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Abstract—We investigate two approaches, adjoint-based gradi-
ent computation and stochastic spectral methods, for parameter
estimation with uncertainty in a Bayesian framework applied
to power grid models. These methods are used to estimate
the maximum a posteriori point of the parameters and their
variance, which quantifies their uncertainty. We apply this
framework to dynamic parameters, such as generator inertias,
which are not estimable from steady-state models. We illustrate
the performance of these approaches on a 9-bus power grid
example and analyze the dependence on measurement frequency,
estimation horizon, perturbation size, and measurement noise.
We assess the computational efficiency, and we discuss the
expected performance when these methods are applied to large
systems.

Index Terms—Power systems, uncertainty, parameter estima-
tion, inverse problems, Bayesian analysis.

I. INTRODUCTION

DEtermining the parameters of a system given noisy
measurements is a critical problem in the operation of

energy systems. Decisions about the best and safe usage of
resources depend critically on knowing the current param-
eters or states; and, typically, not all these quantities are
instrumented. Therefore, their values are obtained indirectly
by reconciliation between the mathematical model of the
system and existing measurements by an inverse estimation
procedure, such as state estimation. Before the advent of
phasor measurement units (PMUs) the phase angle differences
in an electrical network were determined primarily indirectly
by estimation from SCADA data. While PMU instrumentation
can be rapidly installed on many parts of the power grid, thus
resulting in their phasor angles with respect to a universal
time reference being directly sensed, the ones without such
measurements will still need to be inferred indirectly from
model and measurements by using state estimation.

Moreover, the advent of renewable and distributed energy
generation systems creates additional challenges that need
mathematical inversion. The amount, type, and setting of gen-
eration may not be known a priori by the operator. Therefore,
the parameters of their generator equivalents that need to
be used for balancing the load and assessing the dynamical
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stability will need to be determined from measurements. The
dynamical parameters, such as the equivalent inertia of a
windfarm, pose particular challenges because they are not
observable in steady state [1]. Therefore they are likely to need
more frequent data to capture even fast perturbations from
whose transients they can be inverted. The rapid deployment
of PMU means that such data streams will become rapidly
available, and thus such parameters can be obtained, provided
that dynamic parameter estimation can be carried out.

In this paper, we investigate inverse problems stemming
from parameter estimation for energy systems, with a focus on
dynamical parameter estimation. Given the increasing dynamic
ranges of the energy systems and the uncertainty due to
evolving user behavior and the increased use of distributed
generation, we find it important to provide uncertainty esti-
mates for these parameters. In this way the operator can assess
the realistic stability range for next-generation energy systems.

In prior work, parameter estimation in power grid models
typically has been put in the context of aggregated load models
[2]. Most often the parameters are obtained as a result of least-
squares approaches [3]. Generally, derivative-free methods are
preferred, which typically lead to minimizations based on
genetic algorithms [4]; however, derivative-based least-squares
have been introduced by Hiskens et al. [5], [6], [7].

Since, in an operational environment, one needs to provide
an answer in all circumstances, in this work we embrace a
Bayesian point of view. In this case, even with very little
information we can produce an estimate that at least will
encapsulate prior information about the possible ranges of
parameters. With more informative data the estimation will
approach the real value of the parameters, without changing
the inference framework. In this sense the spread of the pos-
terior probability density function (pdf), namely the solution
of the Bayesian inverse problem, will quantify how much
information from the data can be used for identifying the
parameters. The challenge in solving this Bayesian inverse
problem is in computing statistics of the pdf, which is a surface
in high dimensions. This is extremely difficult for problems
governed by expensive forward models (as is the power grid
model) and high-dimensional parameter spaces (as is the case
for a large-scale power grid). The difficulty stems from the fact
that evaluation of the probability of each point in parameter
space requires solution of the forward problem, and many
such evaluations may be required to adequately sample the
posterior density in high dimensions by conventional Markov-
chain Monte Carlo (MCMC) methods. Hence, quantifying the
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uncertainties in parameters becomes intractable as we increase
the grid dimension. Therefore, the approach we take is based
on a local Gaussian approximation of the posterior around the
maximum a posteriori (MAP) point. This approximation will
be accurate when the parameter-to-observable map behaves
nearly linearly over the support of the posterior [8].

We present two methods for computing MAP and estimating
the parametric uncertainty: (1) an adjoint-based method and
(2) a surrogate modeling approach based on polynomial chaos
expansions. These methods solve the same problem but have
different properties and computational cost.

We will use these techniques to estimate, as a proof of
concept, the inertias of three generators in an IEEE 9-bus
model. The situation models the circumstance where the
actual inertia is not known to the grid operator (as would
be the case of a windfarm or other energy resources, bulk
or distributed). On the other hand, this inertia is necessary in
order to understand the stability limits of the system following
a potential contingency, such as a fault-induced transmission
line relay trip, which is a required reliability analysis for all
system operators.

