations are described by an affine mapping, or, in other words, by a linear

system of equations. However, if the problem is seen as finding the nonnegative roots

of a system of equations, then the term ”linear” may be found misrepresentative since

the system is actually quadratic, hence nonlinear, in complementarity variables.

Given the n× n matrix M and the vector b from Rn, the linear complementarity

problem in standard form (SLCP) consists of finding vectors x, s ∈ Rn satisfying

xs = 0,

s = Mx+ b,

x, s ≥ 0.

(1.5)

The above problem corresponds to the complementarity problem (1.1) with f(x) =

Mx+ b.
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The horizontal linear complementarity problem (HLCP) is a generalization of the

standard linear complementarity problem. While for the SLCP case the complementar-

ity variables s are explicitly defined by an affine function of complementarity variables

x, for the horizontal form x and s are implicitly defined by an affine mapping of the

form Qx + Rs = b. Thus, given Q ∈ Rn×n, R ∈ Rn×n and b ∈ Rn, the horizontal

linear complementarity problem HLCP(Q,R, b) consists of finding vectors x ∈ Rn and

s ∈ Rn satisfying

xs = 0

Qx+Rs = b

x, s ≥ 0.

(1.6)

It can be seen that the standard form (1.5) is a particular case of the horizontal form

by taking R = −I and Q = M .

We say that the HLCP (1.6) is monotone, or equivalently (Q,R) is a monotone

pair, if

Qu+Rv = 0 implies uTv ≥ 0, for any u, v ∈ Rn. (1.7)

We can use either the above definition with Q = M and R = −I, or definition

(1.2) to observe that the monotonicity of the SLCP (1.5) reduces to the positive

semidefiniteness of the matrix M .

The mixed (horizontal) linear complementarity problem (MLCP) generalizes the

horizontal linear complementarity problem by allowing m free variables and corre-

sponds to the general form of complementarity given by (1.3) with F affine. Given

A ∈ R(m+n)×n, B ∈ R(m+n)×n, C ∈ R(m+n)×m, and b ∈ Rn+m, the mixed horizontal

linear complementarity problem consists of finding the vectors x ∈ Rn, s ∈ Rn and
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y ∈ Rm satisfying

xs = 0

Ax+Bs+ Cy = b

x, s ≥ 0.

(1.8)

It can be seen that the horizontal form is a particular case of the mixed horizontal

form by taking m = 0, i.e., no free variables.

By taking F (x, s, y) = Ax+Bs+Cy in (1.4), the monotonicity of the MLCP (1.8)

is equivalent to the following implication:

Au+Bv + Cw = 0 implies uTv ≥ 0, for any u, v ∈ Rn and w ∈ Rm. (1.9)

In this thesis we may also say that (A,B,C) is a monotone triplet to indicate that

MLCP (1.8) is monotone.

The abbreviations SLCP, HLCP and MLCP will usually denote the class of prob-

lems: standard complementarity problems, horizontal complementarity problems, and

mixed horizontal complementarity problems, respectively. To differentiate between

two instances within the same class, we will use the acronym together with the in-

stance’s data, e.g., SLCP(M, b) for the SLCP (1.5), HLCP(Q,R, b) for the HLCP (1.6),

and MLCP(A,B,C, b) for the MLCP (1.8).

1.2 Thesis outline

Chapter 2 introduces a new homogenization model for monotone mixed linear comple-

mentarity problems. To the best of our knowledge, the model is the only homogeniza-

tion technique that works directly with implicitly defined complementarity. Given a

monotone MLCP, we artificially transform the problem into a homogeneous problem.

The transformation is done such that the homogeneous problem has always a solution
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even if the original problem does not. Moreover, without having any assumption on

the feasibility of the original problem, the homogeneous model is able to provide the

solution if it exists, or a certificate of infeasibility otherwise.

Furthermore, a method for obtaining the numerical solution to the homogeneous

problem will be presented in the same chapter. Similar to Mehrotra’s predictor-

corrector algorithm for linear and convex quadratic programming, the algorithm we

propose tries to follow a continuation curve that starts at any strictly positive point

and ends at a solution possessing the maximal complementarity property. Numerical

experiments show that homogenizing the mixed linear complementarity problems is

faster and exhibits smaller memory requirements than converting them to standard

linear complementarity problems and homogenizing by using existing models.

Chapter 3 presents a computational study on the use of an optimization-based

method for the simulation of fuel motion in a pebble bed reactor. The ”fuel” consists

of several hundreds of thousand of uranium pebbles about the size of a tennis ball

that move in the gravitational field and are subject to frictional contacts coming from

both pebble-pebble and pebble-wall interactions.

The dynamic rigid multi body contact problem is used to predict the motion of

the pebbles. The approach used for the numerical approximation of rigid multi-body

dynamics with contact and friction is a velocity-impulse LCP-based time-stepping

method [75, 76, 8, 13, 68]. It requires the solution of a copositive LCP at each

integration step. Such LCPs are generally solved by means of Lemke-type algorithms,

and solvers such as the PATH solver [28, 38] have proved to be robust. For large

systems (beyond a few thousand contacts), however, the PATH solver or any other

pivotal algorithm becomes impractical from a computational point of view [12, 79].

The convex relaxation previously introduced in [9] requires at each integration
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step the solution of a convex quadratic problem which can be solved in polynomial

time and for which a wide variety of state-of-the-art optimization packages exist. We

investigate and report on the performance of several solvers for quadratic problems

that appear from the relaxed formulation of the pebble bed reactor. In particular

we have used BLMVM [18], TRON [54], MOSEK [1] and OOQP [41]. OOQP will

be presented with both the default symmetric indefinite solver MA27 [32] and our

implementation based on CHOLMOD [26, 22, 25, 24].

In the case of the pebble bed reactor, it turns out that CHOLMOD-based OOQP

version is the fastest of all the packages tested. It consistently uses only about three

times more memory than BLMVM, while achieving far higher precision levels. The

findings suggest that both solvers behave predictably with the number of pebbles and

can be used as robust software solutions in the simulation of the pebble bed reactor.



Chapter 2

A Homogeneous Model for Mixed

Horizontal Linear

Complementarity Problems

2.1 Introduction

By a homogeneous complementarity problem, one should understand that the system

of equations defining the feasibility is homogeneous, i.e., the function describing the

system is homogeneous. A function f is called homogeneous (of degree 1), if for any

x in the domain of f , and any real number t, f(tx) = tf(x) holds.

In the context of constrained optimization, homogeneity is a concept used for

linear programming to indicate that all right-hand sides of the constraints are zero.

For example, the linear problem

minimize cTx

subject to: Ax = b, x ≥ 0
(2.1)

is homogeneous when b = 0.

9
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In the context of interior-point methods, homogenization generally refers to an

artificial transformation of a given (complementarity or constrained optimization)

problem to a homogeneous problem. The homogeneity causes the transformed prob-

lem to have nicer properties than the original problem, such as a trivial feasible

starting point, solvability in any circumstances, etc. The solution sets of the two

problems must also be related in the sense that once the homogeneous problem is

solved, a solution to the original problem or a certificate that a solution does not

exist, is readily available.

Certificates of infeasibility are produced by the simplex method by detecting the

unboundness of either primal or dual problem. However, the simplex method can be

applied only to linear programming and its extension for linear complementarity prob-

lems, e.g. Lemke’s method, does not offer such certificates. Standard interior-point

algorithms also do not offer bullet-proof evidence, i.e., a certificate, for the problem

to be infeasible. Moreover, there are numerical issues in the interior-point-based im-

plementations when solving infeasible problems, since some of the problem’s variables

diverge to infinity. In the last fifteen years, interior-point methods that provide in-

feasibility certificates have been always used in conjunction with a homogenization

mechanism.

Having a proof of infeasibility is important for a couple of reasons. First, the model

that gives rise to the infeasible problems may be defective. For example, obtaining

infeasible problems in modeling physical phenomena would indicate this situation.

Second, the problem may be infeasible because of invalid data or human error in the

input process.

The homogenization of a constrained optimization problem is a concept that has

been used with interior-point methods since their appearance, not necessarily as a
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technique that detects infeasibility. Karmakar’s algorithm [53], generally considered

to be the first interior-point algorithm, transforms the original linear problem to a

homogeneous linear problem (called ”canonical form”) in order to obtain a feasible

starting point. Anstreicher [15] used homogenization to devise a polynomial-time

interior algorithm which solves a linear program with no assumptions of a non-empty

interior of the primal and/or dual problem. However, because a Phase I-Phase II

technique is employed and the solution of a linear system twice as large as in the

case of other methods needs to be found at each iteration, Anstreicher’s algorithm is

expensive in practice.

The homogeneous interior-point algorithm for linear programming introduced by

Ye, Todd and Mizuno [83] uses a self-dual embedding technique to incorporate the

original linear problem together with its dual problem in a larger homogeneous linear

problem that turns out to be self-dual. This algorithm was the first homogenization

technique that is capable of providing certificates of infeasibility of the original prob-

lem and has become a standard for homogenous interior-point methods because of its

properties:

• solves the problem without any regularity assumptions concerning the existence

of optimal, feasible or interior feasible points;

• can start at any positive point, feasible or infeasible;

• each iteration requires the solution of a linear system whose dimension is almost

the same as for standard (primal-dual) interior-point algorithms;

• if the problem has a solution, the algorithm is convergent; if the problem is in-

feasible or unbounded, then the algorithm will detect this situation by providing

a ”certificate” of infeasibility for at least one of the primal and dual problems;
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• is a one-phase algorithm and has O(
√
nL)-iteration complexity.

In addition, the method improves the behavior and computational cost of Anstre-

icher’s algorithm.

Ye [82] showed that the above technique is also suitable for monotone linear com-

plementarity problems in standard form. The homogenization yields a self-dual ho-

mogeneous monotone linear complementarity problem that possesses the same prop-

erties as the model for linear programming. The homogeneous linear complementarity

problem is self-dual in the sense that if the original linear complementarity problem

arises from a linear program, then the homogeneous linear complementarity problem

represents the self-dual embedding of the linear program.

Shortly after, a homogeneous model for the more general monotone nonlinear

complementarity problems in explicit form was made available in [4]. The following

homogeneous model related to a monotone complementarity problem in standard

form (1.1) is suggested:

xs = 0

τκ = 0 s

κ

 =

 τf(x/τ)

−xTf(x/τ)


x, s, τ, κ ≥ 0.

(2.2)

This model is also called augmented since it contains two additional one-dimensional

complementarity variables. Here, the homogenization preserves the monotonicity of

the problem but, unlike for linear cases, the model is given by a nonlinear system even

if the original problems are linear. However, the model exhibits the characteristics of

[83] (the polynomial time complexity is obtained under the assumption of Lipschitz

continuity of f). The homogeneous model (2.2) can also be applied to standard



13

monotone nonlinear complementarity problems over symmetric cones as Yoshise has

recently shown in [84].

Several researchers have studied homogenization in the context of conic program-

ming. Conic programming is an extension to linear programming and consists of

minimizing a linear function over the intersection of an affine space with a closed

convex cone. When the cone is polyhedral, the conic programming reduces to the

linear programming. Another important example of conic programming is semidef-

inite programming in which the cone is the cone of symmetric positive semidefinite

real matrices. Homogeneous self-dual models for semidefinite programming have been

independently investigated by Potra and Sheng [67] and De Klerk, Roos and Terlaky

[27]. Also Luo, Sturm and Zhang [56] and Nesterov, Todd and Ye [63] have studied

homogenization techniques in the general case of conic programming.

Although considerable research has been devoted to homogenization of explicitly

defined complementarity problems, rather less attention has been paid to homoge-

nization of the more general case of implicitly defined complementarity. To the best

of our knowledge, there is no homogenization technique that can be applied to such

problems. It is worth mentioning that, in the case of an implicitly defined linear

complementarity problem, i.e., HLCP and MLCP, the existing homogenization models

[82, 4] can be applied to an equivalent SLCP. However, since the transformation of a

MLCP or HLCP to a SLCP requires the inversion of a matrix, the sparsity of the data is

adversely affected and poor practical performance is obtained as we show in Section

2.9.

Our primary objective in this chapter is to provide a homogeneous augmented

model for monotone mixed horizontal linear complementarity problems. In addition,

we study the properties and the central path associated with the homogeneous model
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and show that it has the desirable properties previously listed and can be solved by

means of path-following interior-point methods.

This chapter emphasizes the theoretical properties of the proposed homogeneous

model and is organized as follows. Section 2.2 presents in detail the properties of the

mixed horizontal linear complementarity problem. Then in Section 2.3 we introduce

the homogeneous model whose properties are studied in Section 2.4. Several previous

results on the existence and properties of central path for nonlinear monotone com-

plementarity are given in Section 2.5. In Section 2.6 we show that our homogenous

model possesses the same properties as the previously mentioned homogeneous mod-

els. Section 2.7 proposes a numerical method for the solution of the homogeneous

problem and presents the associated computational cost. Random generated mono-

tone MLCPs that are generated using a technique described in 2.8 are used for the

numerical experiments presented in Section 2.9. Finally, Section 2.10 concludes on

the theoretical and numerical behavior of our homogenization model.

2.2 More on the monotone mixed horizontal linear

complementarity problem

This section discusses the class of monotone mixed horizontal linear complementar-

ity problems in implicit form (1.8) and shows that additional conditions have to be

assumed on the problem’s data in order to be solved by means of interior-point meth-

ods.

We start by pointing out that the MLCP is supposed to be pre-processed. Pre-

processing, also known as pre-solving, of a problem is part of any implementation

based on interior-point methods. It consists of several sweeps through problem’s data
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and aims the removal of empty (zero) rows and columns, the detection of infeasible

variables, the elimination of the fixed variables, the removal and detection of redun-

dant equations, etc, (see [2] for a comprehensive study of pre-processing). Here we

suppose that the the linear system Ax+Bs+Cy = b defining the feasible set of the

MLCP contains no redundant equation, hence we have:

Assumption 2.1. The matrix

[
A B C

]
has full row rank m+ n.

As we mentioned in Section 1.1.1, both the horizontal linear complementarity

problems and the mixed linear complementarity problems in explicit form are partic-

ular cases of our MLCP form. The following lemma shows that the free variables can

be removed from a MLCP and a horizontal form of linear complementarity is obtained,

but the transformation results in a HLCP only if additional conditions on the MLCP

(1.8) are assumed.

Lemma 2.1. Suppose that dim Ker(CT ) = k. Let {e1, e2, . . . , ek} be an orthonormal

basis of Ker(CT ), with ei ∈ R(n+m), i = 1, . . . , k. Also consider the matrix E =

[e1e2 . . . ek] ∈ R(m+n)×k. Then the following affirmations hold:

(i) MLCP(A,B,C, b) is feasible (solvable) if and only if the following complemen-

tarity problem is feasible (solvable):

xs = 0

ETAx+ ETBs = ET b

x, s ≥ 0.

(2.3)

(ii) MLCP(A,B,C, b) is monotone if and only if the horizontal linear complemen-

tarity problem (2.3) is monotone.

(iii) The matrix

[
ETA ETB

]
∈ Rk×2n has full row rank k.
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Proof. (i.) Let us first observed that {(x, s) : ∃y ∈ Rm such that Ax+Bs+Cy = b} =

{(x, s) : Ax+Bs+Cy − b ∈ RanC} = {(x, s) : ET (Ax+Bs− b) = 0}, proving that

(x∗, s∗, y∗) is a feasible point of MLCP(A,B,C, b) if and only if (x∗, s∗) is a feasible

point of (2.3).

Furthermore, (x∗, s∗, y∗) is a complementarity solution of MLCP(A,B,C, b) if and

only if it is feasible and (x∗)T s∗ = 0, or equivalently, (x∗, s∗) is a complementarity

solution of (2.3).

(ii.) Monotonicity of MLCP(A,B,C, b) can be equivalently expressed as xT s ≥ 0

whenever Ax + Bs ∈ Ran(C). Since the last relation takes place if and only if

ETAx+ETBs = 0, we have obtained that monotonicity of MLCP(A,B,C, b) implies

monotonicity of (2.3) and viceversa.

(iii.) Suppose the opposite, i.e,

 ATE

BTE

 has linearly dependent columns. Then

there exists u ∈ Rk, u 6= 0 such that ATEu = BTEu = 0. Since we also have

CTEu = 0, we obtain that Eu ∈ Ker


AT

BT

CT

.

On the other hand, since

[
A B C

]
has full row rank m + n, we obtain

Ker


AT

BT

CT

 = 0. Hence we must have Eu = 0. Since the columns of E form a

orthonormal basis, u must be zero, which is a contradiction. Hence,

[
ETA ETB

]
has full row rank k.

The previous lemma indicates that the MLCP we proposed represents a more gen-

eral framework than the well-known HLCP. More precisely, since dim Ker(CT ) +
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dim Ran(C) = m + n and dim Ran(C) ≤ m implies k ≥ n, the horizontal comple-

mentarity problem equivalent to the MLCP has the form

xs = 0

Fx+Gs = b

x, s ≥ 0,

(2.4)

where F,G ∈ Rk×n, b ∈ Rk, and k ≥ n. Obviously, when k = n the HLCP (1.6) is

obtained.

The monotonicity of (2.4) is defined in the same way as for HLCP, i.e, Fx+Gs = 0

implies xT s ≥ 0. The horizontal form (2.4) was studied by Güler in [47] in the

context of maximal monotone operators. The paper shows that, in the monotone case,

interior-point methods can be used to solve (2.4) if and only if k = n. We will assume

that k = n from now on, which in fact implies dim Ran(C) = (m+n)−dim Ker(CT ) =

m.

Assumption 2.2. The matrix C has full column rank m.

In [61], the authors have studied the behavior of path-following interior-point

algorithms for the same form of implicitly defined mixed linear complementarity as

in the present work. It has to be mentioned that Assumption 2.2 is present in their

work, although no motivation is given. The article also proposes a reduction of a

MLCP to a HLCP in the monotone case that is different than our reduction approach

given by Lemma 2.1. While their transformation can be used in practice to solve

MLCPs as HLCPs, Lemma 2.1 is vital in establishing important theoretical properties

between matrices A, B and C, as we later show.

It must be also mentioned that not only any LP and QP (except the ones with

no inequality constraints which can be solved by solving a linear system) but also the
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monotone MLCPs needed to simulate rigid body systems with contacts and friction

can be written as a MLCP(A,B,C, b) that satisfies Assumption 2.2.

With the Assumption 2.2 in place, any monotone MLCP(A,B,C, b) can be re-

duced to a (standard) monotone horizontal HLCP(ETA,ETB,ET b) by Lemma 2.1.

HLCPs have been extensively studied in the last fifteen years and we are going to ap-

ply some of the existing theoretical results to HLCP(ETA,ETB,ET b) to characterize

MLCP(A,B,C, b).

Lemma 2.2 (cf. Theorem 11 of [77]). HLCP(Q,R, b) is monotone if and only if Q+R

is nonsingular and −QRT is positive semidefinite.

Based on Lemma 2.1, an immediate consequence of the above lemma is the fol-

lowing corollary.

Corollary 2.1. If MLCP(A,B,C, b) is monotone, then −ETABTE is positive semidef-

inite.

Lemma 2.3 (cf. Corollary 18 of [77]). Suppose that HLCP(Q,R, b) is monotone. Then

for each b ∈ Rn, the feasibility of HLCP(Q,R, b) implies its solvability.

