Authorization Framework
1. Requirements

Two key enhancements to the GT4.0 authorization framework are to facilitate attribute/role-based authorization and to allow for a more flexible support for the fine-grained expression
 of the delegation of rights.

It is clear that attribute/role-based authorization is an important trend, and we see the requirements for our toolkit to support attribute assertions in all kinds of different formats, like ldap, SAML, X509 attribute certificates, resource properties, etc. As a consequence, we also see the need to communicate those attributes to the PDPs that will use the attribute values in their policy expressions to evaluate authorization decisions. In order to support truly pluggable PDPs, a standardized, canonicalized format for the attributes is required to communicate their values. Our attribute collection framework will gather the attributes obtained through the different mechanisms, translate them to a canonicalized format, and present them through a standardized interface to the different PDPs.

Delegation of rights is a crucial feature for Grid computing. Our present webservices security framework relies on the X.509-proxy-certificates to empower intermediates to work on behalf of the original requester. After a successful X.509 (proxy-)certificate-chain path validation, the subject of the end-entity certificate at the start of the chain is identified as the requester of the service invocation, and all subsequent authorization decisions are based on that original requester.

In order to allow alternative and more fine-grained mechanisms to express delegation of rights, like SAML and XACML authorization assertions, restricted proxy-certificates, or external PDPs, we are building a more sophisticated authorization processing framework. This framework will be able to find valid decision chains from original requester to resource owner through the evaluation of the different authorization statements expressed in the different policy languages. The authorization decision evaluation is obtained through a standardized, pluggable PDP interface that abstracts the different kinds of policy mechanisms. As a result, any mechanism-specific PDP will be able to contribute its evaluation result for the search of a valid decision chain that would allow the service request to proceed.

=
2. Overview
The authorization framework consists of an engine that uses a list of Policy Information Points (PIPs) to gather attributes about entities and a chain of Policy Decision Points (PDP) to evaluate whether a said action can be performed by an entity on the resource. An instance of the list of PIPs and chain of PDPs is referred to as an authorization chain. Authentication is done outside of this framework and request is forwarded to this framework upon successful authentication.
Any subject, resource or action is defined as an “entity.” Attributes are used to identify and describe these entities. Each attribute has a unique name/id, one or more values, issuer identity and some meta data about the attribute. The list of PIPs collect attributes about any entity. The attributes for a said entity are stored as a collection of attributes and made available to the PDP chain. The PDP may consider attributes of subject, resource and action in decision making process. For example, group membership of a subject, file in an RFT transfer, RSL in a GRAM job and so on. The engine evaluates each PDP depending on the algorithm configured. For example, in the case of a permit-override algorithm, the engine attempts to construct a decision chain from the requestor to resource owner and returns permit if such a chain can be established. The engine requests two types of decisions from each PDP: a) access decision, which determines if a subject can access a resource b) administrative decision, which determines if a subject can delegate access rights on a resource. Four types of decision maybe returned by each PDP and the PDP chain:
· Permit

· Deny

· Not applicable

· Indeterminate
The decision returned by each PDP on the chain has an expiration time associated with it and the minimum expiration time in the decision chain is associated with the authorization chain decision.
3. Policy Information Point
Each PIP in the authorization chain is used to collect attributes about any entity, not only the requestor, action and resource. The attribute value collected for one of the entities might depend upon the value of other entities. For example an attribute picked up for some subject might be that the “role” is “manager“, based on the action and resource of a particular data set access on a node. But the value of the “role” attribute might be different for the same subject if the action and resource are different, for example when running a job on the node.
Some PIPs might expose a (remote
) interface to allow for retrieving a particular set of attributes about a said entity. This functionality is useful to collect attributes on as-needed basis, while the authorization chain is being processed.
Each PIP might return a normalized representation of the collected attributes, in addition to the native representation. The former is required for the framework to be able to process the attributes to group them as a single set of attributes per entity and to be able to transfer these to remote PDPs. The
 PIP might convert only the identity attribute(s) to normalized format for the framework to associate the set of native attributes with the correct entity. But if the PIP is collecting attributes about the request entities, i.e. the requesting subject, action and resource, then it need not convert even identity attributes since that collection is separately identified by the framework and the PIP can just add to it.
4. Policy Decision Point