We carry out extensive validation experiments to demon-
strate the consistency and accuracy of the methods. Moreover,
we use our approach to investigate the effect of important data
features on the precision of MAP. These features include the
frequency of the measurements and the size of the perturba-
tion. In addition, we compare the behavior of the two methods
on this example and discuss their computational efficiency and
what we can expect for their complexity when these methods
are applied to larger systems.

II. PROBLEM FORMULATION

Assume that we have measurements of a dynamical system
that can be modeled by an additive Gaussian noise model

d = f(m) + η, η ∼ N (0,Γnoise) , (1)

where Γnoise ∈ Rq×q is the measurement noise covariance
matrix and f denotes the observable quantities d that depend
on parameters m.The function f is computed by solving the
following differential-algebraic system (DAE) that models the
dynamics of a power grid:

ẋ = h(t,x,y,m) , (2a)
0 = g(t,x,y) , (2b)

x(0) = x0 , y(0) = y0 . (2c)

Here x represents the dynamic state variables (e.g., rotor angle,
generator speed), y represents the static algebraic variables
(e.g., bus voltages and line currents), x0 represents the initial
state, t represents time, and m represents the model parame-
ters. The right-hand side h is in general a nonlinear function
that models the dynamics of the system, and g in (2b) is a
set of algebraic equations modeling the passive network of
the power system. For the IEEE 9-bus power grid model
problem, as illustrated in Figure 1, for each generator we
have seven differential (i.e., x ∈ R21) and two algebraic
equations, and for each network node two additional algebraic
equations (i.e., y ∈ R24) [9]. The inference parameter m we

Fig. 1. IEEE 9-bus test case system. Here the buses 1, 2 and 3 are generator
buses and 5, 6, and 8 load buses.

consider in this paper is the inertia of each generator, and
thus m ∈ R3. In realistic applications, the initial state x0

may not be known either, and it would have to be inferred
from data. However, since our focus is on understanding the
reconstructability of parameters that cannot be determined
from steady-state measurements, such as inertias, we assume
the initial conditions x0 are known. Initial conditions can also
be considered uncertain; and the framework introduced herein
naturally extends to such cases, by redefining the mapping
f . In what follows, we use u := (x,y) to denote the state
variables.

The measured quantities are the bus voltages from a distur-
bance. We note that here we measure the voltage at all buses
in the IEEE 9-bus power grid; however, our framework can be
used to experiment with various measurement scenarios (e.g.,
measurements at a subset of buses) at various time intervals
and measurements of different quantities. More concretely,
we define a network-time observation operator B : Rs → Rq
that projects the DAE state solution vector onto the observable
vector. Therefore, the parameter-to-observable map f is a
nonlinear operator that maps a parameter vector m ∈ Rn to
the network-time observation vector d ∈ Rq , namely,

f : m
S7−→ ū

B7−→ d, (3)

where S is the DAE discretization operator and ū ∈ Rs is the
discrete DAE solution vector.

Since the noise η is independent of m, thus d|m ∼
N (f(m),Γnoise), the likelihood is given by

πlike(d|m) ∝ exp
(
− 1

2
‖f(m)− d)‖2

Γ−1
noise

)
. (4)

According to Bayes’ theorem with Gaussian noise and prior,
the posteriori density function of m is described as [8], [10]

πpost(m) ∝ exp
(
− 1

2
‖f(m)− d)‖2

Γ−1
noise
− 1

2
‖m−mprior‖2Γ−1

prior

)
.

(5)

Here mprior and Γprior ∈ Rn×n are the mean and covariance
matrix of the prior distribution, respectively; Γnoise ∈ Rq×q is
the covariance matrix for the noise.

To set up the Bayesian framework, we need to specify
the noise covariance Γnoise, prior covariance Γprior, and prior
mean mprior. The first can be obtained by offline studies of
the measurement setup. If the measurements are from PMUs,
one can reasonably assume that the measurement noise is
independent between sensors and white noise in time for one
of them (on the time scale of interest, which is between
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0.03 and 30 s). The variance then can be computed from the
precision rating of the instrument. This is consistent with our
choice of noise covariance above. The Bayesian prior, on the
other hand, requires quantification of the existing information
about the parameters. Considerable literature exists in the area
of eliciting priors, but it certainly requires an intimate analysis
of the system at hand [11], [12]. For example, for a windfarm,
one can use historical logs or a simulation-based model to
create a statistical model of the active inertia at a given time of
the year, conditional on ambient conditions, or use information
from similar windfarms. The resulting distribution can become
the prior. Here we use a Gaussian prior, a common choice
for Bayesian inverse problems [10]. The prior mean describes
our best guess about the uncertain parameter, which could be
obtained from existing measurements or from other available
information. We use a prior with large variance because of
the lack of a priori information about the parameters; and we
assume that the parameters are uncorrelated, which essentially
leads to a diagonal prior covariance matrix.