2.3 An augmented homogeneous model for MLCP

Consider an augmented homogeneous complementarity problem (HMCP) related to

MLCP (1.8):

xs = 0

τκ = 0

Ax+Bs+ Cy − τb = 0

x̄T s̄
τ

+ κ = 0

x, τ, s, κ ≥ 0,

(2.5)
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with d x̄, s̄, ȳ c is related to dx, s, y c by
x̄

s̄

ȳ

 = PKer[ABC]


x

s

y

+ τ b̄, (2.6)

where

b̄ =


AT

BT

CT

 (AAT +BBT + CCT )−1b (2.7)

is the least-square solution of Ax+Bs+ Cy = b.

The augmented complementarity problem (2.5) contains two additional comple-

mentary variables τ and κ and one additional equation (constraint). The latter is

not linear due to the newly added equation and therefore the augmented model

has the form of an implicit mixed nonlinear complementarity problem (1.3) with

F : Rn
+ × R++ × Rn

+ × R+ × Rm → Rn+m+1,

F (x, τ, s, κ, y) =

 Ax+Bs+ Cy − τb

x̄T s̄/τ + κ

 . (2.8)

2.3.1 Notations and terminology

The concepts of feasibility and solvability as defined for the mixed linear comple-

mentarity problem are not applicable for our augmented complementarity problem

because the homogenization process causes the domain of the problem not to be a

closed set anymore. Even though vectors of the form dx, τ, s, κ, y c with τ = 0 and

the other components fixed are not part of the domain of the problem, they can be

perfectly valid in an asymptotical approach, i.e., when τ positively approaches zero.

We start by defining the concepts of asymptotical feasibility and solvability for the



20

generic nonlinear mixed complementarity problem in implicit form (1.3). The map F

defining the complementarity problem is not necessarily defined on the boundary of

Rn
+×Rn

+×Rm, in other words we have Rn
++×Rn

++×Rm ⊆ dom (F ) ⊆ Rn
+×Rn

+×Rm.

Definition 2.1. The complementarity problem defined by (1.3) is said to be asymp-

totically feasible if there exist bounded sequences {xk, sk, yk} ⊂ dom (F ), k = {1, 2, . . .}

such that

lim
k→∞

F (xk, sk, yk) = 0.

Moreover, any limit point (x∗, s∗, y∗) of the sequence {xk, sk, yk} is called an asymp-

totically feasible point.

Definition 2.2. Complementarity problem (1.3) is asymptotically solvable if there is

an asymptotically feasible point (x∗, s∗, y∗) satisfying the complementarity conditions,

i.e., x∗s∗ = 0.

Observe that both asymptotical feasibility and asymptotical solvability would be

equivalent to the corresponding concepts defined for MLCP if the domain of the prob-

lem were closed.

The study of nonlinear mixed complementarity in the context of interior-point

methods employs several concepts not present in the linear case. The definitions

given below have been initially introduced by Monteiro and Pang in the context of

implicitly defined mixed nonlinear complementarity problems over the nonnegative

orthant [61] and the cone of positive semidefinite matrices [62]. Yoshise [84] has

adapted the concepts to work in an asymptotical approach needed for the study of a

homogenization technique for explicit nonlinear monotone complementarity problems

over symmetric cones.

We start by defining the monotonicity concept(s) for a nonlinear complementarity

problem. Equilevel-monotonicity generalizes the monotonicity concept from the linear
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case. However, the nonlinear complementarity problems have to satisfy a stronger

type of monotonicity, i.e., everywhere-monotonicity, in order to be solved by means

of path-following interior-point algorithms. The two concepts are defined below.

Definition 2.3. The map F (x, s, y) is called (x, s)-equilevel-monotone on its domain

if for any (x, s, y) and (x′, s′, y′) that lie in the domain of F and satisfy F (x, s, y) =

F (x′, s′, y′), it holds that (x− x′)T (s− s′) ≥ 0.

Definition 2.4. The map F (x, s, y) is called (x, s)-everywhere-monotone on the

domain of F if there exist continuous functions φ from the domain of F to the set

Rn+m and c : Rn+m × Rn+m → R such that c(r, r) = 0 and

(x− x′)T (s− s′) ≥ (r − r′)T (φ(x, s, y)− φ(x′, s′, y′)) + c(r, r′)

holds for any (x, s, y) and (x′, s′, y′) in the domain of F satisfying F (x, s, y) = r and

F (x′, s′, y′) = r′.

It can be easily observed that (x, s)-everywhere-monotonicity implies (x, s)-equilevel-

monotonicity if one takes r = r′.

The following two concepts are used to characterize a (desirable) behavior of the

free variables in a nonlinear mixed complementarity framework.

Definition 2.5. The map F (x, s, y) is called y-bounded on its domain, if for any

sequence {(xk, sk, yk)} in the domain such that both {(xk, sk)} and {F (xk, sk, yk)} are

bounded sequences, the sequence {yk} is also bounded.

Definition 2.6. The map F (x, s, y) is called y-injective on its domain, if for any

(x, s, y) and (x, s, y′) lying in the domain of F and satisfying F (x, s, y) = F (x, s, y′),

we have y = y′.
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We would like to remark that the above two definitions are satisfied for MLCP only

under Assumption 2.2. The proof of this observation works in the same way as the

proof of (iii) and (iv) of Theorem 2.4, but we omit it since it is not relevant to this

discussion.

2.4 Properties of the augmented HMCP

This section presents the properties of the complementarity problem HMCP introduced

in Section 2.3. First we prove that the augmented problem is an (everywhere-) mono-

tone nonlinear homogeneous complementarity problem possessing the y- boundness

and y-injectiveness properties. Second we show that the HMCP is solvable only un-

der the assumption of monotonicity of the MLCP and its solution can be used as a

certificate to prove the solvability or infeasibility of the original problem.

The orthogonal projection of dx, s, y c onto Ker[ABC] is essential in the sense

that the transformation from MLCP to HMCP preserves the monotonicity, as shown in

the following theorem. From now on we use du, v, w c to denote the column vector

[uTvTwT ]T .

Lemma 2.4. The mapping F that defines the HMCP corresponding to a monotone

MLCP(A,B,C, b) is

(i) continuous and homogenous (of degree 1) on its domain.

(ii) (x, s)-equilevel-monotone on its domain.

(iii) y-bounded on its domain.

(iv) y-injective on its domain.

(v) (x, s)-everywhere-monotone on its domain.
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Proof. (i) We first show that the mappings dx, τ, s, κ, y c 7→ x̄, dx, τ, s, κ, y c 7→ s̄

and dx, τ, s, κ, y c 7→ ȳ are linear in dx, τ, s, κ, y c. This is obvious once we write


x̄

s̄

ȳ

 = P


x

s

y

+ τ b̄ =

[
P b̄ 0

]


x

s

y

τ

κ


.

The continuity of F readily follows from the above observation and from the fact

that τ > 0 on the domain of F .

Now since x̄ and s̄ are linear functions of dx, τ, s, κ, y c, we have

F (tx, tτ, ts, tκ, ty) =

 Atx+Bts+ Cty − tτb

t̄xT t̄s/(tτ) + tκ

 = tF (x, τ, s, κ, y), ∀t ∈ R

and hence F is homogeneous.

(ii) It is a consequence of (iv). Take c = 0 and r = r′ in the Definition (2.4) of

everywhere-monotonicity to obtain Definition (2.3) of equilevel-monotonicity.

(iii) Consider the sequence {(xk, τ k, sk, κk, yk)} in the domain of F such that

{(xk, τ k, sk, κk)} and {F (xk, τ k, sk, κk, yk)} are bounded.

Since C has full column rank we can write

∥∥yk∥∥ =
∥∥(CTC)−1CTCyk

∥∥ ≤ ∥∥(CTC)−1CT
∥∥∥∥Cyk∥∥

=
∥∥(CTC)−1CT

∥∥∥∥(Axk +Bsk + Cyk − τ kb)− (Axk +Bsk − τ kb)
∥∥

≤
∥∥(CTC)−1CT

∥∥ (∥∥Axk +Bsk + Cyk − τ kb
∥∥+

∥∥Axk +Bsk − τ kb
∥∥)

≤
∥∥(CTC)−1CT

∥∥(M1 +

∥∥∥∥[ A B −b
]∥∥∥∥M2

)
,

where M1 and M2 are the bounds for {F (xk, τ k, sk, κk, yk)} and {(xk, τ k, sk, κk)}, re-

spectively. Therefore {(yk)} is bounded which implies that F is y-bounded according
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to Definition 2.5.

(iv) If F (x, τ, s, κ, y) = F (x, τ, s, κ, y′), then Cy = Cy′, which implies y = y′ since

C is assumed to have full column rank.

(v) Consider (x, s, y) and (x′, s′, y′) in the domain of F and let r

γ

 =

 Ax+Bs+ Cy − τb

x̄T s̄/τ + κ


and  r′

γ′

 =

 Ax′ +Bs′ + Cy′ − τ ′b

x̄′
T
s̄′/τ ′ + κ′

 .
Since PKer[ABC] = I−PRan[ABC]T = I−

[
A B C

]T
(AAT+BBT+CCT )−1

[
A B C

]T
,

the equation (2.6) that defines (x̄, s̄, ȳ) is equivalent to
x̄

s̄

ȳ

 =


x

s

y

−

AT

BT

CT

 (AAT +BBT + CCT )−1(Ax+Bs+ Cy) + τ b̄

=


x

s

y

−

AT

BT

CT

 (AAT +BBT + CCT )−1(Ax+Bs+ Cy − τb),

where the expression (2.7) of b̄ was used to obtain the last equality.

By using the expression of r and manipulating the terms in the above equation,

we obtain 
x

s

y

 =


x̄

s̄

ȳ

+


AT

BT

CT

Mr,

where M := (AAT + BBT + CCT )−1. Observe that M is a symmetric (and also

positive definite) matrix.
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Similarly, 
x′

s′

y′

 =


x̄′

s̄′

ȳ′

+


AT

BT

CT

Mr′.

Using the above two expressions for (x, s, y) and (x′, s′, y′) we can now compute

(x− x′)T (s− s′) =
(
x̄− x̄′ + ATM(r − r′)

)T (
s̄− s̄′ +BTM(r − r′)

)T
= (x̄− x̄′)T (s̄− s̄′) + (r − r′)T M (A(s̄− s̄′) +B(x̄− x̄′))

+ (r − r′)T MABTM (r − r′)

= (x̄− x̄′)T (s̄− s̄′) + (r − r′)T M (A(s− s′) +B(x− x′))

− (r − r′)T M
(
ABTM(r − r′) +BATM(r − r′)

)
+ (r − r′)T MABTM (r − r′)

= (x̄− x̄′)T (s̄− s̄′) + (r − r′)T M (A(s− s′) +B(x− x′))

− (r − r′)T MABTM (r − r′)

= (x̄− x̄′)T (s̄− s̄′)

+ (r − r′)T M
{
A(s− s′) +B(x− x′)− ABTM [A(x− x′)

+B(s− s′) + C(y − y′)− (τ − τ ′)b]} . (2.9)

By multiplying (2.6) with

[
A B C

]
and using (2.7) we obtain that Ax̄+Bs̄+

Cȳ = τb and Ax̄′ +Bs̄′ + Cȳ′ = τ ′b. We can then write Ax̄/τ +Bs̄/τ + Cȳ/τ = b =

Ax̄′/τ ′ + Bs̄′/τ ′ + Cȳ′/τ ′ so (x̄/τ − x̄′/τ ′)T (s̄/τ − s̄′/τ ′) ≥ 0 holds by monotonicity

of MLCP(A,B,C, b). The following inequality is obtained by multiplying the previous

inequality with ττ ′ and manipulating the terms:

τ ′

τ
x̄T s̄+

τ

τ ′
x̄′
T
s̄′ ≥ x̄′

T
s̄+ x̄′

T
s̄. (2.10)

By using the expressions of γ and γ′ we can write that (τ−τ ′)(κ−κ′) = (τ−τ ′)(γ−
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γ′)− (τ − τ ′)(x̄T s̄/τ − x̄′T s̄′/τ ′) = (τ − τ ′)(γ− γ′)− (x̄T s̄+ x̄′
T
s̄′) + ( τ

′

τ
x̄T s̄+ τ

τ ′
x̄′
T
s̄′).

Inequality (2.10) implies that

(τ − τ ′)(κ− κ′) ≥ (τ − τ ′)(γ − γ′)− (x̄T s̄+ x̄′
T
s̄′) + x̄′

T
s̄+ x̄′

T
s̄

= (τ − τ ′)(γ − γ′)− (x̄− x̄′)T (s̄− s̄′). (2.11)

By adding (2.9) and (2.11) the following inequality is obtained x− x′

τ − τ ′


T  s− s′

κ− κ′

 ≥
 r − r′

γ − γ′


T

(φ(x, τ, s, κ, y)− φ(x′, τ ′, s′, κ′, y′)) ,

where φ :
(
Rn

+ × R++ × Rn
+ × R+

)
× Rm → Rn+m+1 is given by

φ(x, τ, s, κ, y) =

 M(As+Bx)−MABTM(Ax+Bs+ Cy − τb)

τ

 . (2.12)

The function φ is clearly continuous and by considering c := 0 it can be easily seen

that F is (x, s)-everywhere-monotone on
(
Rn

+ × R++ × Rn
+ × R+

)
×Rm, according to

Definition (2.4).

Furthermore we have the following theorem that shows that HMCP is always fea-

sible and solvable.

Theorem 2.1. HMCP is asymptotically feasible and every asymptotically feasible

point is an asymptotically complementarity solution.

Proof. It can be easily verified that HMCP is asymptotically feasible by considering

the sequence (xl, τ l, sl, κl, yl) := ((1/2)le, (1/2)l, (1/2)le, (1/2)l, 0) and letting l→∞.

Let (x, τ, s, κ, y) be any asymptotically feasible point of HMCP, i.e.:

Ax+Bs+ Cy − τb = 0

x̄T s̄
τ

+ κ = 0

x, τ, s, κ ≥ 0.

(2.13)
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Since

d x̄, s̄, ȳ c − d x, s, y c = τ b̄− (I − P )dx, s, y c = τ b̄− PRan[ABC]T dx, s, y c

= [ABC]T (AAT +BBT + CCT )−1(τb− Ax+Bs+ Cy),

the first feasibility equation from (2.13) implies that x = x̄, s = s̄ and y = ȳ. Then

the second feasibility equation from (2.13) yields the complementarity condition

xT s+ τκ = 0.

The next theorem shows how the solutions of the original problem MLCP and

homogeneous problem HMCP are related. More exactly, the solutions to HMCP rep-

resents certificates of solvability or infeasibility of the MLCP. Moreover, in the case

when MLCP is solvable, a solution is obtained from the solution of the HMCP at no

cost.

Theorem 2.2. Let (x∗, τ ∗, s∗, κ∗, y∗) be an asymptotical complementarity solution of

the HMCP corresponding to a monotone MLCP. Then the following statements hold:

(i) MLCP has a solution if and only if τ ∗ > 0. In this case, (x∗/τ ∗, s∗/τ ∗, y∗/τ ∗) is

a complementarity solution for MLCP.

(ii) MLCP is infeasible if and only if κ∗ > 0.

Proof. (i) If (x∗, τ ∗, s∗, κ∗, y∗) is a solution for HMCP and τ ∗ > 0, then

Ax∗/τ ∗ +Bs∗/τ ∗ + Cy∗/τ ∗ = τ ∗b/τ ∗ = b

and

(x∗/τ ∗)T (s∗/τ ∗) =
x∗T s∗

τ ∗2
= 0,
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that is, (x∗/τ ∗, s∗/τ ∗, y∗/τ ∗) is solution for MLCP.

Now let (x∗, s∗, y∗) be a solution for MLCP. We show that x̂ = x∗, τ̂ = 1, ŝ = s∗,

κ̂ = 0 and ŷ = y∗ is a solution for HMCP. The two complementarity conditions of

HMCP are obviously satisfied as well as the first feasibility condition. As in the proof

of Theorem 2.1, one can obtain that the first feasibility condition for (x̂, τ̂ , ŝ, κ̂, ŷ)

implies ¯̂x = x̂, ¯̂s = ŝ and ¯̂y = ŷ. Then we can write

¯̂xT ¯̂s

τ̂
+ κ̂ =

x̂T ŝ

1
+ 0 = x∗T s∗ = 0,

which proves that the second feasibility equation of the HMCP holds and, hence,

completes the proof of (i).

We now prove (ii). First we show that if (x∗, 0, s∗, κ∗, y∗), with κ∗ > 0, is an

asymptotical solution for HMCP, then MLCP is infeasible. Assume the opposite, i.e.,

there exist x ≥ 0, s ≥ 0 and y ∈ Rm such that Ax+Bs+ Cy = b.

Since (x∗, 0, s∗, κ∗, y∗) asymptotically solves the HMCP, we can consider the se-

quences xk ≥ 0 with xk → x∗, τk > 0 with τk → 0, sk ≥ 0 with sk → s∗, yk → y∗ and

κk ≥ 0 with κk → κ∗ > 0 satisfying

Axk +Bsk + Cyk → τkb (2.14)

x̄Tk s̄k/τk → −κ∗. (2.15)

As in the proof of Theorem 2.1, (2.14) implies

x̄k → x∗ and s̄k → s∗. (2.16)

On the other hand, the left multiplication of d x̄k, s̄k, ȳk c from (2.6) with

[
A B C

]
causes the orthogonal projection term to vanish and we have

[ABC]d x̄k, s̄k, ȳk c = τk[ABC]b̄ = τkb,
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or, since τk > 0

Ax̄k/τk +Bs̄k/τk + Cȳk/τk = b.

Then we can write A(x̄k/τk−x) +B(s̄k/τk− s) +C(ȳk/τk− y) = 0, which implies

(x̄k/τk − x)T (s̄k/τk − s) ≥ 0 by the monotonicity property of MLCP, and therefore

τkx
T s− (xT s̄k +sT x̄k) ≥ −x̄Tk s̄k/τk. By considering the limit when τk → 0 and taking

into account (2.15) and (2.16), we obtain that κ∗ ≤ −(xT s∗ + sTx∗) ≤ 0, which is a

contradiction with the fact that κ∗ is positive.

Conversely, assume that MLCP is infeasible. Want to prove that there is a com-

plementarity solution (x∗, τ ∗, s∗, κ∗, y∗) of the HMCP that has κ∗ > 0.

Consider the set P = {Ax + Bs + Cy − b : x, s ≥ 0, y ∈ Rm}. It can be easily

verified that P is convex. Also the set b+P is a finitely generated cone, hence closed.

Then P is closed.

The infeasibility of MLCP(A,B,C, b) is equivalent to 0 /∈ P . Since P is closed and

convex, then there must be a separating hyperplane between 0 and P , that is, there

is a vector a ∈ Rm+n, a 6= 0 and ξ > 0 so that

aT (Ax+Bs+ Cy − b) ≥ ξ > 0, ∀x, s ≥ 0, ∀y ∈ Rm. (2.17)

Let us take s = 0 and y = 0 in (2.17). Then for any x ≥ 0 we must have

xTATa = aTAx ≥ ξ + aT b. If the jth component of ATa is negative, then xTATa can

be made smaller than ξ + aT b by taking xi = 0 for i 6= j and xj sufficiently large.

