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Outline  

 Economic dispatch models in power grid 

 

 Stochastic optimization models 

 

 Wind volatility, weather forecasting and (re)sampling 

 

 Covariance estimation and impact on optimal dispatch 

– Simple model 

– Simulation of economic dispatch for Illinois power grid 

 

 Conclusions 
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Economic dispatch models 

 Basis for the electricity distribution and electricity market 

 Used by all Independent System Operators (ISOs) in the US. 

 In the simpler form, for direct currents, is formulated as a linear programming 
problem 

 

 

 

 

 

 

 

 

 For alternating currents (AC), it takes the form of power flow, a nonlinear 
programming problem 
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Stochastic dispatch models 

 Adoption of highly volatile renewable energy and randomness in demand requires 
stochastic formulations 

 Cost-optimal decision in the presence of uncertain generation/demand 

 Two-stage linear stochastic programming with recourse: “energy only” model 
(Pritchard, Zakeri, Philpott, 2010) 

 

 

 

 

 

 

 

 

 Two-markets: “ahead”, decisions/prices to be taken-now and “realtime”, scenario-
specific adjustments in decisions/prices. 

 The model is ISO revenue adequate (no “missing money”). 
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Integrating wind samples in the economic dispatch model 

 The probability distributions are usually not known, and sampling is used (     is finite in 
practice). 

 Numerical weather forecasting is needed to obtain wind samples. 

 Approach 1: Wind farms bid energy based on their own, independent forecasts. The ISO 
then considers all the scenarios in the ED model. 

– Correlation among wind farms is lost 

– An exhaustive list of scenarios leads to a gigantic ED problem. Not clear how to bundle 
scenarios to reduce dimensionality. 

 Approach 2: Centralized forecast at the ISO level 
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 Here we show that Approach 2 should be considered: ignoring or missing correlation 
information leads to inefficient dispatch.  



Motivating example – role of correlation in dispatch 

 A very simplistic model: 3 generators (of which 2 wind farms and 1 thermal), 1 
demand node, no line constraints 

 Power outputs of the wind farms are                            and                           , and the 
correlation is     (                                                                            ). 

 

 How does correlation affect the optimal dispatch cost? 

 The optimization problem can be solved analytically, and the (expected) optimal 
dispatch cost is: 

 

 

 Here      and     are the cumulative distribution and probability distribution 
functions of  

 

 The optimal dispatch cost is an increasing function of the correlation    !  
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Motivating example - continued 
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 Not accounting for positive correlation leads 
to an “optimistic dispatch” (more wind power 
is thought to be available). 

  Ignoring negative correlations  results in an 
“pessimistic dispatch” (foreseen wind is low, 
therefore, more thermal generation is 
dispatched). 

 In both cases higher operating costs are obtained over time: 

– “optimistic” case potentially ends in using expensive power from the reserves to replace 
the wind that was predicted but not realized. 

– “pessimistic” case has higher dispatch cost since more thermal generation than necessary 
is dispatched. 

 

 Also leads to arbitrage opportunities in the power market for participants that 
account or have better approximation of the correlation. 



A framework for stochastic economic dispatch  

 What about real-world large-scale power grid systems? 

 

 Analytical analysis of such complex systems is virtually impossible. 

 Computer simulations are needed. 

 

 Weather forecasting is integrated with decision making under the same 
computational framework.  

 

 

 

 

 

 

 Wind samples using WRF, resampling using shrinkage estimators (more later). 

 PIPS (Petra et all) - parallel optimization solver for high performance computing 
platforms (BG/P, BG/Q, Cray XE6, XC30, XK7). 
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Wind forecast 

 Weather forecasting @ Argonne (E. Constantinescu) 

 

 

 

 

 

 

 

 

 

 

 WRF (Weather Research and Forecasting) Model 

– Real-time grid-nested simulation using atmospheric models 

– Done on high performance computing platforms but still computationally expensive 

– Only 30 samples or less can be obtained  in times compatible with operational practice 
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Covariance estimation 

 A small number of samples may not accurately capture the uncertainty. 

 We assume Gaussian distribution of wind speeds and resample to generate more 
samples. 