Despite the choice of Gaussian prior and noise probability
distributions, the posterior probability distribution need not
be Gaussian, because of the nonlinearity of f(m) [8], [10].
Here we make a quadratic approximation of the negative log
of the posterior (5), resulting in a Gaussian approximation
N (mMAP,Γpost) of the posterior. The mean of this posterior
approximation, mMAP, is the MAP point obtained by minimiz-
ing the negative log posterior:

mMAP = arg min
m

J (m) := − log πpost(m). (6)

The posterior covariance matrix Γpost is then obtained by
computing the inverse of the Hessian of J at m [8], [10].

Solving (6) and finding these quantities complete the esti-
mation and provide uncertainty bars around the parameters of
interest, in our example, generator inertias.

III. SOLUTION METHODS

We present two methods for solving the inverse problem:
the adjoint-based method and the stochastic spectral method.
In Section IV we will illustrate the circumstances in which
one approach will be favored over the other.

A. Adjoint-based method

We first introduce a numerical discretization of the forward
problem. Then we detail the adjoint method in Section III-A2
for computing the gradients required when solving (6).

1) The forward problem: We represent (2) compactly by

M u̇ = F (t,u;m) , u(0) = [x(0), y(0)]T , (7)

where F = [h(· · · ), g(· · · )]T and M is the DAE mass matrix
which is block identity for x variables and zero in the rest.
Note that M should not be confused with the parametric
inertia m. Equation (7) is discretized by using a time-stepping
method. For instance, a trapezoidal-rule discretization leads to

Muk+1 = Muk +
∆t

2
(F (tk,uk;m) + F (tk+1,uk+1;m)) ,

where ∆t = tk+1 − tk. With fixed u(0), each choice of the
parameters m will generate a new trajectory.

2) Adjoint problem and gradient computation: To facilitate
the gradient computation needed to solve (6), we use a
Lagrangian approach that augments J with additional terms
consisting of the forward DAE problem (2). Using the discrete
adjoint approach [13], [14] in PETSc [15], we obtain the
following discrete adjoint equations:

MTλ∗ = λk+1 +
∆t

2

(
FTu (uk+1)λ∗ + rTu(tk+1,uk+1)

)
,

λk = MTλ∗ +
∆t

2

(
FTu (uk)λ∗ + rTu(tk,uk)

)
(8)

µk = µk+1 +
∆t

2

(
FTm(uk+1) + FTm(uk)

)
λ∗+

∆t

2

(
rTm(tk+1,uk+1) + rTm(tk,uk)

)
,

k = N − 1, . . . , 0, λN = 0, µN = 0, where the function r =
− log(πlike(d|m)) and the gradients are defined by Fu = ∂F

∂u ,
Fm = ∂F

∂m , ru = ∂r
∂u , rm = ∂r

∂m .
The gradient of J with respect to m can be found by

enforcing that the derivative of the Lagrangian with respect
to u and the adjoint variables (λ, µ) vanish. This is given by
∇mJ (m) = µ0 − Γ−1prior(m−mprior).

The iterative procedures of a gradient computation are as
follows. First, given a parameter sample m, DAE (7) is
solved for the forward solution u. The solution u is stored
or checkpointed and further used to evaluate the data misfit
source term r in (8). The adjoint equation is then solved
(backward in time) to obtain the adjoint solution (λ, µ). Both
the forward and adjoint solutions, along with the current
parameterm, are used to evaluate∇mJ (m). Thus, a gradient
computation requires two (forward and adjoint) DAE solves.

3) Numerical solution to posterior minimization: The op-
timization problem (6) is solved with the bounded limited-
memory variable-metric quasi-Newton method for nonlin-
ear minimization with bound constraints implemented in
TAO [16]. The method maintains a secant approximation to
the Hessian from a limited number of previous evaluations of
J (m) and ∇mJ (m) and uses this approximation to compute
the quasi-Newton search direction. This approach achieves
asymptotic superlinear convergence characteristic of Newton
method, but without evaluating second-order derivatives [17].
The numerical process starts with an initial guess for m
and iteratively updates this parameter by performing a Moré-
Thuente search [18] along the quasi-Newton direction. During
this search a couple of evaluations of J may be needed in
order to ensure sufficient decrease. The process stops when
‖∇mJ (m)‖ is small, which indicates that m is a local
minimizer.

B. Stochastic spectral method

We continue to describe a parameter estimation approach
using surrogate models. First, DAE (7) is simulated at a small
number of samples to build a surrogate model. Then, the
obtained surrogate model (instead of the forward solver) is
used in the subsequent optimization to estimate the parameters.
This method is particularly useful when the dimension of
the parameter space is small and the forward solver has a
large state-space dimension, because it saves on the number of
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forward dynamic simulations. Our example has 3 parameters
and 21 state variables, so it belongs to this category.

Given the prior density function of m, a set of polynomial
chaos basis functions {Ψα(m)}p|α|=0 are specified. Here α ∈
Nn is an index vector, |α| denotes the `1 norm, and positive
integer p is the highest order of the basis functions. These
basis functions are orthornormal to each other:∫

Rn

Ψα(m)Ψβ(m)ρpriori(m)dm = δα,β. (9)

Then, f(m) is approximated by a truncated generalized
polynomial-chaos expansion

f(m) ≈ f̂(m) =
∑
|α|≤p

cαΨα(m) (10)

with cα defined as cα =
∫
Rn

Ψα(m)f(m)ρ(m)dm. The total

number of basis functions is K = (p+ n)!/(p!n!).
In our implementations, cα are computed in two ways.