Hence

ATa ≥ 0. (2.18)

Similarly one can obtain that

BTa ≥ 0. (2.19)
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Taking x = s = 0 in (2.17) leads to yTCTa ≥ ξ+aT b for any y ∈ Rm. This implies

that

CTa = 0 (2.20)

because the functional y 7→ cTy is bounded below if and only if c = 0. We obtained

in fact that a ∈ Ker(CT ) and we can write a = Eu with u ∈ Rn, where E ∈ R(m+n)×n

is the matrix introduced in Lemma 2.1 (its columns represent an orthonormal basis

of Ker(CT ) ).

We have (ATa)T (BTa) = uTETABTEu ≤ 0 since −ETABTE is positive semidef-

inite (see Lemma 2.1). On the other hand (2.18) and (2.19) imply (ATa)T (BTa) ≥ 0.

Thus

(ATa)T (BTa) = 0. (2.21)

Furthermore, since the matrix −ETABTE is positive semidefinite according to

Lemma 2.1, equation (2.21) indicates that the nonegative function q 7→ −qTETABTEq

vanishes at u, which implies by the first order optimality conditions that ETABTEu+

(ETABTE)Tu = 0, or, equivalently, ET (ABTa+BATa) = 0. Hence ABTa+BATa ∈

Ran(C). Therefore we have that ABTa+BATa+Cy′ = 0, with y′ ∈ Rm. By denoting

x′ = BTa and s′ = ATa we can write that

Ax′ +Bs′ + Cy′ = 0, with x′, s′ ≥ 0, y′ ∈ Rm and (x′)T s′ = 0. (2.22)

Now consider x(t) = x′ + tu∗, τ(t) = t, s(t) = s′ + tv∗ and y(t) = y′ + tw∗, for

t > 0, where du∗, v∗, w∗ c is the block representation of the least square solution b̄ to

Ax+Bs+ Cy = b (see (2.7)). Observe based on (2.22) that

lim
t→0

A
x(t)

t
+B

s(t)

t
+ C

y(t)

t
= Au∗ +Bv∗ + Cy∗ = b (2.23)
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and 
¯x(t)

¯s(t)

¯y(t)

 = P


x′ + tu∗

s′ + tv∗

y′ + tw∗

+ t


u∗

v∗

w∗

 =


x′

s′

y′

+ t


u∗

v∗

w∗

 ,
with the first equality being the definition (2.6), and the last equality holding because

dx′, s′, y′ c ∈ Ker[ABC] (see (2.22)) and du∗, v∗, w∗ c ∈ Ran[ABC]T . Then we can

write

lim
t→0

¯x(t)
T ¯s(t)

t
= lim

t→0

(x′ + tu∗)T (s′ + tv∗)

t

(2.22)
= (s′)Tu∗ + (x′)Tv∗

= aT (Au∗ +Bv∗)
(2.20)
= aT (Au∗ +Bv∗ + Cw∗) = aT b.

We have proved that (ATa, 0, BTa,−aT b, y′) is an asymptotical solution of the

HMCP. If we take x,s and y to be zero in (2.17) then −aT b ≥ ξ > 0, showing that

there is a solution (x∗, τ ∗, s∗, κ∗, y∗) with κ∗ > 0, e.g. (ATa, 0, BTa,−aT b, y′).

If all the solutions (x∗, τ ∗, s∗, κ∗, y∗) to HMCP have τ ∗ = 0 and κ∗ = 0, then the

MLCP is not infeasible (hence it is feasible) and is not solvable. This can not hold in the

monotone case since, according to Lemma 2.3, feasibility implies solvability. Hence

Theorem 2.2 implies that the HMCP must have a solution for which either τ ∗ > 0 and

κ∗ = 0 or τ ∗ = 0 and κ∗ > 0. We would like to mention that the homogeneous model

for monotone complementarity problems (in explicit form) of Andersen and Ye [3]

possesses the same type of strict complementarity of homogenization variables when

applied to an affine monotone function, i.e., to a SLCP.

Suppose (x∗, τ∗, s∗, κ∗, y∗) is a maximal complementarity solution to HMCP. Table

2.1 displays all possible combinations of τ ∗ and κ∗ and the corresponding status of

the solvability of MLCP. ”NA” stands for ”not available”.
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τ ∗ \ κ∗ = 0 > 0

= 0 NA MLCP is infeasible

> 0 (x∗/τ ∗, s∗/τ ∗, y∗/τ ∗) is a solution to MLCP NA

Table 2.1: Possible combination of optimal τ ∗ and κ∗

2.5 A general theory on the existence of central

paths for nonlinear complementarity problems

In this section we briefly present several results concerning the properties of an

interior-point mapping which we later use to characterize the central path of the

HMCP. The results are part of a framework that has been introduced by Monteiro and

Pang [61] to study nonlinear monotone implicitly defined complementarity problems

over the non-negative orthant and over the cone of symmetric positive semidefinite

matrices [62]. Recently Yoshise [84] has managed to prove the same type of results

for nonlinear monotone implicitly defined complementarity problems over symmetric

cones.

While the analysis from [61, 62] requires the complementarity problem to be de-

fined on the entire cone, the results from [84] can be used for complementarity prob-

lems not defined on the boundary of the cone. The latter is our case and we state

the results from [84].

As we mentioned above, Yoshise’s results hold for symmetric cones. Here we

specialize them to the nonnegative orthant which is a symmetric cone. Consider a

nonlinear complementarity problem in implicit form, i.e.,

xs = 0, F (x, s, y) = 0, x, s ≥ 0, (2.24)
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where F is a continuous map into Rm+n satisfying Rn
++ × Rn

++ × Rm ⊆ dom (F ) ⊆

Rn
+ × Rn

+ × Rm.

Furthermore, the trajectory of the interior point map H : Rn
++ × Rn

++ × Rm →

R2n+m given by

H(x, s, y) =

 xs

F (x, s, y)

 (2.25)

is characterized by means of homeomorphic continuous maps in the following theorem.

Theorem 2.3 (cf. Theorem 3.10 of [84]). Suppose that the continuous map F is

(x, s)-equilevel-monotone, y-bounded and y-injective on its domain. Then the map H

defined by (2.25) satisfies the following properties:

(i) H is proper with respect to Rn
++ × F

(
Rn

++ × Rn
++ × Rm

)
.

(ii) H maps Rn
++×Rn

++×Rm homeomorphically onto Rn
++ × F

(
Rn

++ × Rn
++ ×Rm).

Under the (x, s)-everywhere monotonicity assumption on F , the set F
(
Rn

++×

Rn
++ × Rm) is convex and open as shown by the following theorem. The convexity

of this set turns out to be a key property in Section 2.6 in proving crucial properties

of the central path associated with our homogeneous model.

Theorem 2.4 (cf. Theorem 3.12 of [84]). Suppose that the continuous map F is

(x, s)-everywhere-monotone, y-bounded and y-injective on its domain. Then the set

F
(
Rn

++ × Rn
++ × Rm

)
is an open convex set.
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2.6 Existence and properties of the central path

for HMCP

In this section we prove the existence, uniqueness and convergence of central path

for the homogenous model HMCP. We also show that sequences of interior points

generated by path-following interior-point algorithms have limit points which are

solutions to HMCP.

Consider the map

H(x, τ, s, κ, y) =


xs

τκ

F (x, τ, s, κ, y)

 (2.26)

and choose a strictly feasible initial point (x0, τ 0, s0, κ0, y0). For simplicity we set

(x0, τ 0, s0, κ0, y0) := (e, 1, e, 1, 0). Define

 p̂0

r̂0

 := H(x0, τ 0, s0, κ0, y0) =


e

1

F (e, 1, e, 1, 0)

 .
Theorem 2.5. If MLCP(A,B,C, b) is monotone, then the following statements hold

for the corresponding HMCP problem:

(i) For any t ∈ (0, 1] there exist x(t) > 0, τ(t) > 0, s(t) > 0, κ(t) > 0, and

y(t) ∈ Rm such that

H(x(t), τ(t), s(t), κ(t), y(t)) = t

 p̂0

r̂0

 . (2.27)

(ii) The set P containing all the points (x(t), τ(t), s(t), κ(t), y(t)) given by (i) forms

a bounded path in Rn+1
++ × Rn+1

++ × Rm. Moreover, any accumulation point

(x(0), τ(0), s(0), κ(0), y(0)) is an asymptotical solution of HMCP.
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Proof. (i) According to Lemma 2.4, F satisfies the conditions of Theorem 2.4. Thus,

the set F
(
Rn+1

++ × Rn+1
++ × Rm) is open and convex. Since

H
(
Rn+1

++ × Rn+1
++ × Rm

)
= Rn+1

++ × F
(
Rn+1

++ × Rn+1
++ × Rm

)
,

we obtain that H
(
Rn+1

++ × Rn+1
++ × Rm) is also open and convex.

HMCP is asymptotically feasible by Theorem 2.1, i.e., 0 ∈ cl
(
F
(
Rn+1

++ × Rn+1
++ ×

Rm)). Since

cl
(
H
(
Rn+1

++ × Rn+1
++ × Rm

))
= Rn+1

+ × cl
(
F
(
Rn+1

++ × Rn+1
++ × Rm

))
,

it is clear that 0 ∈ cl
(
H
(
Rn+1

++ × Rn+1
++ × Rm

))
also holds.

H
(
Rn+1

++ × Rn+1
++ × Rm) being open and convex and 0 ∈ cl

(
H
(
Rn+1

++ × Rn+1
++ × Rm

))
imply that t

 p̂0

r̂0

 ∈ H
(
Rn+1

++ × Rn+1
++ × Rm

)
for all t ∈ (0, 1]. Then the con-

clusion from (i) follows from the fact that the map H is a homeomorphism from

Rn+1
++ × Rn+1

++ × Rm onto H
(
Rn+1

++ × Rn+1
++ ×Rm) (according to Theorem 2.3).

(ii) The homeomorphism of H also implies that P is a path in Rn+1
++ ×Rn+1

++ ×Rm.

We now prove the boundedness of P . Assume (x(t), τ(t), s(t), κ(t), y(t)) ∈ P .

Then F (x(t), τ(t), s(t), κ(t), y(t)) = tr̂0 = tF (x0, τ 0, s0, κ0, y0) and by homogeneity

of F we obtain F (x(t), τ(t), s(t), κ(t), y(t)) = F (tx0, tτ 0, ts0, tκ0, ty0). According to

Lemma 2.4, F is equilevel-monotone, therefore we must have

(x(t)− tx0)T (s(t)− ts0) + (τ(t)− tτ 0)(κ(t)− tκ0) ≥ 0,

or equivalently,

x(t)T s0 + s(t)Tx0 + τ(t)κ0 + κ(t)τ 0 ≤ x(t)T s(t)

t
+
τ(t)κ(t)

t
+ t(x0)T s0 + tτ 0κ0.

Moreover, any point on the path must have x(t)s(t) = te and τ(t)κ(t) = t. Observe

that the first equality gives x(t)T s(t) = tn. Also we have (x0)T s0 = n and τ 0κ0. Then
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the above inequality transforms to

x(t)

τ(t)

s(t)

κ(t)



T 

e

1

e

1


≤ (n+ 1)(t+ 1) ≤ 2(n+ 1).

But x(t) > 0, τ(t) > 0, s(t) > 0, κ(t) > 0, hence the above inequality forces each

component of the vector d (x(t), τ(t), s(t), κ(t) c to be less than 2(n+ 1).

We have proved that d (x(t), τ(t), s(t), κ(t) c is bounded. Since we also have

‖F (x(t), τ(t), s(t), κ(t), y(t))‖ = t ‖r̂0‖ ≤ ‖r̂0‖, y(t) must be also bounded according

to the y-boundedness of F (see Lemma 2.4). Hence the set P is bounded.

Since P is bounded at least one accumulation point (x(0), τ(0), s(0), κ(0), y(0))

must exist. Finally, by making use of the expression (2.27) of central path P and the

Definition 2.2 of an asymptotical solution, we conclude that any accumulation point

is an asymptotical solution of HMCP.

The following theorem proves that any solution to HMCP found by means of a path-

following interior-point algorithm possesses the maximal complementarity property.

Theorem 2.6. Let MLCP(A,B,C, b) be monotone, (z∗ := (x∗, τ ∗, s∗, κ∗), y∗) be an

asymptotical complementarity solution of the corresponding HMCP, and also (z(0) :=

(x(0), τ(0), s(0), κ(0)), y(0)) be any accumulation point of the path P. If z∗i > 0,

i ∈ {1, 2, . . . , 2n+ 2}, then the ith component [z(0)]i of z(0) must also be positive.

Proof. Consider t ∈ (0, 1], and the corresponding point (z(t) := (x(t), τ(t), s(t), κ(t)) ,
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y(t)) ∈ P for which we have r(t)

γ(t)

 := F (x(t), τ(t), s(t), κ(t), y(t)) = t

 r0

γ0


x(t)s(t) = te

τ(t)κ(t) = t,

(2.28)

where

 r0

γ0

 = r̂0.

Since (z∗, y∗) is an asymptotical solution of HMCP, there must be a sequence

{(zk := (xk, τ k, sk, κk), yk)} ⊂ Rn+1
++ × Rn+1

++ × Rm, k ∈ {1, 2, . . .} such that

(xk, τ k, sk, κk, yk) → (x∗, τ ∗, s∗, κ∗, y∗) rk

γk

 := F (xk, τ k, sk, κk, yk) → 0

xksk → x∗s∗ = 0

τ kκk → τ ∗κ∗ = 0.

(2.29)

The sequence {zk} is bounded since it is convergent. Moreover, by Theorem 2.5

the set P is also bounded, therefore there must be ε > 0 such that

‖zk‖ ≤ 1/ε, ∀k and

‖z(t)‖ ≤ 1/ε, ∀t ∈ (0, 1] .
(2.30)

For a fixed t ∈ (0, 1], (2.29) also implies that there exists k(t) positive integer such

that

xki s
k
i < tε/(n+ 1), i ∈ {1, 2, . . . , 2n+m+ 2},

τ kκk < tε/(n+ 1), ∀k ≥ k(t),∥∥rk∥∥ < tε,

which implies that

(xk)T sk + τ kκk < tε and
∥∥rk∥∥ < tε, ∀k ≤ k(t). (2.31)
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Since F is everywhere-monotone we can write xk − x(t)

τ k − τ(t)


T  sk − s(t)

κk − κ(t)

 ≥
 rk − r(t)

γk − γ(t)


T (
φ(zk)− φ(z(t))

)
,

where φ is the continuous linear function given by (2.12). By manipulating the terms

in the above inequality, we obtain that

s(t)Txk + x(t)T sk + κ(t)τ k + τ(t)κk ≤ (xk)T sk + x(t)T s(t) + τ kκk + τ(t)κ(t)

+

 rk − r(t)

γk − γ(t)


T (
φ(z(t))− φ(zk)

)
,

and by using [x(t)]i[s(t)]i = t, i ∈ {1, 2, . . . , 2n+ 2}, and τ(t)κ(t) = t given by (2.28),

we can transform the previous inequality to

t(zk)T z(t)−1 ≤ (xk)T sk + tn+ τ kκk + t+

 rk − tr0

γk − tγ0


T (
φ(z(t))− φ(zk)

)

≤ (xk)T sk + τ kκk + t(n+ 1) +

∥∥∥∥∥∥∥
 rk − tr0

γk − tγ0


∥∥∥∥∥∥∥
∥∥φ(zk)− φ(z(t))

∥∥
≤ (xk)T sk + τ kκk + t(n+ 1) +

+


∥∥∥∥∥∥∥
 rk

γk


∥∥∥∥∥∥∥+ t

∥∥∥∥∥∥∥
 r0

γ0


∥∥∥∥∥∥∥
 ‖φ‖ (‖zk‖+ ‖z(t)‖

)
(by linearity of φ)

≤ tε+ t(n+ 1) + t

ε+

∥∥∥∥∥∥∥
 r0

γ0


∥∥∥∥∥∥∥
 ‖φ‖ (1/ε+ 1/ε) ,

where the last inequality follows by applying (2.30) and (2.31).

To conclude, we have proved that

∀t ∈ (0, 1],∃k(t) such that (zk)T z(t)−1 ≤M, ∀k ≥ k(t),
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where M := n + 1 + ε + 2

ε+

∥∥∥∥∥∥∥
 r0

γ0


∥∥∥∥∥∥∥
 ‖φ‖ /ε does not depend on neither t or

k(t). By the convergence of {zk} to z∗, we obtain that

(z∗)T z(t)−1 ≤M, ∀t ∈ (0, 1]. (2.32)

Consider z∗i > 0. If the accumulation point z(0) of P satisfies [z(0)]i = 0, then

a sequence {tl} of positive numbers converging to 0 and satisfying lim
l→∞

[
z(tl)

]
i

= 0

exists. It follows that {z∗i /
[
z(tl)

]
i
} is unbounded. But this is a contradiction, since

z∗i /
[
z(tl)

]
i
≤ (z∗)T z(tl)−1 ≤M according to (2.32). Hence [z(0)]i > 0.

Corollary 2.2. If MLCP(A,B,C, b) is monotone and (x∗, τ ∗, s∗, κ∗, y∗) is an asymp-

totical solution of the corresponding HMCP with τ ∗ > 0 (κ∗ > 0), then any accumu-

lation point (x(0), τ(0), s(0), κ(0), y(0)) of the path P satisfies τ(0) > 0 (κ(0) > 0,

respectively).

As we have mentioned earlier, the HMCP has always a solution for which the

pair (τ ∗, κ∗) possesses strict complementarity. The above theorem shows that if the

HMCP has a solution having τ ∗ > 0 (κ∗ > 0, respectively)), then a path-following

interior-point algorithm does not converge to a solution having τ ∗ = 0 (κ∗ = 0,

respectively). Hence the solutions found by a path-following interior-point algorithm

are valid certificates (in the sense of Theorem 2.2) of solvability or infeasibility of the

original MLCP .
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2.7 Adaptation of Mehrotra’s interior-point algo-

rithm for HMCP

We have shown in Section 2.6 that the numerical solution to the homogeneous aug-

mented model can be obtained using interior-point path-following algorithms. A

path-following method is an iterative numerical process that follows a path of points,

in our case P defined by (2.27), in the direction of decreasing t towards the solution

set of the complementarity problem. The iterates generated by the method do not

necessarily stay on the curve P , rather they are located in a controlled neighborhood

of P that is a subset of the positive orthant.

The use of a neighborhood is a key ingredient of path-following methods and keeps

the iterates from moving too close to the boundary of the positive orthant. Little

progress can be made in the proximity of the boundary of positive orthant because

of the numerical distortions associated to small, even zero, numerical values in the

complementarity variables. While the wider neighborhoods offer the best performance

in practice, the smaller neighborhoods give the best theoretical complexity bounds.

In pursuing the central path, path-following methods step along two directions.

The first is the affine-scaling direction which aims for a great amount of progress

towards the solution and generates a point situated on the boundary of neighborhood.

The second is the centering direction which is biased toward the central path such that

the progress made by affine-scaling direction is at least preserved, if not improved.

