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Outline  

 Economic dispatch models in power grid 

 

 Parallel solver for stochastic optimization – PIPS-IPM 

 

 Modeling framework - StochJuMP 

 

 Covariance estimation and impact on optimal  

– Motivation 

– State of Illinois’ power grid simulation 
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Economic dispatch models 

 Basis for the electricity distribution and electricity market 

 Used by all Independent System Operators (ISOs) in the US. 

 In the simpler form, for direct currents, is formulated as a linear programming 
problem 

 

 

 

 

 

 

 

 

 For alternating currents (AC), it takes the form of power flow, a nonlinear 
programming problem 
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Stochastic dispatch models 

 Adoption of highly volatile renewable energy and randomness in demand requires 
stochastic formulations 

 Cost-optimal decision in the presence of uncertain generation/demand 

 Two-stage linear stochastic programming with recourse: “energy only” model 
(Pritchard, Zakeri, Philpott, 2010) 

 

 

 

 

 

 

 

 

 Two-markets: “ahead”, decisions/prices to be taken-now and “realtime”, scenario-
specific adjustments in decisions/prices. 

 The model is ISO revenue adequate (no “missing money”). 
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PIPS-IPM - parallel solver for stochastic optimization  
 



Optimization under uncertainty 

 Two-stage stochastic programming with recourse (“here-and-now”) 

 

 

 

 

 

   
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Large-scale (dual) block-angular LPs 
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• In terminology of stochastic LPs: 
• First-stage variables (decision now): x0 

• Second-stage variables (recourse decision): x1, …, xN 

• Each diagonal block is a realization of a random variable (scenario) 

Extensive form 



Computational challenges and difficulties 

 May require many scenarios (100s, 1,000s, 10,000s …) to 
accurately model uncertainty 

 “Large” scenarios (Wi  up to 250,000 x 250,000) 

 “Large” 1st stage  (1,000s, 10,000s of variables) 

 Easy to build a practical instance that requires terabytes of 
RAM to solve 

Requires distributed memory 

 

 Solution approach: interior-point methods (IPM) 
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Linear algebra of primal-dual interior-point methods (IPM) 
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Special Structure of KKT System (Arrow-shaped) 
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Solution Procedure for KKT System – a compact view 
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Parallel computational pattern 
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Implementation considerations 

 

 Codename: PIPS-IPM 

 C++ code based on OOQP optimization solver (S. Wright & M. Gertz, ANL 2003) 

 Hybrid parallel: MPI+OpenMP/GPU. 

 

 Data matrices are sparse 

 

 Direct (sparse and dense) factorizations are needed 

– saddle-point linear systems: symmetric but indefinite 

– increasingly ill-conditioned as the optimality is approached. 

 

 Second-stage linear systems handled with off-the-shelf sparse linear solvers 
(MA27/57/86 or PARDISO, other can be adopted as well) 

 

 The dense Schur complement is solved using LAPACK/MAGMA. 
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Incomplete augmented factorization technique 

14 

                        UC24 – XC30                UC12 – BG/P 

12

2

11

2 2

1

1 2

1

20

0

0

T

i i

i

K L U U

LB U

B

L

     
     
    

"Compute S.C." (Step 1): 1

22 22

T

i i iL U B K B 

Petra et al., “An augmented incomplete factorization approach for computing the Schur  

complement in stochastic optimization,” SIAM Journal on Scientific Computing, 2014 



Strong scaling 
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The instance used in the XK7 runs has 4.08 billion decision variables 
and 4.12 billion constraints. 

Petra et al., “Real-time Stochastic Optimization of Complex Energy Systems on High Performance 
Computers,” accepted to IEEE Computing in Science & Engineering (CiSE), 2014 



Algorithmic scalability 

Nodes/scens Wall time (sec) IPM Iterations Time per IPM 
iteration (sec) 

4096   3548.5 103 33.57 

8192   3883.7 112 34.67 

16384  4208.8 123 34.80 

32768 4781.7 133 35.95 
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 In addition to implementation, the IPM algorithm is also 

scalable 
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StochJuMP - parallel algebraic modelling for 
stochastic optimization  
 

J. Huchette, M. Lubin, C. Petra , “Parallel algebraic modeling for stochastic optimization,” High 
Performance Technical Computing in Dynamic Languages (HPTCDL), SC’14. 