The first choice is to employ projection-based stochastic
collocation [19], [20], [21]. Let {mi, wi}Ni=1 be a set of
quadrature points and weights corresponding to a numerical
integration rule in the parameter space. Then we have cα ≈∑N
i=1 wiΨα(mi)f(mi). Popular methods for choosing the

quadrature points include tensor-product rules and sparse-grid
methods [22]. The former needs (p+ 1)n samples to simulate
the dynamic power systems, whereas the latter needs fewer
samples by using nested grid samples. The second way is to
use an interpolation method such as stochastic testing [23].
Specifically, K samples are selected, and the cα’s are obtained
by solving a linear equation. In [23], a set of samples are
generated by a quadrature rule (such as a tensor product Gauss-
quadrature method); then K dominant samples {mj}Kj=1 are
subselected such that the matrix V (with its jth row being
made of Ψα(mj), |α| ≤ p) is well conditioned.

With a pth-order polynomial-chaos expansion for f(m),
the negative log posterior now becomes a non-negative 2pth-
order polynomial function. We first write it as a combination
of polynomial-chaos basis function by stochastic collocation,
then convert it to the summation of monomials:

− log πpost(m) ≈
2p∑
|α|=0

qαm
α, with mα = mα1

1 mα2
2 . . .mαn

n .

With this surrogate model, (6) is simplified to

mMAP = arg min
m

Ĵ (m) :=

2p∑
|α|=0

qαm
α. (11)

This nonconvex optimization can be solved locally with
gradient-based methods as in Section III-A or globally with
specialized polynomial optimization solvers such as Glop-
tiPoly [24], [25], [26] when the parameter dimensionality is
not high.

IV. NUMERICAL RESULTS

In our approach the products are the MAP estimate of
the parameters and the covariance matrix. The underlying
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Fig. 2. Bus voltage amplitude (left) and phase (right) for the load buses 1 and
2 and generator bus 5 (red, yellow and green solid lines, respectively) based
on the “truth” inertia parameter m = [23.64, 6.40, 3.01]. A load disturbance
at t = 0.1s was inserted to synthetically provoke a transient that we measure.
This was achieved by changing the load parameter at the load bus 5 at t = 0.1s
(from 1.25 to 4.25) and then restore it at t = 0.3s. The squares show the
corresponding synthetic observations with 1% noise.

hypothesis is that this estimate is a good representation of the
real parameters that generated the data and that the variance is
a good representation of the error between the MAP estimate
and the real data. In this section, we quantify and test these
assumptions, discuss their limitations, and posit operational
ranges and circumstances under which they can be used.
The key direction is to compare the difference between the
parameter values that generate the data and the MAP estimates
in absolute terms and in relationship to the spread of the
Bayesian posterior. We also discuss the computational features
and requirements of the two methods of computing the MAP
estimate that we propose.

The example we use is the IEEE 9-bus system depicted
in Figure 1. A load disturbance at t = 0.1 s, constant for
0.2 s, is inserted to provoke a transient. Its value during the
switching action, L, is what characterizes this disturbance. In
this paper, we assume that the parameters are uncorrelated,
and hence Γprior is a diagonal matrix with diagonal entries
[5.76, 0.36, 0.09]. The prior mean and the “truth” inertia values
are mprior = [24.00, 6.00, 3.10] and m = [23.64, 6.4, 3.01],
respectively. We carry out forward simulation of the DAE
(2) and we create synthetic voltage measurements at all 9
buses. Here, we consider the case of independent observations;
hence Γnoise is a diagonal matrix, with diagonal entries for all
computations, unless otherwise specified, 10−4. The resulting
voltage amplitudes, phases, and synthetic measurements are
depicted in Figure 2. This synthetic data is then used in the
Bayesian framework encapsulated in (6).

We aim to quantify the estimation error as a function of
L and the frequency of the observations, which we assume
consist of time series of the voltages at all 9 buses, mimicking
PMU data streams.

A. Computational Setup

The IEEE 9-bus example is implemented by using PETSc
and is available as a part of the PETSc distribution. For future,
larger, examples, the setup has the advantage of having intrin-
sic parallel capabilities [15], [27]. The forward and adjoint
problems needed by TAO for the numerical minimization of
the posterior, as described in Section III-A, are set up and
solved by using the PETSc time-stepping library for DAEs.
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The MAP point, which is our estimate of the unknown pa-
rameters (the inertias in the 9-bus examples) is then computed
for (6). Estimating the parameter uncertainty, as quantified for
example by the posterior standard deviation, is one of the
challenges of Bayesian analysis, and it is typically carried
out by MCMC approaches, which can be extremely compute-
intensive for large-scale power grid problems. If the mode
is very peaked, the distribution can safely be approximated
with a Gaussian one. In that case, the distribution is uniquely
characterized by the mode and the covariance matrix, which
is the inverse of the Hessian of the function in (6) at the
MAP point [8]. Because we do not compute the Hessian, and
the quasi-Newton method does not necessarily provide it, we
estimate it using finite differences of the gradient evaluations.
The diagonal entries of the inverse of this Hessian are the
variance estimates of the parameters, and its square roots are
the standard deviations that we use for uncertainty assessment.