Moreover, the centering direction sets the scene for substantial progress along the next

affine-scaling step in the idea that the better the centrality is, the more room for the

affine-scaling step is. Predictor-corrector algorithms are path-following algorithms

that take a separate steps along the affine-scaling direction (predictor) and centering
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direction (corrector). Another type of path-following algorithms is represented by

the short(long)-step path-following methods which combine the affine-scaling and

centering directions in a single step and trade off between the two goals of reaching

optimality and improving centrality.

In the last decade, predictor-corrector methods have emerged as a practical ap-

proach in obtaining numerical solutions to complementarity problems. Among them,

the most successful and hence famous is the Mehrotra’s predictor-corrector algorithm.

Although Mehrotra [58] presented his algorithm in the context of linear programming,

it was successfully applied also to convex quadratic programming [40] and standard

monotone linear complementarity problems [85]. It also has been widely used in the

implementation of several IPM based optimization packages: OB1 [57], HOPDM [42],

PcX [23], LIPSOL [86], OOQP [40], etc. In this section we adapt this algorithm to an

even broader class of complementarity problems, that is monotone nonlinear mixed

complementarity problems of form (1.3). The algorithm makes use of no explicit

neighborhood of the central path. In fact it uses the entire positive orthant to move

along the affine-scaling direction and backs off by a fixed factor when the bound-

ary of the orthant is reached. The use of no neighborhood causes the complexity

and convergence analysis of the algorithm to be intractable. To date, no complex-

ity and convergence results are known for the original form of Mehrotra’s algorithm.

However, polynomial complexity was proved for variants of Mehrotra’s algorithm in

[87, 85, 70, 71]. The Mehrotra-type algorithms from [85] and [70] also possess a fast

asymptotical convergence, Q-subquadratic and superlinear, respectively.

In what follows we present how Mehrotra’s algorithm is used to find the nu-

merical solution to the augmented homogeneous model (2.5) related to a monotone

MLCP(A,B,C, b) that we introduced in Section 2.3. We recall that our homogeneous
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model consists in the following nonlinear monotone complementarity problem

xs = 0

τκ = 0

F (x, τ, s, κ, y) = 0

x, τ, s, κ ≥ 0,

(2.33)

where the mapping F describing the feasible set of the complementarity problem is

given by (2.8).

We now introduce some simplifying notations. The complementarity conditions

and the feasibility equations can be represented as the continuous mapping H : Rn
+×

R++ × Rn+1
+ × Rm → R2n+m+2,

H(x, s, y) =


xs

τκ

F (x, s, y)

 . (2.34)

We denote the Jacobian of H by H ′, which has the form

H ′(x, τ, s, κ, y) =



S 0 X 0 0

0 κ 0 τ 0

A −b B 0 C

dTx dTτ dTs 1 dTy


, (2.35)

whereX = diag(x), S = diag(s), dx := d
dx

(
x̄T s̄
τ

)
(x, τ, s, κ, y), ds := d

ds

(
x̄T s̄
τ

)
(x, τ, s, κ, y),

dy := d
dy

(
x̄T s̄
τ

)
(x, τ, s, κ, y), and dτ := d

dτ

(
x̄T s̄
τ

)
(x, τ, s, κ, y). The exact expressions

for dx, ds, dy, and dτ are not of interest at this moment and will be given later.

We first outline the adaptation of Mehrotra’s algorithm for the complementarity

problem (2.33).

Mehrotra’s algorithm for HMCP
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Set (x0, τ0, s0, κ0, y0) = (e, 1, e, 1, 0);

Set k ← 0 ;

repeat

Set (x, τ, s, κ, y) ← (xk, τk, sk, κk, yk);

Compute µ = dx, τ cT d s, κ c/(n+ 1);

(predictor step)

Compute (up, αp, vp, βp, wp) from



S 0 X 0 0

0 κ 0 τ 0

A −b B 0 C

dTx dTτ dTs 1 dTy





u

α

v

β

w


=



−xs

−τκ

τb− Ax−Bs− Cy

− 1
τ
x̄T s̄− κ


; (2.36)

Compute θp = arg max{θ ∈ (0, 1] : (x, τ, s, κ) + θ(up, αp, vp, βp) ≥ 0};

Set µp = (dx, τ c+ θpdup, αp c)T (d s, κ c+ θpd vp, βp c)/(n+ 1);

Set centering parameter σ = (µp/µ)3;

(corrector step)

Compute (u, α, v, β, w) from



S 0 X 0 0

0 κ 0 τ 0

A −b B 0 C

dTx dTτ dTs 1 dTy





u

α

v

β

w


=



σµe− xs− upvp

σµ− τκ− αpβp

τb− Ax−Bs− Cy

− 1
τ
x̄T s̄− κ


; (2.37)

Compute θmax = max{θ : dx, τ, s, κ c+ θdu, α, v, β c ≥ 0}

Compute steplength θc ∈ (0, θmax) according to Section 2.7.1;
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Set (xk+1, τk+1, sk+1, κk+1, yk+1) ← (xk, τk, sk, κk, yk) + θc(u, α, v, β, w);

Set k ← k + 1.

continue

Discussion of the algorithm

Suppose that the current iteration is (xk, τk, sk, κk, yk).

In the predictor phase Mehrotra’s algorithm aims to reduce both the complemen-

tarity and infeasibility while keeping the iterate in the feasible set. To achieve this,

the algorithm performs one damped Newton iteration for the nonlinear system of

equations represented by the complementarity conditions and feasibility equations,

i.e., for

H(x, τ, s, κ, y) = 0.

By applying Newton’s method to the above system of equations with the current iter-

ate (xk, τk, sk, κk, yk) as starting point, we obtain that the predictor search directions

(up, αp, vp, βp, wp) must satisfy the linear system

H ′(xk, τk, sk, κk, yk)(up, αp, vp, βp, wp) = −H(xk, τk, sk, κk, yk).

By taking into account the expression (2.35) of the Jacobian, it can be easily seen

that the linear system solved for the predictor search direction is exactly (2.36).

Since a full step along these directions usually ends outside the positive orthant,

the algorithm finds the step length θp to the boundary of the positive orthant, but,

instead of taking the update, it just measures the efficiency of the direction by com-

puting µp. A value µp � µ indicates that the direction permits significant progress in

reducing the complementarity measure µ. If µp is comparable to µ, then little progress

can be made because of the current iterate’s lack of centrality. The centering param-

eter σ is computed by an ingenious heuristic found by Mehrotra and indicates how
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much emphasis should be put on centrality during the corrector’s centering phase.

Based on the amount of reduction obtained in the predictor phase, one of the cor-

rector’s objectives is to bring the iterate close to central path without compromising

the progress made in the predictor. Being as close to the central path as possible

usually allows longer steps and hence large reduction of the complementarity in the

next predictor step. Another objective of the corrector is to reduce the error made

by predictor in the attempt of solving the nonlinear system of equations (2.7) with

only one Newton step. The above objectives cause the corrector search direction

(u, α, v, β, w) given by (2.37) to be a combination of an error-corrector direction and

a centering direction which we describe in the following paragraphs.

The error-corrector direction tries to compensate the complementarity error dx+

up, τ+α+p cd s+vp, κ+βp c that is made by a full step along the predictor direction

because of the nonlinearity of (2.7). No reduction on the infeasibility is wanted.

Observe that we have x+ up

τ + αp


 s+ vp

κ+ βp

 =

 x

τ


 s

κ

+

 x

τ


 vp

βp

+

 up

αp


 s

κ


+

 up

αp


 vp

βp

 =

 up

αp


 vp

βp

 ,
where the last equality is obtained from (2.36). In order to compensate this error,

the error-corrector direction (uco, αco, vco, βco, wco) is computed as the solution of the
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linear system 

S 0 X 0 0

0 κ 0 τ 0

A −b B 0 C

dTx dTτ dTs 1 dTy





uco

αco

vco

βco

wco


=



−upvp

−αpβp

0

0


. (2.38)

The centering direction is biased toward the central path and tries to move closer

to the central path, so that the algorithm is in a better position to achieve substantial

decrease in the complementarity measure during the next iteration. As the error-

corrector direction, the centering direction does not try to reduce infeasibility either.

The centering direction targets the point σµe located on the central path, where σ

is the centering parameter computed in the predictor case. In order to achieve this,

the centering direction (uc, αc, vc, βc, wc) is computed as the solution of by the linear

system 

S 0 X 0 0

0 κ 0 τ 0

A −b B 0 C

dTx dTτ dTs 1 dTy





uc

αc

vc

βc

wc


=



σµe

σµ

0

0


. (2.39)

A final observation regarding the centering phase is that, instead of targeting the

point on the central path having the complementarity µp obtained by the predictor,

the centering direction aims the point σµe whose complementarity is σµ =
(
µp
µ

)3

µ =

µp

(
µp
µ

)2

≤ µp (µp ≤ µ, since it can be proved that the complementarity measure µ is

reduced along the predictor direction). Hence, the centering direction aims not only

to center the iterate, but also to reduce the complementarity measure already gained

by the predictor.
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The corrector’s search direction (2.37) is obtained by summing the predictor direc-

tion given by (2.36), the error-corrector direction given by (2.38), and the centering

direction given by (2.39). The algorithm updates the iteration by moving along this

direction by a step length given by a heuristic that will be later discussed. An im-

portant observation is that Mehrotra’s algorithm differs from what today are called

”standard predictor-corrector” (or corrector-predictor) methods in two aspects. The

first is given by the absence of an update based solely on predictor directions in

Mehrotra’s algorithm. In contrast, a standard predictor-corrector moves along pre-

dictor directions till it reaches a point on the boundary of the neighborhood and

performs the corrector step using this point. The second difference is that the error-

corrector direction is not present in standard predictor-corrector algorithms which

attempt only an improvement of the centrality in the corrector phase.

The characteristic of Mehrotra’s method of not moving from the current iterate

in the predictor phase causes, as we have already pointed out, the linear systems

(2.36) and (2.37) to share the same system matrix. Thus only one expensive matrix

factorization and two less expensive backsolves are needed per iteration. On the other

hand, the standard predictor-corrector and corrector-predictor methods require two

expensive matrix factorizations and two backsolves per iteration. Even though the

number of iterations may be slightly smaller when making use of standard predictor-

corrector methods employing large neighborhoods, the numerical experience of the

last fifteen years has shown that Mehrotra’s algorithm considerably outruns any of

such methods in terms of execution time.
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2.7.1 The procedure for computing the steplength

The steplength heuristic from the corrector step introduced by Mehrotra in [58] for lin-

ear programming was slightly modified by Wright in [40] for quadratic programming

to ensure that the same step is taken in both primal and dual variables. Furthermore,

the experiments (not included in this thesis) that I have done with Mehrotra’s algo-

rithm on MLCPs have shown that the steplength heuristic used for quadratic program-

ming works well for linear complementarity problems. However, the heuristics may

cause the algorithm not to converge when dealing with nonlinear complementarity

problems. We have observed this on the very first HMCPs we have tried to solve using

Mehrotra’s algorithm and Mehrotra’s heuristic for steplength. Mehrotra’s heuristic

and its variants assume that the infeasibility is reduced along the entire corrector

direction, and only criteria related to the complementarity measure are considered

in computing the steplength. The assumption is satisfied for linear complementarity

problem since the feasibility is linear and Newton-type direction is a descent direction

for any step in (0, 1]. But, in the case of nonlinear complementarity problems the

assumption is not satisfied anymore, Netwon-type direction is only a local descent

direction (and only under the monotonicity property).

To avoid this shortcoming we compute the steplength along the corrector direction

similarly to [3] by enforcing a sufficient decrease condition in a merit function. The

merit function measures the progress towards the solution in terms of both comple-

mentarity and infeasibility, and is defined by

φ(x, τ, s, κ, y) = ζ(xT s+ τκ) + ‖F (x, τ, s, κ, y)‖, (2.40)

where ζ is a positive parameter used to balance between complementarity (xT s) and

infeasibility (‖F (x, s, y)‖). Clearly, if the point (x, τ, s, κ, y) satisfies φ(x, τ, s, κ, y) =
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0, then (x, τ, s, κ, y) is a complementarity solution.

By enforcing the Armijo condition for the merit function along the corrector di-

rection du, α, v, β, w c, we require the corrector step size θc to satisfy

φ(x+, τ+, s+, κ+, y+) ≤ c1θc∇φ(x, τ, s, κ, y)T du, α, v, β, w c, (2.41)

where dx+, τ+, s+, κ+, y+ c = dx, τ, s, κ, y c + θcdu, α, v, β, w c is the candidate

for update, and c1 is a constant of the algorithm.

We also require an additional condition on the length θc of the corrector step.

This can also be found in [3] and has the role of preventing the iterates from converg-

ing prematurely towards the boundary of the nonnegative orthant (which can cause

numerical difficulties):

x+
i s

+
i ≥ c2µ

+, for i = 1, 2, . . . , n, and τ+κ+ ≥ c2µ
+, (2.42)

where µ+ = ((x+)T s+ + τ+κ+)/(n+ 1), and c2 is a constant of the algorithm.

Procedure for computing the step size θc

Set θc ← θmax;

Set k ← 0 ;

Repeat

Set dx+, τ+, s+, κ+, y+ c = dx, τ, s, κ, y c+ θcdu, α, v, β, w c;

If (2.41) and (2.42) are satisfied then

Accept and return θp;

Else

θc = c2k

3 θc;

If θc ≤ c4 then

Return error;
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Set k ← k + 1 ;

continue

A key question is if the above procedure is well-defined in the sense that the

corrector direction du, α, v, β, w c is a descent direction for the merit function φ.

By taking separately the two components of the merit function, it can be easily

proved that the corrector direction is always a descent direction for the infeasibility

component (‖F (x, τ, s, κ, y)‖ but not for the complementarity component ζ(xT s+τκ).

However, when considered together, sufficient decrease of the merit is obtained along

corrector direction as indicated by the numerical experiments.

Based on extensive numerical experiments we have settled to the values for the

algorithm’s constants c1 = 10−4, c2 = 10−6, c3 = 0.85, c4 = 10−4, and ζ = 1/
√
n+ 1.

2.7.2 Linear algebra

We start by computing the derivatives dx, ds, dy, and dτ that appear in the expression

of the linear systems (2.36) and (2.37). Let us denote dx, s, y c by z, and d x̄, s̄, ȳ c

by z̄. Also let H be the (2n+m)× (2n+m) matrix defined by

H =


0 I 0

I 0 0

0 0 0

 .
Through the rest of this section we denote by P and R the orthogonal projection

onto Ker[ABC] and Ran[ABC]T , respectively.

First of all, based on (2.6) and (2.7), let us write x̄T s̄ = 1
2
z̄THz̄ = 1

2
(Pz +
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τ b̄)TH(Pz + τ b̄) = 1
2
(zTPHPz + 2τzTPHb̄+ τ 2b̄THb̄), so that

dx

ds

dy

 =
d

dz

(
x̄T s̄

τ

)
=

1

τ
(PHPz + τPHb̄) =

1

τ
PHz̄. (2.43)

In obtaining dτ , first observe that d
dτ

(x̄T s̄) = zTPHb̄+ τ b̄THb̄ = z̄THb̄ and then,

by the product rule that

dτ =
d

dτ

(
x̄T s̄

τ

)
=

1

τ
z̄THb̄− 1

τ 2
x̄T s̄. (2.44)

At each iteration of the algorithm the directions for predictor and corrector are

obtained by solving the linear systems (2.36) and (2.37), respectively. Since they share

the same system matrix, the numerical factorization is done only once. Moreover,

since the systems are sparse, unsymmetric and indefinite we chose to use MA48 [30]

solver from HSL library. MA48 solves sparse unsymmetric systems of linear equations

using Gaussian elimination. It is written in Fortran and has capabilities such as:

finding the pivot order, factorizing using a given pivot order, forward and backsolves

and error estimates.

However, when a particular class of problems is solved, the linear systems may have

special properties as symmetry, positive-definiteness, etc. In this case the performance

of the interior-point solver can be dramatically increased. For example, in solving

linear or convex quadratic problems as LCPs a symmetric positive definite linear

solver is recommended to be used [66].

At each iteration of the algorithm, the vectors d x̄, s̄, ȳ c (see (2.6)) and d dx, ds, dy c

(see (2.43)) are computed by finding the projection onto Ker[ABC] of the vector

dx, s, y c and Hz̄ = d s̄, x̄, 0 c, respectively. Since Ker[ABC] is perpendicular to

Ran[ABC]T , we can write dx, s, y c = PKer[ABC]dx, s, y c + PRan[ABC]dx, s, y c and
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hence

P


x

s

y

 =


x

s

y

−

AT

BT

CT

M−1

[
A B C

]
x

s

y

 , (2.45)

where by M we denoted the matrix AAT +BBT + CCT .

The vector d x̄, s̄, ȳ c is computed using the equation (2.45) for P dx, s, y c and

the expression (2.7) for b̄:
x̄

s̄

ȳ

 = P


x

s

y

+ τ b̄

=


x

s

y

+


AT

BT

CT

M−1(b− Ax−Bs− Cy). (2.46)

Once d x̄, s̄, ȳ c is known, the derivative information whose expression is given by

(2.43) is obtained by projecting the vector Hz̄ = d s̄, x̄, 0 c onto Ker[ABC] using

(2.45): 
dx

ds

dy

 =
1

τ



s̄

x̄

0

−

AT

BT

CT

M−1(As̄+Bx̄)

 . (2.47)

As it can be seen from (2.46) and (2.47), the algorithm requires two additional

linear systems to be solved at each iteration. The matrix M = AAT + BBT + CCT

of the two linear systems is sparse symmetric positive definite hence a specialized

linear solver should be used. Performance, reliability as well as availability were

the main aspects we considered while choosing a sparse direct solver for symmetric

positive definite linear systems of equations. We chose CHOLMOD 1.4 [26, 22, 25, 24]
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based on the evaluations from [44] and its readily availability. CHOLMOD splits the

factorization of a matrix in two main parts. The first is the so called symbolic

analysis and consists of computations that typically depend only on the nonzero

pattern, not on the numerical values. It finds a permutation of the matrix so that

the amount of fill-in in the factors is minimized (or at least significantly decreased).

It also determines the exact sparsity pattern of the factor. The second part of the

CHOLMOD factorization process is the numerical factorization based on a Cholesky-

based algorithm. For sparse matrices, the symbolic analysis is usually much more

expensive than the numerical factorization.

The system matrix M appearing in (2.46) and (2.47) does not change with the

algorithm’s iterations, so that both symbolic analysis and numerical factorization

are done only once, when the algorithm starts. Hence computing d dx, ds, dy c and

d x̄, s̄, ȳ c at each iteration resumes to two relatively inexpensive backsolves with the

factors of M .

2.8 Generating random monotone linear comple-

mentarity problems

In this section we present a method that generates monotone mixed linear comple-

mentarity problems with sparse random data. When constructing such problems, not

only their monotonicity and randomness, but also an a priori information on their

solution set, e.g. no solution, multiple solutions, strict complementarity solution, etc,

is of interest. The generated problems will be used in Section 2.9 to observe and

test the numerical behavior of the augmented homogeneous model discussed in this

chapter.
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We first construct a monotone linear complementarity problem in standard form.

Then, the standard form will be transformed in the horizontal form and finally in the

mixed horizontal form.

