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Outline 

 Motivating applications: energy applications 

 

 

 Parallel optimization solvers for stochastic optimization  

– PIPS solvers suite @ Argonne 

– Computational pattern of stochastic optimization 

 

 

 Modelling stochastic optimization on HPC platforms 

– JuMP – algebraic modelling language for optimization embedded in Julia 

– StochJuMP extension of JuMP for parallel modelling 

– Technical details and numerical experiments 
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Stochastic optimization 

 Optimization under uncertainty: take an optimal decision now that depends on 

future, uncertain events (random variable) 

 

 

 Stochastic optimization: the “now”  hedges against all possible realizations of the 
randomness (by minimizing the expectation of the cost). 
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Electricity generation and dispatch under uncertainty 
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The sharp drops in wind power need to be   
forecasted well in advanced to give the thermal  
generators enough time to ramp up production. 

Wind forecasting results in wind scenarios,  
requiring stochastic optimization  



Two-stage stochastic programming with recourse 

 Wide range of applications 

 In energy: power grid/ natural gas operations, N-1 contingency analysis, 
generation expansion, transmission planning,  etc 
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Wind/solar (stochastic) economic dispatch model 
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Large-scale (dual) block-angular LPs 
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After taking a finite samples, problem reduces to a large deterministic problem 
known as extensive form 

Large instances with 1000s of scenarios could have billions of variables and 
constraints, requiring memory distributed parallel computing. 
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Parallel optimization solver(s) 



PIPS solvers 

 PIPS-IPM – stochastic LPs and convex QPs  

– Mehrotra predictor-corrector interior-point method (IPM) 

 

 PIPS-S – dual block-angular LPs (includes stochastic LPs) 

– Parallel implementation of revised dual simplex  

 

 PIPS-NLP – stochastic NLPs  

– Reuses PIPS-IPM linear algebra 

– Inertia-free  filter method (Chiang and Zavala, 2014)  

– Various structure-exploiting implementations (network, PDEs, etc) 

 

 Parallelization obtained at the linear algebra level 

 

 

9 



Parallel interior-point method implementation – PIPS-IPM 
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      When using an interior-point method to solve the extensive form, the 
linear systems are structured 

 

arrow-shaped linear systems 

(modulo a permutation) 



The matrix                                                     is the Schur-complement 
of the diagonal                         block.  

Schur complement decomposition of linear algebra 
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Block elimination    



Parallel computational pattern 
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Weak scaling efficiency – Titan @ Oak Ridge National Lab 
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Largest instance has 4.08 billion decision variables and 4.12 billion constraints. 



Strong scaling – Titan and “Piz Daint” (@ Swiss National 
Computing Center)  
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The instance used in the XK7 runs has 4.08 billion decision variables 
and 4.12 billion constraints. 
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Structure-exploiting solvers generally scale. 

 
                   
 
                     How about modelling? 



Modelling structured optimization problems on high 
performance computing (HPC) platforms 

 Algebraic modelling language/framework 

– easy-to-express syntax, similar to the mathematical abstractions 

– “high performance” 

• scalable and efficient models generation in parallel (data distributed and localized) 

• code speed – ideally C/Fortran speed 

• minimum I/O 

– transparently passes structure to the optimization solver  

– quick development;  easy to specialize and/or extend  

– plug-and-play with optimization solvers (generally Fortran, C, C++ codes) 

 

 Existing modelling frameworks with parallel capabilities: SML (Grothey et al., 
2009), PySP (Watson et al, 2012), PSMG (Qiang and Grothey, 2014) 
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Our approach is to extend JuMP  

 JuMP - open-source algebraic modeling language for mathematical programming 
embedded in Julia (Miles Lubin, Iain Dunning, Joey Huchette – MIT)  

 

 Solver-independent, extensible, domain-specific language with “optimization 
syntax” 

 

 JuMP exploits advanced language features of Julia 

– Metaprogramming, not operator overloading 

– Just-in-time compilation 

– Excellent connections to C/Fortran libraries 

– Optional typing, multiple dispatch 
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JuMP’s expressiveness and speed 
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StochJuMP - parallel algebraic modeling for stochastic 
optimization 

 Technical approach: built as an extention on top of JuMP – very little extra code 

 Uses JuMP’s extension system to reuse data structures (and code!) 

– Each scenario subproblem is a JuMP model 

 

 

 Minimal language constructs: StochasticModel, StochasticBlock  

 

 

 Generic: usable with any solver, given backend glue code 
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The full stochastic economic dispatch model for the State 
of Illinois 
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Parallel model generation and interfacing with PIPS-IPM 

 Data is localized: processes only generate data for scenarios assigned to them. 

 

 

1. Convert abstract JuMP model to problem data (before calling out to PIPS-IPM) 

2. Construct thin Julia wrapper functions to copy local data to PIPS buffers 

3. Initialize PIPS-IPM and provide the MPI communicator  

4. Pass “C” functions to PIPS-IPM via cfunction 

5. Call PIPS-IPM solve function 

6. Post-solve analysis (in Julia) 
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That’s it! No Magic. 
 

 
- 300 lines of Julia code 
- 2 weeks of work, but only because the 2014 World Cup was in progress  

                  
 
                      



Computational results 
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Modelling also scales. 

Figure: Weak scaling study from 4 to 2048 cores 



Computational results - continued 
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Model generation always less than 1.5% of solve time (and typically less) 



Future work 

 Extending StochJuMP to nonlinear stochastic optimization 

– Automatic differentiation is needed (already in place in JuMP)  

 

 

 Develop other domain specific (modelling) languages in Julia/JuMP 

– dynamic optimization (a.k.a optimal control) 
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Thank you for your attention! 
 

Questions? 



 

 

 

 

Additional slides 
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Economic dispatch models 

 Basis for the electricity distribution and electricity market  

 

 

 

 

 

 

 

 

 Answers critical questions such as: 

– What is the cheapest way to ramp-up generation to satisfy a foreseen increase in demand 
given the grid transmission limits imposed? 

– What are the electricity prices at each demand node given a certain demand? 
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