For carrying out the stochastic spectral method calculations
in Section III-B we have used the method in [23] to construct
second-order polynomial-chaos approximations for surrogate
models for each case. Then the global optimization solver
GloptiPoly [24], [25], [26] is applied to minimize the ap-
proximated cost function without calling the dynamic system
simulator anymore. In the stochastic spectral approach the
Hessian matrix of the log posterior can be obtained in closed
form from the polynomial-chaos surrogate model representa-
tion. Consequently, the inverse of the Hessian matrix can be
extracted directly from the normal posterior approximation as
its inverse covariance matrix.

Both these methods will produce MAP estimates and their
variance for the inertia parameters m (a common notation
for them in power engineering literature is H [9]). Since
we also have the truth parameter values from which the
data was simulated, we can now compare the deterministic
numerical error, which relates the estimates to the real values
but is unknown, with the a posteriori variances, which are
computable. When undertaking such comparisons, one can use
various measures. In engineering practice, however, the natural
error measures are relative to the quantities being measured.
To this end the following deterministic error metric is used:

Err =

√√√√ 1

n

n∑
i=1

(m(i)−mtrue(i))2

mtrue(i)2
. (12)

We need a similar relative metric for the standard deviation
(which, in classical statistical analysis, is typically discussed
only in absolute terms, and not in relation to the mean). Here,
we use the following formula to normalize the square root of
the trace of the Hessian inverse (τ ):

τ =

√√√√ n∑
i=1

Γpost(i, i)

m2
true(i)

. (13)

Another statistic of interest is the positioning of the real
parameter in relation to the distribution. This is not completely
captured by the variance, because there could be significant
bias in the estimation. To this end, we compute the cumulative

normal scores (CNS) p for the actual values in relation to the
Gaussian approximation of the distribution:

pi = erf
[

(m(i)−mtrue(i))
2√

Γpost(i, i)

]
. (14)

Here erf is the error function, the cumulative density of the
standard normal. CNS are between 0 and 1 and indicate how
likely is that the real parameters are drawn from the aposteriori
distribution, with the distinction that values very close to either
0 or 1 are considered unlikely.

To determine whether our analysis had a good outcome, we
use the following considerations. If the estimation procedure
is successful, the error Err should be small by engineering
standards (a few percentages or less). If the stochastic model
is a good depiction of reality, then τ should be mostly
larger than Err but comparable. This reflects the fact that
we are uncertain about the parameter used in the estimation
(as opposed to the deterministic case); but when the data
is informative, the standard deviations should be comparable
to the error (though exact relational statements are difficult).
A measure of successful representation of the uncertainty
analysis and validation of the statistical approach is that the
standard confidence values contain the real parameter. That is,
the CNS of the real parameters should be away from 0 and 1
(for example, in the [0.1, 0.9] range) but not clustered at 0.5,
which would indicate an excessively conservative variance.

B. Results

1) Dependence on experimental design parameters: Our
approach has two experimental design parameters: the length
of the time horizon over which the estimation is carried out
and the frequency of the data. We now present the behavior
of Err, τ , and the CNS values as a function of the various
choices of these parameters.

Table I shows the estimation results for different estimation
horizons tf and data frequencies ∆obs

t , shown by the first
column in (a) and (b), respectively. The second, third, and
forth columns (mi, i = 1, 2, 3) indicate the inverse solution,
that is, the MAP point obtained with the adjoint-based and the
surrogate-based methods, separated by “/”; the fifth column
(#iter) indicates the number of iterations taken by the adjoint-
based method to converge. The sixth and seventh columns
(τ and Err) show the standard deviation normalized by the
“truth” inertia parameter (as given in (13)) for the two methods
and the deterministic error computed with the adjoint-based
method (12)), respectively. The last three columns show the p-
values computed with the adjoint-based method by using (14).
For these simulations the forward problem time step was
∆t = 0.01, the load parameter (at load bus 5) was 5.5, and
the iterations were terminated when the norm of the gradient
fell below 10−6.

As we see in Table I(b), for data frequency of 10 measure-
ments per second or better, the deterministic error Err never
gets above 2%. In that range, the scaled standard deviation is
τ is 5% or better and the ratio of τ/Err is always less than
4.5. The CNS values are comfortably within [0.1, 0.9]. We
also note that the error, Err, does not significantly improve
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with finer measurements, and it oscillates with the decrease of
the data frequency. On the other hand, the scaled standard
deviation does improve as the additional data reduces the
impact of the prior. We conclude that in the range of 10
measurements per second or better, by the standards indicated
above, our statistical approach is successful. That is, it both
creates estimates that are within 2% of the real value and pro-
vides a statistical relative error estimate of the same order of
magnitude as the deterministic error (and always less than 5%).
Moreover, when providing confidence intervals based on our
Bayesian framework, the [0.1, 0.9] confidence interval always
contains the real value. We also note that 10 measurements
per second is comfortably withing the capabilities of typical
PMU data streams of 30 measurements per second.