2.8.1 Generating monotone SLCPs

The goal of this section is to generate random monotone linear complementarity

problems in standard form defined by (1.5), i.e.,

xs = 0,

s = Mx+ b,

x, s ≥ 0.

(2.48)

As we mentioned before, monotonicity of the SLCP(M, b) means that the matrix

M is positive semidefinite, not necessarily symmetric. In what follows we present our

approach for generating a sparse positive definite and semidefinite matrix with real

entries.

For clarity purposes, we now define the main concepts and state some basic results

regarding positive (semi)definite matrices.

Definition 2.7. (i) A matrix M ∈ Rn×n is called positive definite if xTMx > 0

for any nonzero vector x ∈ Rn.

(ii) A matrix M ∈ Rn×n is called positive semidefinite if xTMx ≥ 0 for any vector

x ∈ Rn.

Proposition 2.1. A matrix M ∈ Rn×n is positive definite (positive semidefinite) if

and only if the symmetric part 1
2
(M +MT ) is positive definite (positive semidefinite).

The following result is known as the ”Gersgorin Circle Theorem”.
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Theorem 2.7. Let A ∈ Cn×n and Ri =
n∑
j=1
j 6=i

|aij|. Then each eigenvalue of A is in at

least one of the disks {z : |z − aii| ≤ Ri}, i = 1, . . . , n.

Theorem 2.8. (i) All eigenvalues of a symmetric matrix A ∈ Rn×n are real.

(ii) A symmetric matrix M ∈ Rn×n is positive definite (positive semidefinite) if and

only if its eigenvalues are positive (nonzero).

We generate a positive definite matrix M having in mind that the symmetrized

matrix 1
2
(M+MT ) should be also positive definite. We start with a sparse nonsingular

matrix and we modify it based on the Gersgorin Circle Theorem in a way that assures

the positiveness of the symmetrized matrix by Theorem 2.8 as shown in the following

proposition.

Proposition 2.2. Let M ∈ Rn×n be sparse and nonsingular with (small) positive

diagonal entries. Define Rs
i =

n∑
j=1
j 6=i

|aij| and Rc
i =

n∑
j=1
j 6=i

|aji|, i = 1, . . . , n. The matrix

M̃ ∈ Rn×n defined by m̃ii = mii + 1
2
(Rs

i + Rc
i ), m̃ij = mij, i, j = 1, . . . , n, i 6= j is

positive definite.

Proof. The Gersgorin’s circle theorem will be used to prove that the symmetric matrix

S = 1
2
(M̃ + M̃T ) has real positive eigenvalues. For this we take a look at R̃i :=

n∑
j=1
j 6=i

|sij| =
n∑
j=1
j 6=i

1

2
|m̃ij + m̃ji| =

n∑
j=1
j 6=i

1

2
|mij +mji|, hence we can write

R̃i ≤
1

2
(Rs

i +Rc
i ). (2.49)

The Gersgorin’s disks corresponding to the matrix S have the form {z : |z−sii| ≤

R̃i} = {z : |z − m̃ii| ≤ R̃i} = {z : |z − mii − 1
2
(Rs

i + Rc
i )| ≤ R̃i}. Using inequality

(2.49) and the fact that mii are positive we obtain that the real numbers contained in
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the disks must be positive. Furthermore, we obtain that S has positive eigenvalues,

which implies that S is positive definite since it is symmetric.

Then M̃ is positive definite by Proposition 2.1.

There is an alternative technique to Proposition 2.2 for generating positive definite

matrices. The alternative would consist of generating a symmetric positive definite

matrix M (for example as the product of a nonsingular matrix with its transpose)

and perturbing it with a sparse skew symmetric matrix H, that is H = −HT . The

resulting matrix M̃ = M+H is positive definite since its symmetric part 1
2
(M̃+M̃T ) =

1
2
(M + H + MT − H) = M is positive definite. But, observe that even though M̃

is not symmetric, it has a symmetric sparsity pattern. This is the reason for which,

when working with sparse matrices, we prefer the method described in Proposition

(2.2) since it generates non-symmetric positive definite matrices with non-symmetric

sparsity pattern.

In what follows we will show how one can generate positive semidefinite matrices.

While positive definite matrices have always full rank, positive semidefinite matrices

are rank deficient. Therefore it makes sense to generate positive semidefinite matrices

of a given rank, as shown in the following proposition.

Proposition 2.3. Let n and r be natural numbers with r < n, M ∈ Rr×r a positive

definite matrix and R ∈ Rr×r−n. The matrix

M̃ =

 M MR

RTM RTMR

 ∈ Rn×n (2.50)

is positive semidefinite of rank r.

Proof. The rank of M̃ is at most r since each of its last n − r columns and rows is

a linear combinations of the first r columns and rows, respectively. But since M is

positive definite, it has full rank r, so that M̃ has rank r.
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We will show that M̃ is positive semidefinite using Definition 2.7. Let us consider

z = dx, y c ∈ Rn, x ∈ Rr, y ∈ Rn−r and compute

zTM̃z =

[
xTyT

] Mx+MRy

RTMx+RTMRy


= xTMx+ xTMRy + yTRTMx+ yTRTMRy

= xTM(x+Ry) + yTRTM(x+Ry) = (x+Ry)TM(x+Ry).

We can conclude based on the positive definiteness of M that zTM̃z ≥ 0 for any

z ∈ Rn, which shows that M̃ is positive semidefinite.

The generation of a sparse positive semidefinite matrix using the previous propo-

sition requires the generation of a sparse positive definite matrix M using Proposition

2.50 and a sparse random matrix R. It must be pointed out that R should be sparser

than M so that the block RTMR does not become too dense.

A SLCP(M, b) with a rank-deficient positive semidefinite matrix M can have mul-

tiple solutions or no solution at all, depending on the right-hand side b. On the other

hand, if M is positive definite, then SLCP(M, b) has an unique solution for any vector

b.

At this point we have the necessary instrumentary for generating solvable mono-

tone SLCPs. First, the matrix M should be generated (positive definite for unique

solution, positive semidefinite for multiple solutions). After that we generate random

vectors x,s ∈ Rn, so that they satisfy the complementarity conditions xs = 0 and the

non-negativity constraints x, s ≥ 0. The right-hand side of the SLCP is obtained from

b = s−Mx. The presence of a non-strict complementarity solution can be obtained

by generating x and s accordingly.

A SLCP of dimension n not having any solution can be generated as follows. First

we generate a random positive definite matrix M ∈ R(n−1)×(n−1) and a random vector
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b ∈ Rn−1. Let the SLCP have the form x

α


 s

β

 = 0,

 s

α

 =

 M 0

0 0


 x

β

+

 b

−1

 ,
x, α, s, β ≥ 0.

(2.51)

It is clear that the above problem is monotone and that the affine equality constraints

from (2.51) imply α = −1, which make the SLCP infeasible.

2.8.2 Generating monotone HLCPs

We now show how to generate monotone horizontal random linear complementarity

problems of form (1.6), i.e.,

xs = 0

Qx+Rs = b

x, s ≥ 0.

The technique relies on the generation of random monotone SLCPs described in the

previous section.

Once a monotone SLCP(M, b) is generated, a straightforward technique for obtain-

ing a monotone HLCP would be to multiply the affine system of equations s = Mx+b

with a nonsingular matrix N to obtain the horizontal form HLCP(NM,−N,Nb).

The obtained horizontal form is monotone since NMu−Nv = 0 implies Mu− v = 0

by the nonsingularity of N , and finally uTv = uTMu ≥ 0, by the monotonicity of

SLCP(M, b). However, the HLCP generated by using this method always has a full

rank matrix N corresponding to the complementarity variable x. We find this sit-

uation particular since, in general, for a HLCP(Q,R, b) both Q and R can be rank



59

deficient in the monotone case, as indicated by Gowda in [46]. The work from [46] is

very useful in determining the connection between HLCP and SLCP under the mono-

tonicity assumption. The paper shows that a monotone HLCP can be transformed to

a monotone SLCP using linear algebra operations such as finding the maximal linearly

independent column set of a given matrix and inverting a nonsingular matrix. The

reduction technique itself is not of interest in this discussion, but the proof of the fact

that the transformation is possible gives useful insight on how to go from a SLCP to

a HLCP(Q,R, b) with rank deficient matrices Q and R. Our technique for obtaining

a HLCP from a previously generated SLCP is based on the following proposition.

Proposition 2.4. Let n and r be natural numbers with r < n, M ∈ Rr×r be a positive

definite matrix, R1 ∈ Rr×r1, R2 ∈ Rr×r2 and X ∈ Rr1×r3, where r1 + r2 + r3 = n− r.

Also consider the matrices

A =



Ir −MR1 0 −MR1X

0 −RT
1MR1 0 −RT

1MR1X

0 −RT
2MR1 Ir2 −RT

2MR1X

0 −XTRT
1MR1 0 −XTRT

1MR1X


∈ Rn×n, (2.52)

and

B =



−M 0 −MR2 0

−RT
1M Ir1 −RT

1MR2 0

−RT
2M 0 −RT

2MR2 0

−XTRT
1M 0 −XTRT

1MR2 Ir3


∈ Rn×n. (2.53)

Then both A and B are rank deficient matrices and the pair (A,B) is monotone.

Proof. It can be seen that each of last r3 columns of A is a linear combination of the

columns r+1, r+2, . . . , r+r1, showing the rank-deficiency of A. The rank-deficiency
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of B follows similarly since each of the columns r + r1 + 1 to r + r1 + r2 is linear

combination of the first r columns.

To prove the monotonicity of the pair (A,B) consider the vectors u, v ∈ Rn

with the block structure u = du1, u2, u3, u4 c and v = d v1, v2, v3, v4 c, satisfying

Au+Bv = 0. A rearrangement of the variables yields the equivalent equality

u1

v2

u3

v4


=



M MR1 MR2 MR1X

RT
1M RT

1MR1 RT
1MR2 RT

1MR1X

RT
2M RT

2MR1 RT
2MR2 RT

2MR1X

XTRT
1M XTRT

1MR1 XTRT
1MR2 XTRT

1MR1X





v1

u2

v3

u4


.

Let us denote by M̃ the matrix from the right-hand side. Also observe that uTv =

du1, v2, u3, v4 cT d v1, u2, v3, u4 c.

If we take a look at Proposition 2.3 with R = [R1R2R1X], then, since M is

positive definite, we obtain that M̃ is positive semidefinite (of rank r). This implies

du1, v2, u3, v4 cT d v1, u2, v3, u4 c ≥ 0, thus uTv ≥ 0, which proves the monotonicity

of the pair (A,B).

In order to obtain a HLCP(Q,R, b), we generate a positive definite matrix M by

using Proposition 2.2, we construct the matrices A and B by using Proposition 2.4,

we generate a (sparse) nonsingular matrix N , and finally we take Q = NA and

R = NB. The generation of the vector b depends on whether we want an empty

solution set or not. To obtain a HLCP(Q,R, b) possessing solutions, we generate first

the complementary vectors x and s and then we take b = Qx + Rs. If an infeasible

problem is desired, then we use the same idea from standard form. Given a feasible
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HLCP(Q,R, b), consider the following horizontal form: x

α


 s

β

 = 0,

 Q 0

0 1


 x

α

+

 R 0

0 0


 s

β

 =

 b

−1

 ,
x, α, s, β ≥ 0.

(2.54)

It can be observed that the above problem is monotone and has no solution.

2.8.3 Generating monotone MLCPs

Mixed horizontal random linear complementarity problems are constructed by intro-

ducing m free variables in a HLCP as follows.

Proposition 2.5. Suppose that the HLCP(Q,R, b) is monotone, where Q,R ∈ Rn×n.

Consider the orthogonal matrix G ∈ R(m+n)×(m+n) whose columns represents an or-

thonormal basis of Rm+n with the block structure G =

[
Gn Gm

]
, where Gn ∈

R(m+n)×n and Gm ∈ R(m+n)×m. Also let K be a m × m nonsingular matrix. Then

the MLCP(GnQ,GnR,GmK,Gnb) is monotone and infeasible or solvable whenever

HLCP(Q,R, b) is infeasible or solvable, respectively.

Proof. We use Lemma 2.1 to prove this proposition. First we observe thatKTGT
mGn =

0 and dim Ker(KTGT
m) = m + n − dim Ran(GmK) = n, hence the columns of

Gn represent an orthonormal basis of Ker(KTGT
m). Then Lemma 2.1 shows that

MLCP(GnQ,GnR,GmK,Gnb) is monotone and infeasible or solvable if and only if

HLCP(GT
nGnQ,G

T
nGnR,G

T
nGnb) is monotone and infeasible or solvable, respectively.

But the HLCP(GT
nGnQ,G

T
nGnR,G

T
nGnb) is exactly HLCP(Q,R, b) and the proposition

is proved.
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Obtaining a sparse MLCP from a sparse HLCP by using the above proposition is

possible only if both the random nonsingular matrix K and the random orthogonal

matrix G are sparse. The generation of a random nonsingular sparse matrix with

a desired sparsity percentage can be done by using MATLAB’s built-in functions

sprand and sprandn. Since MATLAB does not have a function for the generation

of a random sparse orthogonal matrix, we have developed a routine that constructs

such matrices. In order to generate a n × n random sparse orthogonal matrix G we

first generate random dense orthogonal matrices Hi ∈ Rk×k, i = 1, 2, . . . ,
[
n
k

]
and

H[n/k]+1 ∈ R(n mod k)×(n mod k). The natural number k is chosen to be much smaller

than n, usually k ∈ [4, 20], depending on the sparsity percentage wanted for G.

The matrices Hi are obtained from QR factorizations of dense random matrices of

corresponding sizes. The matrix G is obtained by randomly permuting the rows and

columns of the matrix H having the matrices Hi along its diagonal, i.e.,

G = P1HP2, H =



H1 0 . . . 0

0 H2 . . . 0

...
...

. . .
...

0 0 . . . H[n/k]+1


with P1, P2 ∈ Rn×n being random permutation matrices.

Since

HHT =



H1H
T
1 0 . . . 0

0 H2H
T
2 . . . 0

...
...

. . .
...

0 0 . . . H[n/k]+1H
T
[n/k]+1


= I,
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and

HTH =



HT
1 H1 0 . . . 0

0 HT
2 H2 . . . 0

...
...

. . .
...

0 0 . . . HT
[n/k]+1H[n/k]+1


= I,

it follows immediately that H is orthogonal. Also P1 and P2 are orthogonal since

they are permutations matrices. Hence we have GGT = P1HP2P
T
2 H

TP T
1 = I =

P T
2 H

TP T
1 P1HP2 = GTG, showing that our technique yields an orthogonal matrix G.

2.9 Numerical simulations

In this section we will present numerical experiments involving sparse monotone

MLCPs that are randomly generated according to Section 2.8. We show that the

homogenization technique introduced in Section 2.3 successfully retrieves the solu-

tion or detects the infeasibility of this class of MLCPs. We also present numerical

evidence that advocates the use of our homogenization method when dealing with

sparse MLCPs.

The first aspect we are interested in is to check if the numerical values of τ and

κ found by using the numerical algorithm proposed in Section 2.7 represent valid

certificates of solvability or infeasibility in the sense of Theorem 2.2 and Table 2.1.

We have used random monotone MLCPs generated with the technique introduced in

Section 2.8. Tables 2.2 and 2.3 list the results of experiments for solvable and infeasible

problems, respectively. The first two columns of these tables list the dimensions n

and m of the MLCPs. The numerical values of τ and κ at the solution are shown

in the third and fourth columns. The last two columns show the complementarity

measure µ, and the norm of the infeasibility ‖r‖ = ‖Ax+Bs+Cy− b‖ of the original
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n m τ κ µ ||r||

500 125 1.51e+000 4.11e-010 1.95e-009 2.00e-014

1000 250 1.17e+000 3.69e-009 9.90e-009 2.90e-013

1500 375 1.11e+000 8.27e-010 2.26e-009 3.00e-014

2000 500 1.10e+000 3.01e-009 7.90e-009 3.90e-013

2500 625 1.13e+000 1.49e-009 3.96e-009 4.00e-014

3000 750 1.19e+000 1.67e-009 4.63e-009 6.40e-013

3500 875 1.22e+000 8.95e-010 2.79e-009 7.00e-014

4000 1000 1.26e+000 5.82e-010 1.93e-009 1.20e-013

4500 1125 1.32e+000 6.93e-010 2.10e-009 1.20e-013

5000 1250 1.27e+000 1.59e-009 4.92e-009 5.20e-013

Table 2.2: Certificates for a feasible monotone MLCP

MLCP in the feasible case (Table 2.2), and ‖r‖ = ‖F (x, τ, s, κ, y)‖ of the homogeneous

problem in the infeasible case (Table 2.3).

As it can be seen in Table 2.2, solving the HMCP actually solves the original

MLCP. Another observation would be the fact that the values of τ at the solution

are O(1) which causes the solution of the MLCP to have the same accuracy as that

of the HMCP (recall that the solution of the MLCP is obtained from the solution of

the HMCP via a rescaling with 1/τ). Also Table 2.3 shows that the certificates of

infeasibility, i.e., κ > 0, are correctly retrieved. A final observation would be the

maximal complementarity property of τ and κ for both the feasible and infeasible

cases.

In what follows we compare the performance in terms of execution time and mem-

ory requirements of our homogenization method and Andersen and Ye’s homogeniza-
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n m τ κ µ ||r||

500 125 5.33e-008 5.93e+000 4.40e-007 5.67e-009

1000 250 1.11e-007 1.27e+001 1.83e-006 1.25e-008

1500 375 1.05e-007 1.90e+001 2.60e-006 1.33e-008

2000 500 1.43e-008 2.23e+001 3.80e-006 2.72e-009

2500 625 1.85e-007 2.01e+001 3.14e-006 3.24e-008

3000 750 5.11e-007 1.52e+001 3.86e-006 1.10e-007

3500 875 5.66e-007 1.75e+001 3.66e-006 1.44e-007

4000 1000 7.60e-007 1.57e+001 3.83e-006 2.35e-007

4500 1125 9.57e-007 1.48e+001 4.07e-006 3.50e-007

5000 1250 9.85e-007 2.11e+001 3.90e-006 3.22e-007

Table 2.3: Certificates for an infeasible monotone MLCP

tion method [4]. While the former homogenization works directly on the MLCPs,

the latter can be applied only to SLCPs since it can deal only with explicitly defined

complementarity problems. However, under the monotonicity assumption, a MLCP

can be transformed to a SLCP, hence, one can use Andersen and Ye’s homogenization

model to find the numerical solution or to detect infeasibility of a MLCP.

The transformation of a monotone MLCP(A,B,C, b) to an equivalent monotone

SLCP is realized in two phases. In the first phase the free variables of the MLCP are re-

moved using the technique from Lemma 2.1 and, since the MLCP satisfies Assumption

2.2, a monotone HLCP(Q,R, b) is obtained. The orthonormal basis of CT required by

the above lemma is found by performing the singular value decomposition of CT .

In the second phase, the monotone HLCP(Q,R, b) is transformed to a monotone

SLCP(M, b) using the reduction method from [46]. We choose to briefly describe it
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here for clarity purposes. The reduction requires a maximal set of linear independent

columns of Q. Using subscripts to denote columns, let Qi1 , Qi2 , . . . , QiL denote this

set. Also define the matrices C and D by

Cj =

 Qj, if j ∈ i1, i2, . . . , iL

Rj, otherwise
and Dj =

 Rj, if j ∈ i1, i2, . . . , iL

Qj, otherwise
.

