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Outline 

 

 Motivating applications  

– stochastic optimal power flow  

– optimal power flow with dynamic security constraints 

 

 High-performance optimization solvers  

 

 Computational simulations 
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Economic dispatch models in power grid 

 Basis for the electricity distribution and electricity market 

 

 

 

 

 

 

 

 

 

 Answers critical questions such as: 

– What is the cheapest way to ramp-up generation to satisfy 
an increase in demand given the grid transmission limits 
imposed? 

– What are the electricity prices at each demand node given a 
certain demand? 
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Electricity dispatch under uncertainty 
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The sharp drops in wind power need to be   
forecasted well in advanced to give the thermal  
generators enough time to ramp up generation. 

Wind forecasting results in wind scenarios,  
requiring stochastic optimization  



Wind/solar (stochastic) economic dispatch model 
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Dynamically secure optimal power flow   

 Optimal power flow (OPF) is the economic model. 

– cost-optimal electricity generation subject to generation and transmission constraints 

– steady-state model accounts only for gradual (slow) changes 

 

 Transient stability (TS) analysis studies power system security following a major 
disturbance: loss of lines, generators, drastic changes in load, etc. 

 

 TS and OPF are widely used in power grid operations by the balancing authorities 
and transmission controllers, however as separate procedures. 

 

 Transient stability optimal power flow (TSOPF) ensures cost-efficiency and 
dynamical security 
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Case study – frequency stability under line fault 

 The simulation window is t=0 to t=1 second 

 Fault at Bus 7 from t=0.1 to t=0.3 seconds 

 Safe limits for frequency: [59.2 Hz, 60.8 Hz] 

7 

S. Abhyankar, V. Rao, and M. Anitescu, Dynamic Security Constrained Optimal Power Flow using Finite Difference Sensitivities. 
Proceedings of IEEE PES General Meeting, July 2014. 

OPF simulation TS-OPF simulation 



Constitutive equations for TS 
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Generator  
equations 
 

Current  
balance  
 

(2 eqns per bus) 

(7+2 eqns per generator) 

Frequencies stabilization: 



TSOPF with multiple contingencies 
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OPF: algebraically (closed-form) described 
 

TS: simulation-based with adjoint sensitivities 

 Dynamically secure  cost-optimal dispatch under multiple contingency 
scenarios 

 Mathematically formulated as 

 

 

 

 

 

 

 

 

 

 Decomposition patterns similar to stochastic optimization 

– complicating computational features come from the simulation-based 
constraints 

  



Stochastic programming  

 Two-stage stochastic programming with recourse (“here-and-now”) 

 

 

 

 

 

   
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Large-scale (dual) block-angular LPs 
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• In terminology of stochastic LPs: 
• First-stage variables (decision now): x0 

• Second-stage variables (recourse decision): x1, …, xN 

• Each diagonal block is a realization of a random variable (scenario) 

Extensive form 



Computational challenges and difficulties 

 May require many scenarios (100s, 1,000s, 10,000s …) to 
accurately model uncertainty 

 

 “Large” scenarios (Wi  up to 100,000 x 100,000) 

 “Large” 1st stage  (1,000s, 10,000s of variables) 

 

 Easy to build a practical instance that requires 100+ GB of 
RAM to solve 

Requires distributed memory 

 

 Faster than real-time solution needed in many applications 
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PIPS solvers suite for stochastic optimization 

 PIPS-IPM - interior-point method (IPM) - Mehrotra’s predictor-corrector  

– Polynomial iteration complexity:                 (worst-case theoretical bound) 

– Perform better in practice (infeasible primal-dual path-following) 

– Specialized parallel linear algebra  

 

 

 PIPS-NLP – filter line-search IPM 

– Reuses the linear algebra of PIPS-IPM 

 

 

 

 PIPS-S - revised simplex  

– Specialized parallel linear algebra  
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)(O nL

Newton’s Method

Solve Sequence of BPs with

NLP Barrier Problem

KKT Matrix



Stochastic, Robust, Network 

Optimal Control PDAE/DAE 

Stochastic+Network 

Stochastic+Network+PDAE 

PIPS suite for structured optimization 



Linear algebra of primal-dual interior-point methods  
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Special Structure of KKT System (Arrow-shaped) 
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The matrix                                                     is the Schur-complement 
of the diagonal                         block.  

Block Elimination 
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Multiply row i by                      and sum all the rows to obtain    



Solution Procedure for KKT System – a compact view 
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Implementation - implicit (block) factorization 
 Uses the arrow shape of H 

 

 

 

 

 

                                                                                         

 1.Implicit factorization                                        2. Solving Kz=r           

 

                                                           2.1. Back substitution           2.2. Diagonal  Solve 
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Parallel computational pattern 
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High-performance computing 

 Hybrid parallelism: MPI+OpenMP or MPI+GPU or MPI+MPI 

 

 Supercomputers: IBM BG/P and BG/Q (Argonne), Cray XE6, XC30 (Swiss National   
Computer Center), and XK7 (Oak Ridge), 

 

 Many incremental algorithmic and implementation developments over the years  

 

 

 

 

 

 

 

 

 Economic dispatch for the State of Illinois power grid: 2522 lines, 1908 buses, 870 
demand buses, 225 generators. Wind capacity is 17%. 