In Table I(a), we list the effect of the length of the estimation
interval on the estimation. We do this at a data frequency
of 20 Hz (∆obs

t = 0.05), which is within the sampling rates
(30 to 0.033 Hz) supported by PMUs. We observe that for
estimation horizons of 1 s or longer, our statistical approach
is also successful. In that range, both the deterministic error
and the statistical errors are less than 4%, and their ratio is
never more than 4. Also, both error indicators are decreasing
with longer time horizons, whereas the deterministic error was
relatively insensitive to measurement frequency.

The CNS values for the larger inertia, m1, fit comfortably
within the [0.1, 0.9] confidence interval. The smaller inertias,
however, are contained only in the [0.01, 0.99] range for the
very long estimation horizons. This interval, which for normal
distributions is about 3 standard deviations left and right
of the mean, is not abnormally wide by statistical analysis
standards. But it does suggest that smaller inertias are harder
to estimate accurately relative to larger ones, which is not
altogether surprising. However, when seen in the light of the
small relative standard deviation (about 1%), those confidence
intervals will be tight from an operational perspective.

Therefore, when having the choice of more frequent ob-
servations or longer estimation intervals, the latter appears
to be more beneficial to the quality of the estimation once
we are in range of 10 measurements per second or better.
But an interval of 1 s or longer certainly produces satisfactory
statistical outcomes.

2) Dependence on the nature of the perturbation: Having
established in Section IV-B1 that the Bayesian posterior stan-
dard deviation is a good indicator of the parameter error, we
estimate its behavior with the size of the load perturbation
L. We note that if there were no perturbation, the system
would be in steady state, and its inertias would thus not be
observable. We thus anticipate that a larger perturbation would
result in better estimation properties and thus lower posterior
variances. Because measurement noise is indicative of lack of
information, we anticipate that larger σm will result in larger
posterior variances.

In Figure 3 we show a surface plot of the trace of the
Gaussianized posterior covariance (the sum of the parameter
variances) for several noise and load values (left) and the
“whiskers boxplot” of the prior and posterior mean and
variances for L and σm values of (4.25, 0.01) and (7,0.1),
respectively. These figures show that, as anticipated, the vari-

Load Noise # Iter # fwd/adj Solves Time
(s)

4.25 0.01 10 13 28
4.25 0.1 9 13 31
7.00 0.01 9 12 30
7.00 0.1 10 14 34

TABLE II
COMPUTATIONAL COST FOR COMPUTING THE MAP POINT MEASURED IN

NUMBER OF FORWARD AND ADJOINT SOLVES.

Fig. 4. CRPS of MAP point analysis when changing the load and noise
levels. Final time is 2, with prior, and Ns = 100 samples. Higher value
indicates worse outcomes; the units are the corresponding parameter units.

ance increases as the noise increases and the load decreases,
which indicates that the deterministic error will have a similar
behavior. The computational cost for computing MAP points
(measured in number of forward and adjoint solves) is shown
in Table II, which indicates that the optimization effort is
unaffected by the values of the perturbation parameters σm
and L.

As pointed out in Section IV-B1, however, the posterior
variance is an indicator of the error, and most likely an upper
bound to it, but it is not a simple function of it. We now
investigate the behavior of the error itself with respect to L
and σm, with similar expectations as above. While this would
not be computable in an operational setting, it is an important
validation exercise.

For this analysis we generated Ns sets of observations with
L and σm fixed. We estimate the MAP point for each of the
Ns samples, yielding Ns sets of estimated parameters at the
MAP point. We repeated this procedure for variable L and
σm. Because the MAP point has a distribution for different
realizations of measurement noise, being close to the true value
means both small difference with the mean and small variance.
To thus quantify the MAP point proximity to the true value as
a distribution, we use a type of continuous ranked probability
score (CRPS) [28], [29]:

CRPS(F ,m) =

∫
D(m)

(F(x)− 1m<x)
2

dx , (15)

where F is the cumulative density function of the MAP points,
in our case obtained from Ns = 100, and 1 is the Heaviside
function centered on the true value of the parameter, m.
The CRPS score is in units of m: higher value indicates
probability mass away from the true value and hence worse
outcome. CRPS is zero if the density of the MAP points
is a Dirac centered on m. The results on the marginals
of the three parameters are displayed in Figure 4. From
these graphs we observe that larger load perturbations L and
smaller measurement error σm correspond to smaller CRPS
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tf
m1 m2 m3 #iter τ Err p1 p2 p3