Expressing and constructing the stochastic optimization 
problem 
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 Express the problem in a human-readible, mathematical format 

 Automatic transformation to the low-level format of the solver(s) 
 efficient and distributed-memory generation of the large models 

 

 

 

 

 

 

 

 

 

 

 The problem’s structure is passed transparently to the solver 

 



JuMP – modeling language for Mathematical 
Programming in Julia 
 Miles Lubin (MIT), Iain Dunning (MIT) 

 Julia – a fresh approach to scientific and technical computing 

 high-level, high-performance, open-source dynamic language for technical computing 

 keeps productivity of dynamic languages without giving up speed (2x of C/C++/Fortran) 

 JuMP - compact, easy-to-use AML in Julia for modelling LP/QP/MILP/MIQCQP 

 

 

 

 Macros instead of operator overloading (known to have poor performance) 

 Efficient sparse internal generation and representation of the data 

 Nonlinear programming fully functional 
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StochJuMP - parallel algebraic modelling for stochastic 
optimization (Huchette, Lubin, Petra -2014) 
 Extension of JuMP for stochastic LP/QP/MILP/ MIQCQP 

 Interfaced with PIPS, runs efficiently on “Blues” LCRC cluster 

 Parallel, memory-distributed generation of the model 
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StochJuMP 

scalable 
compact 

efficient 
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On the role of wind covariance estimation in power 
grid dispatch – a case study using PIPS-IPM 



Integrating wind samples in the economic dispatch model 

 The probability distributions are usually not known, and sampling is used 

 Numerical weather forecasting is needed to obtain wind samples. 

 Approach 1: Wind farms bid energy based on their own, independent forecasts. The ISO 
then considers all the scenarios in the ED model. 

– Correlation among wind farms is lost 

– An exhaustive list of scenarios leads to a gigantic ED problem. Not clear how to bundle 
scenarios to reduce dimensionality. 

 Approach 2: Centralized forecast at the ISO level 
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 Here we show that Approach 2 should be considered: ignoring or missing correlation 
information leads to inefficient dispatch and pricing.  



Motivating example – role of correlation in dispatch 

 A very simplistic model: 3 generators (of which 2 wind farms and 1 thermal), 1 
demand node, no line constraints 

 Power outputs of the wind farms are                            and                           , and the 
correlation is     (                                                                            ). 

 

 How does correlation affect the optimal dispatch cost? 

 The optimization problem can be solved analytically, and the (expected) optimal 
dispatch cost is: 

 

 

 Here      and     are the cumulative distribution and probability distribution 
functions of  

 

 The optimal dispatch cost is an increasing function of the correlation    !  
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Motivating example - continued 

24 

 Not accounting for positive correlation leads 
to an “optimistic dispatch” (more wind power 
is thought to be available). 

  Ignoring negative correlations  results in an 
“pessimistic dispatch” (foreseen wind is low, 
therefore, more thermal generation is 
dispatched). 

 In both cases higher operating costs are obtained over time: 

– “optimistic”: predicted > realized, which requires expensive reserves 

– “pessimistic”: predicted < realized, cheap wind was not used and more (expensive) thermal 
generation than necessary was dispatched. 

 

 Also leads to arbitrage opportunities in the power market for participants that 
account or have better approximation of the correlation. 



Case study for the economic dispatch for Illinois grid 

 The network consists of 2522 lines, 1908 buses, 870 demand buses, 225 
generators, of which 32 are wind farms.  

 Wind “installed” capacity is 17%. Adoption in around 15%. 

 

 

 

 

 

 

 

 

 

 RBLW covariance matrix (“corr.”) vs diagonal covariance matrix (“indep.”) 

 

 Argonne’s BG/P and BG/Q platforms used in numerical simulations. 
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What about real-world large-scale power grid systems? 

 Analytical analysis of such complex systems is virtually impossible. 

 Computer simulations are needed. 
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Weather forecasting @ Argonne 
HPC simulation – 30 samples in RT 

(E. Constantinescu) 

Gaussian distribution of 
wind speeds 



Dispatch cost – correlation vs independent resampling 
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 1.42% gap or $10,967 (256 scenarios) 

 Gap can potentially add up to approx. $100 million over a year. 

95% confidence intervals for the dispatch cost for predicted and realized 
costs, each with (Corr) and without (Indep) correlation information 

Gap in 
dispatch cost 



Prices - correlation vs independent resampling  

 Gap also present in the ahead prices. 

 Opportunities for market arbitrage for players with better covariance information.  
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95% confidence intervals for prices at a typical bus  

Gap in prices 
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Thank you for your attention!  
 
 

Any questions? 
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Additional material 



Empirical Bayesian estimator 

 Again, n<<p 
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Stein’s SVD decomposition-based estimator 
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Shrinkage estimators 

 Estimators of the form 

 

 

 Where the parameters are chosen so that 

 

 

 

 Rao Blackwell Ledoit Wolf (2004) estimator 
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