 

21 

Petra et al., “Real-time Stochastic Optimization of Complex Energy Systems on High Performance Computers,” 
IEEE Computing in Science & Engineering (CiSE), 2014 

Petra et al., “A preconditioning technique for Schur complement systems arising in stochastic optimization,” 
Journal of Computational Optimization and Applications, 2012. 

Lubin et al., “On the parallel solution of dense saddle-point linear systems arising in stochastic programming,” 
Journal of Optimization Methods and Software, 2012. 

Petra et al., “An augmented incomplete factorization approach for computing the Schur  

complement in stochastic optimization,” SIAM Journal on Scientific Computing, 2014 

Petra et al., “Scalable Stochastic Optimization of Complex Energy Systems,”  in SC'11. 



Strong scaling efficiency 
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The instance used in the XK7 runs has 4.08 billion decision variables 
and 4.12 billion constraints. 



Weak scaling efficiency 
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Largest instance has 4.08 billion decision variables and 4.12 billion constraints. 



Solve to completion – UC12 on BG/P 

Nodes/scens Wall time (sec) IPM Iterations Time per IPM 
iteration (sec) 

4096   3548.5 103 33.57 

8192   3883.7 112 34.67 

16384  4208.8 123 34.80 

32768 4781.7 133 35.95 
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In addition to implementation, the algorithm is also scalable 



Time-to-solution multicore speed-up 
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Compute SC time, UC24 – XC30 

Compute SC Times, UC12 – BG/P 



TSOPF – only incomplete Hessian is available 
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OPF: algebraically (closed-form) described 
First and second order derivatives readily 
available (AutoDiff or hand coding) 

TS: simulation-based with adjoint sensitivities 

(one adjoint solve) 

(one DAE solve) 



Structured secant updates for incomplete Hessian 

 Want an approximation of the Hessian that uses the available Hessian, namely 

 

 

 Secant equation – match only missing curvature 

 

 

 Proximity criteria – the tricky part 

– Enforced for           or for           ?  

 

 Insight from the trace-determinant variational characterization: a minimal 
deterioration of the eigenspectrum of the Hessian (DFP) or inverse Hessian 
approximation (BFGS) occurs if proximity is enforced on         . 

 

27 



Deriving the structured BFGS update 
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To derive an analytical solution take 

Then write 

H is a projection on a linear subspace (Dennis et. al. (1979), Guler et. al. (2009)) given by 

Using Sherman-Morison-Woodbury to derive a formula for the inverse of H leads to 

Notation: 



A structured quasi-Newton method 

 We use the framework of line-search methods 

 

 Hereditary positive definiteness via a modified version of Wolfe conditions  

– algorithm still globally convergent  

 

  Superlinear convergence proved under the assumption of Lipschitz continuous 
Hessian 

 

 These are standard convergence results for quasi-Newton methods with secant 
updates 

 

 Provably better than general quasi-Newton when the unknown part of Hessian is 
low-rank 
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C.G. Petra, N. Chiang, Structured secant updates for unconstrained optimization with incomplete Hessian 
information. In preparation. 



Numerical results on CUTEst test problems 

30 

Figure 1: Performance profiles for nonlinear unconstrained CUTEst problems: left plot for problems 
with full-rank missing Hessian terms, right plot for low-rank missing Hessian terms. 



31 

A HPC study of the economic impacts of wind correlation 
on power dispatch operations 



How should ISO integrate wind scenarios? 

 Approach 1: Receive power bids from wind farms that are based on 
independent forecasting, therefore, wind correlation is lost (indep.) 

 Approach 2: Centralized wind forecast at the ISO level (corr.) 

 

 A simplistic model: 3 generators (2 wind farms and 1 thermal 

 Power outputs of the wind farms are                            and                           , and 
the correlation is 

 

 

 The optimal dispatch cost is an increasing function of the correlation   !  
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What about real-world large-scale power grid systems? 

 Simulation framework based on PIPS-IPM 

 Illinois power grid: 2522 lines, 1908 buses, 870 demand buses, 225 generators, of 
which 32 are wind farms. Wind “installed” capacity is 17%. Adoption in around 15%. 
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Weather forecasting @ Argonne 
HPC simulation – 30 samples in RT 

(E. Constantinescu) 

Gaussian distribution of 
wind speeds 



Biases in dispatch cost – independent vs. centralized 
whether forecasting 
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 1.42% bias/gap ($10,967 per trading period, potentially $100 million/year) 

95% confidence intervals for the dispatch cost for predicted and realized costs, each with 
(Corr) and without (Indep) correlation information 

“Bias” in 
dispatch cost 



Electricity market implications 

 “Bias” is also present in the ahead prices. 

 Opportunities for market arbitrage for players with better covariance information.  
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95% confidence intervals for prices at a typical bus  

Gap in prices 
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Thank you for your attention! 
 
 
 

Questions? 