(a) ∆t = 0.01, ∆obs
t = 0.05

5.0 23.60 / 23.60 6.35 / 6.37 3.02 / 3.00 15 1.59e-02 / 1.79e-02 5.17e-03 0.1679 0.1484 0.5804
3.0 23.79 / 23.81 6.39 / 6.41 3.06 / 3.05 9 1.85e-02 / 2.04e-02 1.01e-02 0.9659 0.4163 0.8470
1.0 23.56 / 23.55 6.32 / 6.32 3.06 / 3.06 14 3.60e-02 / 3.66e-02 1.30e-02 0.4019 0.2384 0.7423
0.8 23.67 / 23.63 6.54 / 6.53 2.95 / 2.95 11 5.81e-02 / 5.80e-02 1.76e-02 0.5123 0.7314 0.2295
0.6 22.45 / 22.45 6.14 / 6.13 3.01 / 3.00 10 9.43e-02 / 9.29e-02 3.74e-02 0.1924 0.2337 0.4892
∆obs

t (b) tf = 1, ∆t = 0.01
0.01 23.25 / 23.23 6.29 / 6.28 2.97 / 2.97 12 1.65e-02 / 1.67e-02 1.56e-02 0.0078 0.0195 0.1641
0.02 23.81 / 23.76 6.50 / 6.49 3.00 / 2.99 12 2.34e-02 / 2.36e-02 9.79e-03 0.7635 0.8897 0.4218
0.05 23.56 / 23.55 6.32 / 6.32 3.06 / 3.06 14 3.60e-02 / 3.66e-02 1.30e-02 0.4019 0.2384 0.7423
0.10 22.91 / 23.87 6.42 / 6.43 3.06 / 3.04 13 4.82e-02 / 4.89e-02 1.11e-02 0.7332 0.5607 0.6522
0.35 23.53 / 23.52 6.23 / 6.21 2.98 / 2.98 11 9.04e-02 / 9.08e-02 1.69e-02 0.4297 0.2452 0.4412

TABLE I
A STUDY OF THE EFFECT OF THE TIME HORIZON AND MEASUREMENT FREQUENCY ON THE ABILITY TO RECOVER THE INERTIA PARAMETER FOR THE

POWER GRID INVERSE PROBLEM.
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Fig. 3. Left: Surface plot of the trace of the Gaussianized posterior covariance as a function of noise and load for tf = 2s. Right: A “whiskers boxplot” of
the prior and posterior mean and variances for load and noise values (7,0.1) and (4.25, 0.01) for the three inertia parameters. The central mark is the median,
the edges of the box are the 25th and 75th percentiles and the “whiskers” extend to the most extreme data points.

and thus more accurate estimates. This behavior is similar
to the posterior variance discussed above, which is another
validation for our statistical model.

C. Computational analysis

We now discuss the computational cost for the two methods
presented in this study. The adjoint method requires the
value of the full nonlinear model and its gradient for each
iteration. Additional iterations may be required in the line-
search procedure. The number of forward and adjoint solves
for selected cases is listed in Table II. For these simulations
we used tf = 2s, ∆t = 0.01, and ∆obs

t = 0.1. The iterations
for these simulations were terminated when the norm of the
gradient fell below 10−6. To compare the adjoint method cost
with the stochastic spectral method, we need to account for
the cost of computing the adjoint, which is roughly the same
as in the forward run. In addition to the computational time,
however, the stochastic spectral element method has the ad-
vantage of working without sensitivity information. Given the
considerable amount of legacy dynamics software for which
adjoints would be labor-intensive to implement, this could
confer it an important practical advantage. Moreover, the has
the advantage that the variance can be naturally estimated with
no additional cost, whereas the adjoint approach would need
either finite differences or second-order adjoints to compute
the covariance.

In Table III we show the costs of constructing surrogate
models using different approaches. In Table IV we show

the MAP results using different orders of surrogate models
constructed by different methods. Clearly, the accuracy is sig-
nificantly improved when we increase the order of polynomial-
chaos expansion from 1 to 2, but the improvement is marginal
when we use third-order polynomial-chaos expansions. From
these tables we see that we can obtain good-quality estimates
of the parameters and their variance using only 10 forward
runs (degree 2) when using the stochastic testing approach.
This is less intensive than the adjoint-based method by a factor
of about 2.

1) Challenges as we increase the number of parameters
and the complexity of the problem: The adjoint method has
two major requirements: (1) code differentiation, that is, the
computation and implementation of derivatives such as the
ones in (8), and (2) storing the forward trajectory through
checkpoints. Because only a few thousands of states need to be
stored if the time scales remain the same, even for interconnect
size examples this is unlikely to become a problem even
on a desktop. On the one hand point (1) is a significant
undertaking, although HPC tools such as PETSc increasingly
provide support for it natively. On the other hand, the cost
of the adjoint-based method is independent of the number of
parameters, and parallel implementations are also possible.