It can be proved that the matrix C is invertible and SLCP(C−1D,C−1b) is monotone.

Moreover, once a solution to SLCP is available, the solution of HLCP is readily obtained

from a rearrangement of complementarity variables. The fact that even though C is

sparse, C−1 is full, turns out to be crucial in the performance of the numerical scheme

used to solve reduced SLCPs, as we will show later. Our implementation uses a LU

factorization of Q to find maximal set of linear independent columns of Q and the

MATLAB function inv to compute C−1.

In building Tables 2.4 and 2.5 we have randomly generated feasible and infeasible

monotone sparse MLCPs of various sizes, n = 500, 1000, . . . , 5000, m = n/4 and we

have solved the corresponding HMCPs problems. The third and fourth columns of

Tables 2.4 and 2.5 show the number of iterations and execution times needed by the

predictor-corrector Mehrotra-type algorithm presented in Section 2.7. After that we

have transformed the MLCP to a SLCP as described in the previous paragraphs and

recorded the conversion time (column five in Tables 2.4 and 2.5). By the conversion

time we mean the execution time needed to accomplish the two reduction phases.

The obtained monotone SLCP is then homogenized using Andersen and Ye’s method

[4] and solved with the interior-point method proposed by the same authors in [3].

The sixth column in Tables 2.4 and 2.5 shows the number of iterations needed by

this algorithm to solve the SLCP. The execution times of the algorithm when using

MATLAB’s sparse and dense linear algebra are displayed in the seventh and eighth

columns, respectively. ”OOM” (out of memory) shows that the problem was not
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MLCP Conv SLCP

n m iter t t iter tsparse tdense

500 125 12 1.29 1.94 13 44.96 4.31

1000 250 12 7.76 12.30 15 608.90 28.27

1500 375 13 26.42 39.93 13 3187.58 72.79

2000 500 12 59.11 98.95 14 8284.77 164.53

2500 625 12 114.70 201.80 11 14550.27 243.53

3000 750 12 247.08 363.57 14 36358.05 515.56

3500 875 12 361.29 577.16 12 OOM 846.33

4000 1000 12 552.47 869.26 OOM OOM

4500 1125 12 861.67 1205.81 OOM OOM

5000 1250 11 1089.22 1699.90 OOM OOM

Table 2.4: Solving feasible MLCPs and corresponding reduced SLCPs via HMCP and

Andersen and Ye’s homogeneous models, respectively.

solved due to the lack of memory. Let us mention that execution times were measured

in seconds.

Several interesting observations can be made based on Tables 2.4 and 2.5. First

of all, notice that converting the MLCP to SLCP takes more time than solving the

problem via HMCP. Moreover, the execution time needed to solve the SLCP with

Andersen and Ye’s method is considerably larger than the execution time needed to

solve the same problem via HMCP.

It must be pointed out that different percentages of fill-in in the MLCP’s data

may lead to different conclusions when comparing the execution times of the two

approaches. However, in terms of the memory requirements, sparse MLCPs can be
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MLCP Conv SLCP

n m iter t t iter tsparse tdense

500 125 13 1.34 1.80 12 41.48 3.99

1000 250 12 7.48 12.52 13 363.46 24.80

1500 375 12 29.20 40.22 13 2257.53 73.06

2000 500 12 60.08 98.33 13 8689.07 155.90

2500 625 12 123.84 201.74 11 16256.95 246.69

3000 750 12 214.75 369.63 11 28970.54 409.69

3500 875 12 448.54 577.56 11 OOM 724.17

4000 1000 12 674.99 876.33 OOM OOM

4500 1125 12 959.86 1194.37 OOM OOM

5000 1250 12 1311.67 1612.35 OOM OOM

Table 2.5: Solving infeasible MLCPs and corresponding reduced SLCPs via HMCP and

Andersen and Ye’s homogeneous models, respectively.

solved via HMCP as long the problem’s data fits the memory, but via SLCP-based

alternative only up to n = 3500 (no matter how sparse the MLCP is!).

2.10 Conclusions

This chapter has introduced a new homogenization technique for monotone mixed

linear complementarity problems. To the best of our knowledge, it is the first homo-

geneous model that deals with implicitly defined complementarity. We have proved

that the transformed problem offers an infeasibility certificate or provide a solution

of the original problem. We have also shown that the interior-point path-following
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methods can be used to obtain the numerical solutions of the augmented problem

and safely retrieve the certificates of infeasibility/solvability. We also proposed a

practical Mehrotra-type interior-point numerical scheme for solving the homogeneous

problems. Numerical experiments performed on randomly generated MLCPs show

that the numerical method we proposed is faster and solves larger problems than

other homogenization methods.



Chapter 3

Simulating rigid body systems with

contact and friction

3.1 Introduction

The dynamic rigid multi-body contact problem is concerned with predicting the mo-

tion of several rigid bodies in contact and is one of the fundamental paradigms in

modern computational science. It appears in the description of fuel motion in the

pebble bed reactor [43], in the compaction of nanopowders [52, 17], and in the study

of biological membranes [72, 51, 81, 45]. Such simulations are also used extensively

in structural engineering [35], pedestrian evacuation dynamics [50], granular matter

[69], robotics simulation and design [36], and virtual reality [10].

Approaches used in the past for the numerical approximation of rigid multi-body

dynamics with contact and friction include piecewise differential-algebraic equations

approaches [49], acceleration-force linear complementarity problem (LCP) approaches

[16, 65, 80], penalty approaches [29, 73, 74, 64], and velocity-impulse LCP-based time-

70



71

stepping methods [75, 76, 8, 13, 68]. LCP-based time-stepping schemes for simulating

multi-body systems are formulated as LCPs with copositive matrices. Such LCPs

are generally solved by means of Lemke-type algorithms, and solvers such as the

PATH solver [28, 38] have proved to be robust. For large systems (beyond a few

thousand contacts), however, the PATH solver or any other pivotal algorithm becomes

impractical from a computational point of view [12, 79].

The computational difficulties associated with the standard frictional LCP formu-

lation cannot be avoided even for small friction coefficients. In this context, in [11],

a simple example is used to show that the solution set of the underlying LCP fails

to be convex for any nonzero friction coefficients and therefore no polynomial time

algorithms are known to exist.

When solving large-scale multi-body dynamics, a relaxation of the standard (copos-

itive) LCP formulation is desirable. The convex relaxation introduced in [9] is conver-

gent in the same weak sense as the original, nonconvex scheme [76]. This relaxation

formulates the integration step as a convex quadratic program (QP) for which state–

of–the–art solvers are available.

In this chapter we investigate the performance of several solvers for QP problems

that appear from the relaxed formulation of multirigid body dynamics with contact

and friction. The examples are obtained by simulating granular flow motion in a

system similar to the pebble-bed reactor described in [43]. A description of the

simulated multi-body system is given in Section 3.2.1.

We note that QP approaches are popular in the graphics community for simulating

rigid-body dynamics with contact and friction [59, 48, 33]. Their most common

instance insofar as friction is concerned is probably the box friction model approach.

There, the normal force is prescribed either directly or following a frictionless presolve,
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which is also a convex QP [48]. Variants of this approach are used as an option

in many major physics engines for games, such as ODE (Open Dynamics Engine),

OpenTissue, and Vortex (some discussion in [20]). All the QPs appearing in such

approaches have a sparsity structure with an incidence graph closely related to the

graph with nodes in the center of the bodies and edges between bodies in potential

contact. The sparsity we encounter here is based on the same graph. The number

of bodies (thousands) and contacts (tens of thousand) we consider is comparable or

larger to the one considered in most of the applications targeted by such physics

engines [33]. We therefore expect that our findings will extend to those applications

as well. We point out, however, that to our knowledge the method introduced in

[9] is the only optimization-based method for rigid-body dynamics that is provably

convergent, at least in a weak sense [76], to a continuous-time solution for any friction

coefficient. This observation motivates our choice of subject for the computational

experiment.

This chapter is organized in two main parts. In Section 3.2 we introduce the op-

timization problems to be solved. In this context we specialize the QP–formulation

of [9] to the application described in Section 3.2.1 and address the modeling of the

pebble bed reactor application. We plan to exploit two QP formulations: the pri-

mal QP formulation and the dual QP formulation, which takes the form of a bound

constrained minimization problem. For these formulations, four QP-solvers are used

to compare computational efficiency and to analyze ensemble properties of the sim-

ulated trajectories. We use two interior-point solvers, MOSEK [1] and OOQP [41]

(with two formulations of the linear algebra, one using MA27 [32] and the other

based on CHOLMOD [26, 22, 25, 24]), and two projected gradients solvers (on the

dual formulation), TRON [54] and BLMVM [18]. A comparison between these solvers
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is given in Section 3.3, details of the numerical experiments are given in Section 3.4,

and a summary of our observations is given in Section 3.5.

3.2 Quadratic Programming Subproblems of Time-

Stepping Methods

We now discuss the origin and structure of the QP subproblems in the time-stepping

approach in [9]. We will apply the formulation to the problem of the simulation of the

granular flow of the fuel pebbles in a pebble-bed reactor (PBR) [43]. This example

problem has the advantage that we can easily scale it up in the number of the rigid

bodies and contacts, making it ideal for extrapolating the behavior of the solvers for

increasingly larger systems.

Figure 3.1: Cross-section of the reactor vessel with 3200 pebbles at the end of the

simulation. The pebbles are colored based on the originating position.

We present an image of the reactor vessel in Figure 3.1, with all pebbles at rest.

The rigid bodies – the pebbles – are tennis-ball-sized and contain uranium oxide. They

are extracted from the bottom of the vessel and reinserted through the top . When
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fully loaded, the reactor has about 400,000 such bodies, but important assessments

can be extracted from simulations involving a smaller number. The reactor vessel in

which the motion of the pebbles is simulated is composed of a truncated cone and a

cylinder that is opened at both ends, see Figure 3.1. For modeling purposes, we index

the cylindrical surface of the vat by −3, the lateral surface of the truncated cone by

−2, and the bottom of the vat by −1.

Most of the following modeling steps apply to general rigid multi-body dynamics.

However, some topics particular to the PBR simulation will be pointed out as they

occur.

3.2.1 The Model

In this section we describe the various modeling steps that convert a rigid multi-body

dynamics problem with contact and friction to a sequence of quadratic programs such

as (3.10). The model is based on the convex relaxation introduced in [9]. The merits

and shortcomings of that relaxation, insofar accuracy of predicting frictional behavior

is concerned, are presented in [9] and are not the subject of this work. Here, we focus

on the setup and resolution of (3.10).

Assume that the rigid-body system is composed of N bodies. The position of

body i is q(i) = (xi, yi, zi, θi, αi, γi)
T , i = 0, ..., N−1, where the first three components

are the Cartesian coordinates of the center (in a fixed inertial frame) and the last

three represent the orientation of a reference point P (i) on the sphere. The position q

of the entire system is obtained by concatenating the positions of each body, namely,

q =
(
q(0)T , q(2)T , ..., q(N−1)T

)T
. In a similar fashion, we define the generalized velocity

of the system to be v ∈ R6N , v = Γ(q)
dq

dt
. Here Γ(q) is a smooth mapping that

converts the derivatives of the position coordinates to the generalized velocities [49].
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For rigid bodies, as opposed to material points, Γ(q) is different from the identity

[49].

Nonpenetration constraints. For bodies i, and j, we assume that we have signed

gap functions Φ(i,j)(q), such that

Φ(i,j)(q) =


< 0 the two bodies penetrate,

= 0 the two bodies are touching,

> 0 the two bodies are separated.

In this case, the nonpenetration constraints simply become

Φ(i,j)(q) ≥ 0.

For PBR, the nonpenetration constraints are imposed between pebble–pebble and

pebble–wall interaction. The constraint indices are (i, j), for (i ∈ {−3, ..., (N − 1)},

j ∈ {0, ..., (N − 1)} and j > i). In addition, the signed gap functions are particularly

easy to define. For example, for two spheres of radius R, and with centers of mass at

positions x1, y1, z1 and x2, y2, z2, a signed gap function is

Φ(i,j) = (x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − 4R2.

The pebble-wall gap functions use the distance from a point to a simple surface and

are also immediate to define.

Contact specifications. For each contact we define the normal and tangential

directions in generalized coordinates as follows. Consider the generic contact depicted

in Figure 3.2. Let −→n denote the unit outward normal for the horizontally aligned

body. Let C1 and C2 be the centers of mass for each body, and let −→r 1 and −→r 2

be the position vectors of the contact point relative to C1 and C2 respectively (all

vectors are represented in world frame coordinates). Then the 3–dimensional vector
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−→n is mapped in generalized coordinates into the 12–dimensional vector n, defined as

follows

−→n 7−→ n :=



−→n
−→r 1 ×−→n

−−→n

−−→r 2 ×−→n


. (3.1)

In a similar fashion one obtains the generalized coordinates vectors t1 and t2 from

−→
t 1 and

−→
t 2, respectively.

The Coulomb friction model prescribes that the tangential force is inside a disk

proportional to the one in Figure 3.2. To allow for the use of a quadratic programming

approach (or an LCP in the unrelaxed case), we use a polygonal approximation of

the friction disk in Figure 3.2(b) [75, 8]. The disk is approximated by an inscribed

polygon, whose quality depends on the number p of tangent directions used.

We define those p tangent vectors,
−→
d s, by

−→
d s := cos

(
2πs

p

)
−→
t 1 + sin

(
2πs

p

)
−→
t 2, s = 1, ..., p. (3.2)

Clearly the vectors
−→
d s are direction vectors in R3, and any point in the span{

−→
d 1, ...,

−→
d p}

can be written as a nonnegative linear combination of these vectors. It is easy to see

(a) (b)

Figure 3.2: (a) Generic contact between two bodies, (b) Tangent space at contact.
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that the generalized coordinate version of the directions in (3.2) are obtained in the

same fashion, namely,

ds := cos

(
2πs

p

)
t1 + sin

(
2πs

p

)
t2, s = 1, ..., p. (3.3)

Given that, for a system of N bodies the configuration space (the space where q lives)

has dimension 6N , we embed the contact data in R6N . More precisely, assume that

the k-th indexed contact is established between body i (i ≥ 0) and body j (j > i).

The normal direction in the 6N dimensional space is then given by

n(k) =
(
O1,6(i−1),

−→n T
k , (
−→r i ×−→n k)

T , O1,6(j−i−1),−−→n T
k , (−−→r j ×−→n k)

T , O1,6(N−j)
)T
,

(3.4)

where O1,α represents a zero row vector of length α, whenever α > 0 and the empty

vector otherwise. Here nk is the three-dimensional normal vector at the contact k.

In the case of PBR, for a pebble–wall interaction (i, j), i < 0, only the second

nonzero block will contribute to n(k).

In the same fashion one defines the tangential directions d
(k)
s ∈ R6N , s = 1, ..., pk,

namely,

d(k)
s =

(
O1,6(i−1),

−→
d T
sk, (
−→r i ×

−→
d sk)

T , O1,6(j−i−1),−
−→
d T
sk, (−−→r j ×

−→
d sk)

T , O1,6(N−j)

)T
.

(3.5)

In (3.5), dsk, s = 1, ..., pk are the Rpk direction vectors used in the approximation of the

friction disk at contact k. The matrix associated with the polyhedral approximation

of the friction disk at contact (k) is the matrix having its columns the directions d
(k)
s ,

i.e., D(k) ∈ R6N×pk , D(k) =
(
d

(k)
1 , ..., d(k)

pk

)
, where pk represents the number of friction

generators for contact (k).

In the formulation of the integration step we will deal with matrices D̂(k) ∈ R6N×pk
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of the form

D̂(k) =
(
n(k) + µd

(k)
1 , ..., n(k) + µd(k)

pk

)
, (3.6)

where µ ∈ (0, 1] is the friction coefficient, which is assumed to be the same for all

contacts . We are interested in the maximal value of pk (pk < 6N) for which the

matrix D̂(k) has full column rank, rank(D̂(k)) = pk. It is easy to see that for pk = 3,

rank(D̂(k)) = pk, while for pk > 3 we obtain a rank-deficient matrix. This observation

will be used when formulating the integration timestep as a bound–constrained mini-

mization problem (this is what we call the dual formulation). For the PBR simulation

we choose pk = 3 for all contacts k.

External and inertial forces. We denote by M ∈ R6N×6N the generalized mass

matrix of the system. In general, in a fixed coordinate frame, this matrix depends

explicitly on the position q , i.e., M := M(q). We also denote by kapp the sum between

the external forces and the inertial forces. The inertial forces involve derivatives of

M(q) [49].

For the PBR example, we are dealing only with spherical bodies. The generalized

mass matrix is diagonal with positive entries and constant with respect to q [49].

Since the mass matrix is constant, the inertial forces are zero. This implies that,

besides contact forces, the only forces acting on the system are external forces.

For PBR, because of the heaviness of uranium, we can ignore the effect of the

cooling flow over the dynamics [43]. Therefore, we can assume that only gravitational

forces are acting, and the (noncontact) applied forces kapp ∈ R6N can be written as

kapp =
(
uT , ..., uT

)T
.

Here u ∈ R6, u = (0, 0,−g, 0, 0, 0)T , for some positive constant g.

Linearized active contacts constraints. Given a current position q of the system,

we compute the set of active contacts by using the signed distance functions Φ(i,j)(q).
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Given a positive scalar ε, a contact (k) corresponding to the rigid-body pair (i, j) is

considered active if

Φ(k)(q) = Φ(i,j)(q) ≤ ε.

For a given configuration q, we denote by A(q, ε) the set of all active contacts. More

precisely,

A(q, ε) =
{
k ∈ Z2

+ | (k) = (i, j), Φ(i,j)(q) ≤ ε
}
. (3.7)

If (k) /∈ A(q, ε), the corresponding nonpenetration constraint is simply ignored

by the QP (3.10). If (k) ∈ A(q, ε), then the nonpenetration constraint Φ(i,j) > 0 is

enforced at time tl and position ql by

(
n(k)(ql)

)T
v + µ

(
d(k)
s (ql)

)T
v ≥ −1

h
Φ(k)(ql), s = 1, 2, . . . , pk. (3.8)

Here h is the timestep of the scheme. It does not need to be constant for stability [7],

but we choose it so for graphical simplicity. The first and last terms in this equation

are the linearization of the nonpenetration constraints. The last term is stable as

h→ 0 [7, 9]. The middle term is unique to the scheme in [9]. Its physical significance

is based on a microscopic realization of surface asperities that result in macroscopic

friction coefficient µ.

It has been shown that the value of ε does not affect the convergence as h → 0

[7, 9]. But its choice has important practical consequences. A value that is too large

results in an exceedingly large QP. The QP is still consistent but may be computa-

tionally expensive. A value that is too small may result in too many nonpenetration

constraints being dropped and in excessive penetration at time step l + 1. An ap-

propriate value for ε should be comparable to the product between the maximum

velocity in the system and the timestep.