 The statistical problem: estimate the covariance matrix Q a random p-dimensional 
vector based on a number of n samples 

–                                                                are the samples  

– Let                                                                    denote the sample mean  

– An estimator of the covariance matrix would then be 

 

 

 

 Estimating covariance matrix is an issue in this situation since the number of 
samples (n=30) is smaller than the number of random variables (p=O(100)). 

 

 

 

 

10 



Shrinkage estimators 

 Estimators of the form 

 

 

 Where the parameters are chosen so that 

 

 

 

 Rao Blackwell Ledoit Wolf (2004) estimator 
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Validation on an Autoregressive process (AR) 
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Stochastic ED as (dual) block-angular LPs 
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• Easy to build practical instances having billions of decision variables 
and constraints 

    Requires distributed memory computers 
• Real-time solution needed in power grid applications 

 

Extensive form 



Interior-point optimization solver - PIPS 
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Two-stage SP 

arrow-shaped linear system 

(modulo a permutation) 

Multi-stage SP 

nested  

S is the number of scenarios 

2 solves per IPM iteration 
  - predictor direction 
  - corrector direction 



Special Structure of KKT System (Arrow-shaped) 

15 



The matrix                                                     is the Schur-complement 
of the diagonal                         block.  

Block Elimination 
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Multiply row i by                      and sum all the rows to obtain    



Parallel Solution Procedure for KKT System 

 Steps 1 and 5 trivially parallel 

– “Scenario-based decomposition” 

 Extra care needed for computational bottlenecks 2, 3, and 5: multithreaded 

or GPU accelerated linear algebra, tuned coomunication, etc. 

 Realtime is achieved using with an augmented incomplete factorization 

coupled with BiCGStab (to speed-up 1).     
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PIPS performance (Petra et al., 2013) 
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The largest instance has 4.08 billion decision variables and 4.12 billion constraints. 

 C++ code, MPI+OpenMP, runs on a variety of high performance computing 

platforms: IBM BG/P-Q (Argonne), Cray XK7 (Oak Ridge), Cray XE6 and 

XC30 (Swiss National Computing Centre) 



Simulations of State of Illinois’ power grid 

 The network consists of 2522 lines, 1908 buses, 870 demand buses, 225 
generators, of which 32 are wind farms.  

 Some of the wind farms are hypothetical and replace coal generators. 

 Wind “installed” capacity is 17%. Adoption in around 15%. 

 

 RBLW covariance matrix (“corr.”) vs diagonal covariance matrix (“indep.”) 

– Dispatch cost 

– Ahead/realtime prices 

 

 Both dispatch cost and the prices are random under the resampling scheme, 
therefore we compute confidence intervals. 

 

 A problem with 256 scenarios has a little bit less than 1 million variables and 1 
million constraints.  

 

 Used Argonne’s BG/P “Intrepid” and BG/Q “Mira” platforms for computing 
confidence intervals. 
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Dispatch cost – correlation vs independent resampling 
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95% confidence intervals for the dispatch cost  

 The smallest gap, 1.42% or $10,967 that occurs for batches of 256 scenarios can 
potentially add up to approx. $100 million over a year. 

 The gap does not seem to close as the number of scenarios increases. 

 About 256 scenarios seem to offer a decent approximation (std. dev. is 0.36%) 



Prices - correlation vs independent resampling  

 As expected from the previous slide, the prices computed with correlation 
information are higher than the prices computed with no correlation. 

 Realtime prices are about the same magnitude. 

 Opportunities for market arbitrage for players with better covariance 
information.  
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95% confidence intervals for prices at a typical bus  



Conclusions 

 Improper correlation estimation leads to inefficient pricing  and higher dispatch 
costs, negatively impacting social welfare. 

 

 We advocate for centralized weather forecasting in power grid dispatch. 

 

 Better covariance estimation potentially leads to more efficient pricing.  

 

 

 

 

 

 

 Details in C.Petra, E.D.Nino, V.Zavala, M.Anitescu “On the correlation of wind 
covariance estimation in economic dispatch models”, to be submitted to IEEE 
Power Systems. 
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Thank you for your attention!  
 
 

Any questions? 
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Additional material 



Empirical Bayesian estimator 

 Again, n<<p 
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Stein’s SVD decomposition-based estimator 
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