The stochastic spectral method proved to be robust in
our experimental setting, requiring few model evaluations to
construct a viable surrogate. In addition, all calculations can
be trivially parallelized, and a variance estimator is intrinsic.
Moreover, once a surrogate is obtained, one need not to
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TABLE III
TOTAL NUMBER OF FORWARD SIMULATIONS TO CONSTRUCT THE

SURROGATE MODELS.

polyn. order Total number of forward simulations.
stoch. testing tensor prod. sparse grid

1 4 8 7
2 10 27 19
3 20 64 39

regenerate it if the model and setting do not change. As
discussed above, however, when the parameter dimensionality
n is large, the number of simulation samples required can
be very large, leading to an extremely high computational
cost. Arguably one can obtain efficiently a high-dimensional
surrogate model by using some advanced techniques, such
as compressed sensing [30], tensor recovery [31], and proper
generalized decomposition [32]; but these do not remove the
exponential behavior with n.

While a definitive comparison between the two approaches
is difficult to make in general because of the multiple features
of the target problems, for a small number of parameters and
lack of sensitivity information, the stochastic spectral element
approach would be a strong candidate for a solution. For
our case, it did produce good estimates a factor of 2 faster
than the adjoint approach for the proper choice of degree
and construction method (though that would be difficult to
guarantee a priori).

2) Considerations about deployment: While this is only an
initial study, a practical implementation is worth considering.
In such cases the initial state and the load would need to be
inverted as well. Because these are classical analyses, a tiered
approach is possible, where they are estimated separately.
One can, of course, create a unified estimation approach with
hybrid data sources; a mix of PMU and other data, such as
SCADA, may need to be considered. While the performance
of the method would need itself to be re-evaluated, this can be
done in the Bayesian framework described in Section II. As
described, the method assumes that we have a way to identify
“micro-transients” suitable to trigger dynamical estimation.
This can be done for PMU data. The method can also be
modified to support any type of perturbation, as well as in a
“rolling horizon” approach, where it is not triggered but used
continuously. This can be done, for example, by restarting
the estimation with the prior covariance being the posterior
one from the previous estimation interval. We anticipate that
as long as the perturbations show enough dynamic range that
the method can excite transients that are informative about the
inertias, similar behaviors and performance can be expected. A
more significant concern is the ability to compute the estimate
in real time. We note that forward simulations for power grid
transients using PETSc on interconnect-sized networks were
run faster than real time with less than 16 cores [33]. There-
fore, for a few dynamic parameters to invert with uncertainty,
the stochastic spectral element method could in principle work
“out of the box”. For a large number of dynamic parameters to
invert, the issue is whether the optimization can be fast enough.
Certainly a promising directions is the usage of a rolling
horizon approach in conjunction with inexact optimization.

TABLE IV
MAP RESULTS USING DIFFERENT ORDER OF GPC EXPANSIONS (FOR TAB

1 ROW 1).

surrogate model gPC order m1 m2 m3

stoch. testing
1 22.818 6.745 2.248
2 23.600 6.372 3.000
3 23.611 6.351 3.021

SC w/ tensor prod.
1 23.751 6.420 2.973
2 23.585 6.374 2.991
3 23.618 6.347 3.026

SC w/ sparse grid
1 23.962 6.322 3.156
2 23.584 6.375 2.990
3 23.617 6.361 3.016

V. CONCLUSIONS

We have presented a Bayesian framework for parameter
estimation with uncertainty focused on the estimation of
dynamic parameters of energy systems. This investigation is
prompted by the rapid expansion of PMU sensors and the
increased usage of renewable generation whose inertia features
may change in time and may not be known to the stakeholder
that must ensure transient stability operation of the system.
For such systems, inertia cannot be assumed known and must
thus be estimated together with its uncertainty. Because inertia
has no impact on steady-state features of the system, it needs
transient scenarios under which to be estimated.

We have proposed two methods to compute the MAP
estimates and their variances: an adjoint-based method and
a stochastic spectral element method. The former has the
advantage that it can compute gradients of the log-likelihood
function in a time that is a constant factor of the one of the
forward simulation irrespective of the number of parameters
considered. This method was implemented in PETSc. The
latter has the benefit of needing no sensitivity capabilities,
of employing only forward simulations, and of providing an
intrinsic estimate of the variance. Its usage is focused on
the case of a limited number of parameters it can efficiently
invert. We have demonstrated these methods on a 9-bus
example case that is available for download [34]. The three
parameters to be estimated were the generator inertias. For
this example we have generated synthetic data of transient
behavior by perturbing the load and adding measurement noise
that we have used to assess the behavior of our approaches.
When applying our method we have found that estimation
time horizons of 1 s or more and data frequency of at least
10 samples per second were sufficient for the error to be
less than 2%, the posterior variance to be a good estimate
of the error, and some of the standard confidence intervals
to cover the real parameter (with the 3 standard deviations
ones always containing the real parameters). We have also
observed that, as expected, the error and posterior variance
decrease with increased system perturbation and decreased
measurement error. The computational effort was on the order
of 10 forward simulations for the stochastic spectral element
method and 30 forward simulations for the adjoint method.
For usage in larger systems under real time constraints, and
under realistic data streams and use cases, further work may be
necessary. Nevertheless, for the small parameter case the state
of technology is such that, with the use of parallel computing,



9

the stochastic spectral element method may already provide
sufficient capabilities.
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