Newton’s second law. The discretized version of Newton’s second law is written
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at the velocity-impulse level as

M
(
vl+1 − vl

)
− zl+1 = hkapp, (3.9)

where hkapp are the external impulses and zl+1 represent the contact impulses (normal

and tangential/frictional contact impulses):

zl+1 =
∑

k∈A(ql,ε)

pk∑
s=1

β(k)
s

(
n(k)(ql) + µd(k)

s (ql)
)
.

Here M is the mass matrix, and each vector of multipliers satisfies β(k) =
(
β

(k)
1 ,

β
(k)
2 , . . . , β

(k)
pk

)
∈ Rpk and β(k) ≥ 0.

3.2.2 The Integration Step

In what follows we present the formulation proposed in [9] and its dual. Here, we

consider only the case of totally plastic collisions. The scheme can be modified to

accommodate partially elastic or totally elastic collisions by means of a restitution

coefficient [5]. We point out, however, that the issue of predictive modeling of simul-

taneous nonplastic collisions is far from being settled in rigid body dynamics [21].

Primal Formulation

Let h > 0 denote the size of the integration timestep. We denote by ql the position

and by vl the velocity of the system at time tl = lh. In the optimization-based time-

stepping scheme introduced in [9], the new velocity vl+1 is obtained by solving the

following quadratic problem:

min 1
2
vTMv +

(
f l
)T
v

s.t.
(
n(k)(ql)

)T
v + µ

(
d

(k)
s (ql)

)T
v ≥ − 1

h
Φ(k)(ql)

k ∈ A(ql, ε), s = 1, 2, . . . , pk.

(3.10)
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In (3.10), f l is obtained by the following formula:

f (l) = −vl − hkapp. (3.11)

Equations (3.9) and (3.8) are satisfied as part of the optimality conditions for (3.10).

Dual Formulation

The dual formulation can be obtained by standard duality techniques. In our case,

we assign the Lagrange multipliers λ to the constraints in (3.10). Then, we write the

optimality conditions for (3.10), and we eliminate v using the positive definiteness of

M . This procedure results in the dual QP program (3.13).

Let us denote by Al and bl the matrix and the right-hand side, respectively, of

the inequality constraints in (3.10). In terms of the notation introduced in (3.6), the

matrix Al has the form

Al =


(
D̂k1(ql)

)T
...(

D̂kp(ql)
)T
 , (3.12)

where the active set A(ql, ε) = {ki | i = 1, ...p}. The vector bl is composed of block

vectors in R3, with the block corresponding to contact ki having all its components

equal to −1

h
Φ(ki)(ql). In the notation described above, the dual problem takes the

form

min 1
2
λTP lλ+

(
κl
)T
λ,

s.t. λ ≥ 0
(3.13)

where P l = AlM−1
(
Al
)T

and κl = −bl − Alf l.

The dual formulation (3.13) is a bound-constrained quadratic programming prob-

lem. Therefore, for solving it, we can use not only general-purpose quadratic pro-

gramming algorithms, such as interior points, but also iterative algorithms of the
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projected gradient type. Therefore, it is a good formulation for benchmarking the

performance of various solvers for quadratic programming.

3.2.3 Pointed friction cone and duality

Consider the ε-active set A(ql, ε), which is obtained from (3.7) for the current config-

uration ql. For k ∈ A(ql, ε) and let D̃(k) denote the matrix of generalized tangential

directions, namely,

D̃(k)(ql) := D̃(k) =
(
d

(k)
1 , d

(k)
2 , . . . , d(k)

pk

)
, (3.14)

where the generalized tangential directions d
(k)
s := d

(k)
s (ql), s = 1, 2, . . . , pk are given

in (3.3). We now define the ε− active friction cone FC(ql, ε) by

FC(ql, ε) =

 ∑
k∈A(ql,ε)

D̃(k)β(k)
∣∣ β(k) ∈ Rpk , β(k) ≥ 0,

 . (3.15)

We say that the friction cone is pointed if the following implication holds:

z =
∑

k∈A(ql,ε)

D̃(k)β(k) ∈ FC(ql, ε), z = 0 ⇒ β(k) = 0,∀ k ∈ A(ql, ε). (3.16)

In other words FC(ql, ε) is pointed if it doesn’t contain any proper subspaces.

It has been shown in [12] that pointedness of the friction cone implies that the

Mangasarian-Fromowitz constraint qualification (MFCQ) holds for the convex pro-

gram (3.10). Whenever MFCQ holds the multipliers λ in (3.13) are bounded [39].

Therefore, pointedness of the friction cone together with the existence of a feasible

point for (3.10) guarantees no duality gap. This result is essential when comparing

QP solvers that use either the primal or the dual formulation. Loss of the pointedness

regularity assumption corresponds, from a physical point of view, to jamming [6], a

phenomenon that does not occur in our simulations.
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For isolated QPs we can compare the correctness of the results obtained from

solving the two different formulations, by either measuring the duality gap or by

passing from a dual solution to its primal correspondent. When running an entire

simulation, however, the use of different solvers will likely cause totally different

individual configurations. This is motivated by the fact that, by nature, the system

is chaotic. Therefore, to measure the correctness of an entire simulation, at least

partially, we use ensemble properties, such as the kinetic energy of the entire system.

3.3 Algorithms and Software Packages Used

We now describe the properties of several packages used to solve (3.13). We use two

types of packages. The first, of the interior-point type, OOQP and MOSEK, solve the

primal-dual formulation of both (3.13) and (3.10). For the OOQP solver, we use two

formulations, one of which involves our adaptation of the CHOLMOD linear algebra

package for use with OOQP. The second, of the projected gradient type, TRON and

BLVM, solve the dual problem (3.13).

3.3.1 OOQP

OOQP (Object-Oriented software for Quadratic Programming) is a C++ package for

solving convex quadratic programming problems. It is based on primal-dual interior-

point methods and can be used to solve a variety of forms of quadratic problems

such as general sparse QPs, QPs with ”box” constraints, QPs coming from support

vector machines, and Huber regression problems. Its object-oriented design allows

easy adaptation for specialized QP formulations or use of new linear algebra solvers.

In our experiments OOQP’s general sparse formulation is used to solve the primal
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form (3.10). Two distinct linear algebra packages are used: MA27 for which an

interface is included in OOQP distribution and CHOLMOD for which we developed

an interface and reformulated the linear systems. We denote the two versions of

OOQP by OOQP-MA27 and OOQP-CHOL, respectively.

OOQP general sparse formulation

In OOQP the convex quadratic problem subject to linear constraints is considered in

the following general form:

minimize 1
2
xTQx+ cTx

subj to: Ax = b

cl ≤ Cx ≤ cu

xl ≤ x ≤ xu,

(3.17)

where Q ∈ Rn×n , c ∈ Rn, A ∈ Rmy×n, C ∈ Rmz×n, cl, cu ∈ Rmz , and xl, xu ∈ Rn.

It is well known that at each iteration of the interior-point method one or more

linear systems need to be solved. In what follows, we describe the way OOQP manages

the KKT conditions and builds the linear systems.

The Lagrangian function corresponding to the quadratic problem (QP) (3.17) is

L(x) = 1
2
xTQx+cTx+yT (b−Ax)+λT (cl−Cx)+πT (Cx−cu)+γT (xl−x)+φT (x−xu),

hence, the KKT conditions can be written as follows:

Qx− ATy − CTλ+ CTπ − γ + φ+ c = 0

Ax = b

0 ≤ Cx− cl = t ⊥ λ ≥ 0

0 ≤ cu − Cx = u ⊥ π ≥ 0

0 ≤ x− xl = v ⊥ γ ≥ 0
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0 ≤ xu − x = w ⊥ φ ≥ 0.

The interior-point iterations consist of solving the perturbed KKT systems

F (x, y, t, u, v, w, λ, π, γ, φ) =



Qx− ATy − CTλ+ CTπ − γ + φ+ c

−Ax+ b

Cx− t− cl

−Cx− u+ cu

x− v − xl

−x− w + xu

λt− µke

πu− µke

γv − µke

φw − µke



= 0,

for a sequence of positive {µk} that converges to zero, while maintaining the posi-

tiveness of t, u, v, w, λ, π, γ, φ. The Newton’s method is used to (approximately) solve

the above nonlinear system, so the linear algebra consists of solving linear systems of
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the form F ′∆d = −F , where the Jacobian F ′ is given by

F ′ =



Q −AT 0 0 0 0 −CT CT −I I

−A 0 0 0 0 0 0 0 0 0

C 0 −I 0 0 0 0 0 0 0

−C 0 0 −I 0 0 0 0 0 0

I 0 0 0 −I 0 0 0 0 0

−I 0 0 0 0 −I 0 0 0 0

0 0 Λ 0 0 0 T 0 0 0

0 0 0 Π 0 0 0 U 0 0

0 0 0 0 Γ 0 0 0 V 0

0 0 0 0 0 Φ 0 0 0 W



,

with Λ = diag(λ), Π = diag(π), Γ = diag(γ), Φ = diag(φ), T = diag(t), U = diag(u),

V = diag(v), and W = diag(w).

The remaining of this section goes into the details of solving the linear system

F ′∆d = −F . Using the expression of F ′, we can write the equivalent form

Q∆x− AT∆y − CT∆λ+ CT∆π −∆γ + ∆φ = rQ (3.18)

A∆x = ry (3.19)

C∆x−∆t = rt (3.20)

−C∆x−∆u = ru (3.21)

∆x−∆v = rv (3.22)

−∆x−∆w = rw (3.23)

Λ∆t+ T∆λ = rλ (3.24)

Π∆u+ U∆π = rπ (3.25)

Γ∆v + V∆γ = rγ (3.26)
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Φ∆w +W∆φ = rφ. (3.27)

The exact form −F of the right-hand side is not of interest in this discussion of the

linear algebra layer since it is specific to the interior-point algorithm. We denoted the

right-hand side vectors by rQ, ry, rt, ru, rv,rw, rλ,rπ, rγ, and rφ.

Expressing ∆γ and ∆φ from equations (3.26) and (3.27) respectively, allows to

write ∆γ − ∆φ = −V −1Γ∆v + W−1Φ∆w + V −1rγ −W−1rφ. Furthermore, ∆v and

∆w can be written in terms of ∆x by using equations (3.22) and (3.23) respectively.

Hence, we get ∆γ −∆φ = −V −1Γ(∆x− rv) +W−1Φ(−∆x− rw) + V −1rγ −W−1rφ.

And if we denote D1 = V −1Γ +W−1Φ, then

∆γ −∆φ = −D1∆x+ (V −1rγ −W−1rφ + V −1Γrv −W−1Φrw). (3.28)

Let ∆z = ∆λ−∆π. Similar to the previous paragraph we have ∆λ = −T−1Λ∆t+

T−1rλ from equation (3.24) and ∆π = −U−1Π∆u+U−1rπ from equation (3.25). Now

express ∆t = C∆x− rt and ∆u = −C∆x− ru by making use of equations (3.20) and

(3.21) respectively. Then ∆z = −T−1Λ(C∆x − rt) + U−1Π(−C∆x − ru) + T−1rλ −

U−1rπ = −(T−1Λ + U−1Π)C∆x+ T−1rλ − U−1rπ + T−1Λrt − U−1Πru. Therefore we

can write

C∆x+D−1
2 ∆z = D−1

2 (T−1rλ − U−1rπ + T−1Λrt − U−1Πru), (3.29)

where D2 = T−1Λ + U−1Π.

Both D−1
2 and D−1

1 exist, since T−1Λ + U−1Π and V −1Γ + W−1Φ are diagonal

matrices with strictly positive diagonal entries. We substitute the expression (3.28)

of ∆γ − ∆φ and ∆z = ∆λ − ∆π in equation (3.18) and use equations (3.29) and

(3.19) to obtain
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
(Q+D1)∆x− AT∆y − CT∆z = r̄Q

A∆x = r̄y

C∆x+D−1
2 ∆z = r̄z,

(3.30)

where r̄Q = rQ+(V −1rγ−W−1rφ+V −1Γrv−W−1Φrw), r̄y = ry and r̄z = D−1
2 (T−1rλ−

U−1rπ + T−1Λrt − U−1Πru.

Once the solution (∆x,∆y,∆z) of (3.30) is found, the unknowns ∆t,∆u,∆v,∆w,∆λ,

∆π,∆γ, and ∆φ can be computed by using only diagonal matrix-vector products and

vector-vector additions as follows:

∆t = C∆x+ rt

∆u = −C∆x+ ru

∆v = ∆x− rv

∆w = −∆x− rw

∆λ = T−1(rλ − Λ∆t)

∆π = U−1(rπ − Π∆u)

∆γ = V −1(rγ − Γ∆v)

∆φ = W−1(rφ − Φ∆w).

OOQP solves the symmetric system (3.31) obtained by performing the substitu-

tion (∆x,∆y,∆z) = (∆x̃,−∆ỹ,−∆z̃) in (3.30):
Q+D1 AT CT

A 0 0

C 0 −D−1
2




∆x̃

∆ỹ

∆z̃

 =


r̃x

r̃y

r̃z

 . (3.31)

About OOQP-MA27

The linear system (3.31) is known in the interior-point community as the augmented

system. OOQP’s linear algebra layer for sparse general convex quadratic problems



89

solves the augmented system by using a sparse symmetric indefinite linear solver.

The sparse, symmetric, indefinite linear systems are solved by using a Bunch-Parlett

factorization for a matrix A. Such a factorization produces permutation matrices P ,

lower triangular matrix L, and the block diagonal matrix D with nonsingular 1 × 1

and 2× 2 blocks that satisfy PAP T = LDLT . They are applied to the linear system

(3.31).

The OOQP distribution contains interfaces to MA27 [32] and to the newer MA57

[31] linear solvers contained in Harwell Subroutine Library (HSL). We use MA27 be-

cause the MA57 solver is not available (free) for U.S. academics. The HSL code MA27

is a collection of FORTRAN routines for solving sparse systems of linear equations

by a variant of Gauss elimination. The code and more documentation can be found

at http://hsl.rl.ac.uk/archive/hslarchive/packages/packages.html.

About our implementation OOQP-CHOL

In what follows we present the implementation of a new linear algebra layer in OOQP.

As we mentioned, the OOQP’s default linear algebra layer solves the indefinite sym-

metric system (3.31). One may take advantage of the particular structure of this

system and perform further block elimination. A simple algebraic manipulation of

the third equation in (3.31) reveals

∆z̃ = D2C∆x̃−D2r̃z. (3.32)

By substituting (3.32) in the first equation of (3.31), we reduced the linear system

to  (Q+ CTD2C +D1)∆x̃+ AT∆ỹ = r̃x + CTD2r̃z

A∆x = r̃y.
(3.33)
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We express ∆x̃ in terms of ∆ỹ by multiplying the first equation of (3.33) with

the inverse of (Q + CTD2C + D1). Notice that M1 := (Q + CTD2C + D1) is always

invertible and symmetric positive definite since Q and CTD2C are symmetric positive

semidefinite and D1 is a diagonal matrix with strictly positive diagonal entries. Using

the new expression of ∆x̃, we rewrite the second equation of (3.33) as

−AM−1
1 AT∆ỹ + AM−1

1 (r̃x + CTD2r̃z) = r̃y.

We denote M2 = AM−1
1 AT and obtain the following expression for ∆ỹ

M2∆ỹ = AM−1
1 (r̃x + CTD2r̃z)− r̃y. (3.34)

Once ∆ỹ is known, ∆x̃ can be obtained from

M1∆x̃ = −AT∆ỹ + r̃x + CTD2r̃z. (3.35)

As we mentioned, M1 is a symmetric positive definite matrix. This implies that

M2 = AM−1
1 AT is also symmetric positive definite. Hence, the use of a Cholesky-

based linear solver for solving (3.34) and (3.35) is an appropriate choice.

Performance, reliability, and availability were the main aspects we considered

while choosing a sparse direct solver for symmetric positive definite linear systems of

equations. We chose CHOLMOD 1.4 [26, 22, 25, 24] based on the evaluations from

[44] and its ready availability.

In what follows, we describe how our new linear algebra layer within OOQP

manages to solve (3.35) and (3.34) for ∆x̃ and ∆ỹ, respectively. The two interior-point

methods implemented in OOQP, Mehrotra and Gondzio, use one matrix factorization

per iteration and at least two backsolves. In other words, at least two linear systems

having the same system matrix have to be solved at each iteration of the interior-

point algorithm. Therefore, any factorization and other work that is not dependent
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on the right-hand side must be performed once in the so-called factorization phase.

Any other right-hand-side dependent operation is accomplished in the solve phase.

At any iteration of the interior-point method, the factorization phase consists of

• Cholesky factorization M1 = L1L
T
1 ;

• computing X = L−1
1 AT by performing my backsolves: L1X = AT ;

• computing M2 = XTX;

• Cholesky factorization M2 = L2L
T
2 .

The solve phase computes ∆ỹ, then ∆x̃, and finally ∆z̃ from (3.34), (3.35), and

(3.32), respectively. It consists of

• computing r1 := M−1
1 (r̃x +CTD2r̃z) from (3.34) by performing a backsolve and

a forward substitution: L1L
T
1 r1 = r̃x + CTD2r̃z;

• computing r2 := Ar1 − r̃y;

• finding ∆ỹ from (3.34) by performing a backsolve and a forward substitution:

L2L
T
2 ∆ỹ = r2;

• computing the right-hand side r3 := −AT∆ỹ + r̃x + CTD2r̃z from (3.35)

• finding ∆x̃ from (3.35) by performing a backsolve and a forward substitution:

L1L
T
1 ∆x̃ = r3;

• finding ∆z̃ from (3.32).

Before describing the way CHOLMOD was integrated in our new linear algebra

in OOQP, we give some of the main concepts related to the factorization of the

(positive definite) matrices. The CHOLMOD factorization of a matrix is split in two
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parts. The first is the so-called symbolic analysis and consists of computations that

typically depend only on the nonzero pattern, not the numerical values. The main

goal of this phase is to find a permutation of the matrix so that the amount of fill-in

in the factors is minimized (or at least significantly decreased). This is also known

as finding the fill-reducing ordering. The symbolic analysis phase also includes the

symbolic factorization, which consists of finding the explicit representation of the

nonzero pattern of the factor(s). The second part of the CHOLMOD factorization

process is the numerical factorization based on a Cholesky-based algorithm. An

important observation is that the symbolic analysis is usually much more expensive

than the numerical factorization.

There is a key aspect in using CHOLMOD in the context of interior-point methods.

Since the numerical factorization is based on the Cholesky algorithm, no numerical

pivoting is needed to maintain numerical stability. This implies that the permutation

found by the symbolic analysis does not have to be recomputed when factorizing a

matrix with different numerical values but the same sparsity pattern.

On the other hand, the matrices M1 and M2 from (3.35) and (3.34) have a special

property that turns out to be crucial in our discussion. During the iterations of the

interior-point method, only the matrices D1 and D2 change. Since they are diagonal

matrices (with positive diagonal entries), we obtain that the sparsity pattern of M1

remains the same during the interior-point iterations. Consequently, M−1
1 has the

same pattern, which implies that the structure of M2 remains the same. Our code,

like other interior-point Cholesky-based softwares (LIPSOL [86], PCx [23], HOPDM

[42]), incorporates the above observations and performs the symbolic analysis phase

only once at the first iteration of the interior-point method. Any other subsequent

factorization need is backed up by a fast CHOLMOD numerical factorization.
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CHOLMOD 1.4 offers the possibility to choose between up to nine fill-reducing or-

dering heuristics and two symbolic factorization methods. In our implementation, we

let CHOLMOD decide on the best fill-reducing and symbolic factorization methods.

Since both M1 and M2 have the special form AAT , the usual choices of CHOLMOD

were COLAMD for fill-reducing ordering and supernodal for symbolic factorization.

3.3.2 TRON

TRON is a trust region Newton method for bound constrained optimization prob-

lems. The algorithm uses a quadratic model function, projected searches during the

subspace minimization phase and a preconditioned conjugate gradient method to de-

termine the minor iterates. The limited memory preconditioner used is the incomplete

Cholesky factorization described in [55].

The Cauchy step at iteration k, sCk is of the form sk(αk), where the function

sk : R→ Rn is defined by

sk(α) = P [xk − α∇f(xk)]− xk.

Here P is the projection onto the (bound constrained) feasible set, xk is the current

iterate and f the objective function. An iterative scheme that is guaranteed to ter-

minate in a finite number of steps is used to compute the Cauchy point by generating

a sequence
{
α

(l)
k

}
of trial values. The sequence can be either decreasing or increas-

ing, based on the value of α
(0)
k , where α

(0)
k is set to 1 in the (main-loop/major) first

iteration and αk−1 otherwise.

Once the Cauchy point is obtained, a Newton step is sought subject to trust

region constraints and with an active set choice determined by the one of the Cauchy

points. If sufficient decrease is obtained compared to the one produced by the Cauchy
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point, the step is accepted. The algorithm is superlinearily convergent for nonlinear

objective functions.

3.3.3 BLMVM

BLMVM [18] is a projected gradient solver for nonlinear bound-constrained optimiza-

tion problems. Like the unconstrained BFGS method, BLMVM creates a convex

quadratic model function

mk(d) = f(xk) +∇f(xk)
Td+

1

2
dTBkd,

where f(x) is the objective function, xk is the current iterate, and the matrix Bk is

updated at each iteration using correction pairs sk and yk. Unlike the unconstrained

BFGS method, BLMVM defines the correction pairs sk and yk by

sk = xk+1 − xk, yk = TΩ∇f(xk+1)− TΩ∇f(xk).

Here TΩ is the projection operator, with the ith component of TΩ∇f(x) given by

(TΩ∇f(x))i =


∂if(x) if xi ∈ (li, ui)

min{∂if(x), 0} if xi = li

max{∂if(x), 0} if xi = ui

where ∂if(x) is the partial derivative of f with respect to the ith variable xi and

Ω = {x | l ≤ x ≤ u} is the bound constrained feasible set.

To reduce the cost of storing the inverse Hessian approximation, BLMVM uses

the limited memory BFGS method (L-BFGS). The algorithm uses a projected line

search to enforce the bounds on the variables.
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3.3.4 MOSEK

The MOSEK Optimization Software (www.mosek.com) is a collection of tools for so-

lution of large-scale optimization problems. MOSEK provides specialized solvers for

linear programming, mixed integer programming, and many types of nonlinear and

convex optimization problems, such as convex quadratic problems, conic quadratic

problems, and quadratically constrained problems. In particular, for solving convex

quadratic problems subject to linear constraints, MOSEK employs an homogeneous

interior-point algorithm for monotone complementarity problems [1]. This homoge-

neous model is able to solve the problem without any regularity assumption on the

existence of optimal, feasible or strictly interior feasible points. If the problem has a

solution, the algorithm generates a sequence that approaches feasibility and optimal-

ity simultaneously. If the problem is infeasible, it generates a sequence that converges

to a certificate proving infeasibility. The algorithm can start at any positive point

(feasible or infeasible) and converges in no more than O(
√
n log(1/ε)) iterations, the

best-known complexity for linear complementarity problems. In our experiments we

used MOSEK 4.0 through the C optimizer application programming interface (API)

to solve the primal form (3.10).

3.4 Numerical Results

In this section we present the details of applying the algorithms and solvers from

Section 3.3.
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3.4.1 Environment and Solver Configuration

We have used RedHat Enterprise Linux 5 to run our experiments. The jobs were

submitted to a SUN Grid Engine 6.0u8 running on 10 dual-processor computers each

having between 2 GB and 4 GB of physical memory. All the processors in the grid

were Pentium 4 at 3.06 MHz with 512KB L2 cache. Our simulation code used one

processor at a time.

The simulation code was written in C and C++ and compiled by using GNU

C and C++ compilers. The optimization solvers and their requirements were also

compiled by using GNU tools. The code optimization flag was set to -O3 for all

compilers.

We used all software packages with their default stopping criteria. Changing

these parameters may affect the conclusions but also make the results difficult to

report. The difficulty of projected gradient methods, such as those used by BLMVM

and TRON, to obtain a solution for very stringent tolerance is well documented,

and we do not investigate that here. Our goal is to provide a useful benchmark for

engineering applications, which in many cases accept errors of the order of those in the

stopping criteria of BLMVM and TRON. We thus believe that the fairest comparison

of usefulness of these packages is for their default settings.

We used for both OOQP-MA27 and OOQP-CHOL the default stopping criteria,

which consist of relative gap µ < 10−8 and relative norm of the residual less than

10−8. The relative norm of the residual is the ratio between the norm of the residual

and the absolute value of the largest magnitude element in the problem’s data. We

also run MOSEK with the default stopping parameters; namely, primal and dual

feasibility tolerance and relative gap less than 10−8. TRON and BLMVM consider a

problem solved when the norm of the gradient falls under 10−4 and 10−3, respectively.
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3.4.2 Examples Generation

In all of our experiments, in a unitless representation, the dimensions of the vat are

60 for the radius of the cylinder and 20 for the small radius of the truncated cone

(see Figure 3.1). The height of the cylinder and the truncated cone are 80 and 40,

respectively. The radius of each pebble is set to 1.

For the simulation experiments the pebbles are initially randomly arranged in

horizontal planes. On each horizontal plane the pebbles are distributed in several

inner circles. For the optimization experiments we also place pebbles on the bottom

of the vat. The number of such bodies is approximately one-fourth the number of

the suspended ones. Since we are interested in the situation when some of the falling

balls are still in the air, while the others are interacting with the walls of the vat and

with the pebbles from the bottom of the vat, the optimization problem is chosen after

several seconds of simulation.

For any configuration, we solve the problem (3.13), which is set up as described

in Section 3.2.1, for given ql, vl and time step h. This produces the multipliers λ(l+1).

We replace them in (3.9), to obtain v(l+1), the solution of (3.10). After this, the new

position variables are obtained from q(l+1) = q(l) + hΓ(q(l))v(l+1).

3.4.3 Total Kinetic Energy Results

It is well known that granular flow simulation is chaotic [60]. This means that the

tiniest difference in position of the particles at a given time step is amplified exponen-

tially in time. Therefore, comparing the outcome of the various solvers for individual

particles is essentially hopeless beyond extremely small and few time steps. In order

to compare the prediction of the various solvers, it may be more illuminating to use

aggregate quantities. To that end, a meaningful quantity is the total kinetic energy.
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Figure 3.3: Energy dependence on time. Even though the system is chaotic, sim-

ulations report approximately the same total kinetic energy (top figure). Larger

differences (smaller than 1.5%) that occur around the equilibrium have a numerical

explanation (small denominator) rather than a physical meaning (bottom figure).

The first plot of Figure 3.3 shows how the kinetic energy of a system consist-

ing of 800 pebbles changes in time. The definition of the kinetic energy is E(t) =

1

2
v(t)TMv(t). Its value was found by simulating the same configuration with the four

solvers. In the second plot we represent the relative energy found by OOQP-MA27,

OOQP-CHOL, and MOSEK with respect to the energy found by BLMVM. The rel-

ative energy is Erel = |Es−Eb|
Eb

, where Eb and Es are the energies found by making use

of BLMVM and one of the remaining solvers, respectively.

Even though the system is chaotic, simulations report approximately the same

total kinetic energy (top figure). We note that the relative error in energy is insignifi-
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cant, in physical interpretation terms, except after a large amount of simulation time.

We also note from the bottom figure that this error (< 1.5%) occurs only at very small

value of the kinetic energy (essentially, around the time the pebbles have stopped)

and is due primarily to a small denominator rather than a physical cause. In addition,

as can be seen from Tables 3.1, 3.2, and 3.3, some of the errors are due to the fact

that BLMVM and TRON are iterative solvers that are stopped with larger error in

both primal and dual than the interior point solvers.

3.4.4 Performance Results

The tests involving MOSEK are performed on a Windows XP SP2 machine with

1.5GB memory running a P4 2.8 MHz processor with 512 KB L2 cache. On Windows,

MOSEK was statically linked using Microsoft Visual Studio 7.1. We were not able

to test MOSEK on Linux because only the Windows license was available to us.

We are aware that the use of different hardwares and operating systems leads to

different execution times. To have an idea about how big this difference is, we ran

multiple simulations on both Windows and Linux computers. The simulations with

OOQP-CHOL and BLMVM as the optimization solvers revealed that the execution

is 30-35 percent slower on the Windows machine. One should keep in mind this

difference when comparing execution times obtained by MOSEK on Windows with

the execution times of the other four solvers on Linux.

We present two types of experiments comparing the solver performance. In the

first experiment, the simulation test, we compare the solver performance for all the

QPs encountered in the simulation, for different total numbers of pebbles. For such

comparisons, QPs with the same number of dual variables are not necessarily the

same. Therefore, different QPs with the same number of dual variables may be
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Solver Pri/Dual Primal Infeas Int. steps Total Time Avg time

BLMVM Dual 1.482e-04 324 9738.880 30.058

OOQP MA27 Both 0 370 59693.310 161.330

OOQP Chol Both 0 371 9351.450 25.206

TRON Dual 1.070e-02 487 282763.981 580.624

Mosek1 Both 0 407 1120797.148 2753.801

Table 3.1: Performance of QP solvers for 800 pebbles and h = 0.05

solved with different performance parameters, and the comparisons must be carried

out only in terms of trends. This can be seen in the scatter plots of Figures 3.4 and

3.5.

A second experiment, the optimization test, progresses the simulation with one

solver, OOQP-CHOL, up to a time where the QP to be solved is sufficiently large.

At that point, the same QP is solved by all software packages, and the performance

results are compared on the same problem.

Simulation test

Tables 3.1, 3.2, and 3.3 show the performance of each optimization solver in running

simulations of 800, 1600, and 3200 pebbles, respectively. The second column indi-

cates whether the primal (3.10) or dual (3.13) form was solved. The third column,

Primal Infeas lists the primal infeasibility at the last integration step. The number

of integration steps needed to run the simulation is shown in the fourth column. The

last two columns represent the total time in seconds needed for a simulation and the

1Reported data is obtained on Windows.
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Solver Primal/Dual Primal Infeas Int. steps Total Time Avg time

BLMVM Dual 6.235e-05 394 73147.070 185.652

OOQP MA27 Both 0 319 345773.404 1083.929

OOQP Chol Both 0 310 38097.440 122.894

Table 3.2: Performance of QP solvers for 1600 pebbles and h = 0.05

Solver Primal/Dual Primal Infeas Int. steps Total Time Avg time

BLMVM Dual 4.946e-05 284 221411.620 779.618

OOQP Chol Both 0 296 175534.870 593.023

Table 3.3: Performance of QP solvers for 3200 pebbles and h = 0.05

average time in seconds per integration step. The simulations were stopped when the

kinetic energy fell under a specific value: 0.2 for 800 pebbles, 0.8 for 1600, and 2.5

for 3200.

Both MOSEK and TRON crash while running the simulation involving 1600 peb-

bles. When solving the optimization problem from the first integration step MOSEK

freezes in the preprocessing phase for several hours and then crashes. The memory

usage before the abnormal termination was close to the maximum available. We

believe that the lack of memory caused the failure of a memory allocation routine

and consequently, MOSEK’s crash. Although TRON was able to run the first sev-

eral integration steps, as soon as the pebbles started to interact with the walls, and

the size of the dual increased, it crashed. The source of the crash was a memory

allocation failure in the FORTRAN 77 code. An important observation is that there

was enough physical memory to satisfy the allocation request. Hence the failure is

probably caused by FORTRAN 77 memory management routines. We present the



102

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Dual size

M
em

or
y 

in
 k

by
te

s

 

 
BLMVM
OOQP Ma27
OOQP Chol
Tron

Figure 3.4: Memory usage dependence on the number of constraints. Shown are

simulations of 600, 800, 1000, and 1200 pebbles.

memory use for BLMVM, OOQP, and TRON for this test in Figure 3.4.

TRON and MOSEK were not used for the experiment involving 3200 pebbles.

The same simulation with OOQP MA27 was stopped because of the huge amount of

time needed to solve the optimization problems (more than 20 times the time needed

by OOQP-Chol for the same integration step).

Optimization test

In the simulation test the solvers may solve different problems at each step since the

system trajectories may be different due to accumulation of the numerical error. In

this test, we compare the performance of all solvers for the same QP problem.

As described in Section 3.4.2, the optimization problems are chosen from a sim-

2Reported data is obtained on Windows.
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Figure 3.5: Execution time dependence on the number of constraints. Shown are

simulations of 600, 800, and 1000 pebbles.
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Solver Primal/Dual Primal Size Dual Size No. Iter Average Time Total Time

BLMVM Dual 6000 62826 2501 0.127 318.016

OOQP Ma27 Primal/Dual 6000 62826 33 21.120 696.984

OOQP Chol Prima/Dual 6000 62826 33 3.115 102.812

Mosek2 Primal/Dual 6000 62826 24 465.362 11168.688

TRON Dual 6000 62826 CRASH

Table 3.4: The performance of QP solvers in solving an optimization problem from

the simulation of 1000 pebbles with h = 0.01.

Solver Primal/Dual Primal Size Dual Size No. Iter Average Time Total Time

BLMVM Dual 6000 62760 1729 0.128 221.640

OOQP Ma27 Primal/Dual 6000 62760 31 21.351 661.881

OOQP Chol Prima/Dual 6000 62760 31 3.016 93.500

Mosek∗ Primal/Dual 6000 62760 24 456.534 10956.832

TRON Dual 6000 62760 CRASH

Table 3.5: The performance of QP solvers in solving an optimization problem from

the simulation of 1000 pebbles with h = 0.05.

ulation of 1000 pebbles (800 staying on the bottom of the vat and 200 falling) after

3.3 seconds. The integration was done by using the timestep h = 0.01 for Table 3.4

and h = 0.05 for Table 3.5. Tables 3.4 and 3.5 list the solver name, the formulation

solved, the number of unknowns in primal and dual, the number of iterations needed

by each solver to solve the optimization problem, the average time per iteration, and

the total time taken to solve the problem.
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3.4.5 Discussion of the Results

We conclude that the ranking from most to least performing of the five solvers is

OOQP-Chol (our linear algebra interface and implementation), BLMVM, OOQP-

MA27, TRON, and MOSEK. This conclusion is sustained for both the simulation

test (see results in Tables 3.1, 3.2 and 3.3 and in Figures 3.5 and 3.6), and the

optimization test (see results in Tables 3.4 and 3.5).

The tabulated results show that this ordering holds on average, whereas the figures

show that these results hold even when accounting for the spread of performance

criteria for the same dual size. In addition, we also see from Figure 3.4 that both

interior-point algorithms need more memory only by a factor of between 2 and 3

compared to BLMVM, which, as a limited-memory method, is quite memory-use

conscious. From the memory results, it is also interesting to extrapolate what size of

a problem will be held by a desktop. If the trends in Figure 3.4 hold, then a 4 GB

architecture can hold a 150, 000-pebble configuration, whereas a 32 GB architecture

can hold a 600, 000-pebble configuration.

We note that our OOQP-Chol implementation, using open source tools, is consis-

tently seven times faster (and sometimes more than twenty times faster) compared

to the OOQP-MA27 implementation. We also note that the time to solution perfor-

mance of BLMVM and both OOQP implementations behaves fairly close to linear

with the size of the problem. So both algorithms scale reasonably for this problem.

In addition, our kinetic energy monitoring reveals that all solvers give comparable

results.

Several caveats should accompany our conclusions. The first is that we do not

require BLMVM to solve the problem to the same precision as for the interior-point

solvers. Nonetheless, we believe that its results are useful, for reasons described in
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Subsection 3.4.1. The second is that, for license issues, we were not able to run

MOSEK on the same architecture as the other solvers. Given our experience with

the performance discount between Windows and Linux, we believe that the conclu-

sions would not change when running MOSEK on Linux, for reasons described in

Section 3.4.4. We also note that the class of problems solved here, while of wide

engineering interest, is limited insofar type of QPs encountered. For other QP types,

it is conceivable that the performance ranking will change.

3.5 Conclusions and Future Work

We investigated the performance of four software packages for the resolution of

quadratic programming problems with bound constraints that appear in the reso-

lution of rigid multi-body dynamics with contact and friction. These packages are

TRON [55], BLMVM [18], MOSEK [1], and OOQP [41]. OOQP is investigated

both with the default MA27 linear algebra and with our new implementation us-

ing Cholesky factorizations by means of the CHOLMOD package. We call the first

instance OOQP-MA27 and the second OOQP-Chol.

We conclude that, for such problems, our OOQP-Chol implementation is the

fastest of all the tested packages. It consistently uses only about three times more

memory than BLMVM, while achieving far higher precision levels. Its behavior with

the size of the problem is predictable, as can be seen from Figures 3.4, 3.5, and 3.6.

An important further research question is whether this performance holds for

a parallel implementation. We note that a multithreaded version of CHOLMOD

exists (see http://www.cise.ufl.edu/research/sparse/cholmod/) but does not currently

exhibit good performance because of BLAS issues; these are expected to be fixed in



107

the near future. The good parallel speedup of BLMVM, the closest competitor in

terms of execution speed, is well documented [18].

Another important direction is to work directly with the disk constraint on the

tangential force. This results in conic constraints on the contact force, which, in

turn, leads to a quadratic program with conic constraints. It was recently shown that

this formulation leads to a conic complementarity problem [78, 14] and can be solved

using a splitting scheme, of the Gauss-Seidel or Jacobi type [14]. At the moment,

however, the set of codes available to us that support conic constraints includes only

MOSEK, so we are not yet in the position to profile such codes for rigid multi-body

applications.
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[47] O. Güler. Generalized linear complementarity problems. Math. Oper. Res.,

20(2):441–448, 1995.

[48] S. Hasegawa and M. Sato. Real-time rigid body simulation for haptic interac-

tions based on contact volume of polygonal objects. Computer Graphics Forum,

23(3):529–538, 2004.



114

[49] E. J. Haug. Computer-Aided Kinematics and Dynamics of Mechanical Systems.

Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

[50] Dirk Helbing, I.J. Farkas, and T. Vicsek. Simulating dynamical features of escape

panic. Nature, 407:487–490, 2000.

[51] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein.

Comparison of simple potential functions for simulating liquid water. Journal of

Chemical Physics, 79(2):926–935, 1983.

[52] D. Kadau, G. Bartels, L. Brendel, and D.E. Wolf. Pore stabilization in cohesive

granular systems. Phase Transitions: A Multinational Journal, 76(4-5):315–331,

2003.

[53] N. K. Karmarkar. A new polynomial-time algorithm for linear programming.

Combinatorica, 4:373–395, 1984.
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