Each PDP returns an authorization decision given a requestor, action and resource and also has access to all the attributes collected by the list of PIPs. A PDP might callback to PIPs that expose an interface to get a particular attribute about an entity. This might be used for example to attempt to get a required attribute, prior to throwing a fault. This feature will require storing meta data about attributes, such as the PIP that is used to retrieve a particular attribute.
PDPs provide two types of decisions, one regarding access rights and another regarding administrative rights. Access rights involve PDP assessing if a said subject can perform a said action on a said resource. The administrative rights decision declares whether a said subject can delegate the right to perform a said action on a said resource to some other subject. In simple scenarios, the right to access might imply a right to delegate, in which case, both these decisions will be identical.
5. Authorization Engine
The authorization engine orchestrates the evaluation of the list of PIPs and chain of PDPs and enforces the decision rendered by the authorization chain. The framework can be configured with a bootstrap PIP that collects any attributes available about the requestor, action and resource. For example, if X509 authentication is used to access a WSRF compliant service, than a PIP that collects attributes like the X509 subject of the requestor, the operation that was invoked and the resource on which the operation was invoked can be configured. Another example is that it will place the time of access into an attribute of the action. The bootstrap PIP is different from the other PIPs in that it is expected to pick up attributes about the requestor, requested action and requested resource. The attributes collected by the PIPs are grouped as collection of attributes per entity and stored in a “context store” that is accessible to the PDPs also.
The PIP also collects a special set of attributes called the “environment attributes” that contain information that is not associated with any specific entity, but might be useful in the decision process. For example, the current time would be one such attribute.

The engine can be configured to use various “Policy Combining Algorithms” to process the decisions returned by individual PDPs. Examples of some such algorithms are:

· Deny override – if a “deny” is returned by any PDP in the chain, a deny is returned. If no PDP in chain returns deny, a permit is returned.

· Permit override – if a single permit decision chain is returned, a permit is returned. If no permit decision chain is found, deny is returned.

· First applicable – if a “permit” or “deny” is returned by any PDP, the decision is returned and rest of the chain is not evaluated.
The proposed engine has following processing steps:

5.1. Bootstrap PIP

This PIP, if configured, is used by the framework to retrieve attributes about the requestor, action, resource and environment. The collection of attributes returned for each entity are stored in the context and are then used in subsequent calls.

5.2. Administrative first applicable authorization chain

In this step the framework evaluates a configured authorization chain, with deny override as policy combining algorithm for the PDP chain. A permit or deny here, returns the decision and rest of the framework is not exercised. A “not applicable” here, leads to evaluating rest of the chain. “Indeterminate” is treated as an error and an exception is thrown. This phase is used to allow for an administrator configuration, like a site wide white or black list.
5.3. PIP list
The framework invokes each of the configured PIP to retrieve a collection of attributes about any entity the PIP knows. It then attempts to collapse the collection by matching identity attributes and grouping already collected attributes about an entity with those returned by the PIP. In the most naïve approach all the configured PIPs will be invoked one after another to collect attributes. Moreover, the whole PIP list will be evaluated each time a decision is requested.

Enhancements in PIP list processing:

· Threaded run:
Each PIP can be run on a separate thread. A synchronized wait thread waits for the threads to finish. A time limit can be set, such that any PIP that takes longer than the specified ceiling time to finish will be terminated. Attribute collapsing will need to be coordinated (likely by callbacks to the synchronized wait thread).
· Persisting
 collection of attributes:
The attributes collected can be persisted so that they can be re-used in subsequent runs. Based on the requestor’s identity attribute as key, the attributes stored for a given authorization chain can be retrieved.
If any one of the attributes has expired, the PIP list needs to be processed again. This feature can be sped up some more, by caching these attributes in memory. [[One thing that needs to be added to our thinking about caching: a mechanism needs to be developed such that the client can request that the current cache be cleared – what if it wants to switch to its other role in the VO?? Currently, in VOMS, this is taken care of by the user switching proxies and pushing new attributes. But this will not work if the attributes are cached.]]
If
 the attributes about an entity are collected in the context of values of attributes for other entities, then the key for retrieving the data would be collection of attributes for subject, resource and action. For example, a subject is a VO admin only if accessing a particular resource, but is a VO user for other resources.
· Persisting meta data about attribute collection:
Another enhancement would be to persist the PIP instance used to collect a particular attribute. In this case, if an attribute has expired, then only the PIP that was used to collect it needs to be run again.

An even further enhancement would be to pick particular PIPs to run based on only those attributes that were expired and useful to the authorization decision (this is only an “educated guess” of the framework, since a PDP might also base its decision on other factors, such as time of the access,
etc, so it will be able to be turned off).
5.4. PDP chain

The PDP evaluation if permit-override combining algorithm is used, is described in detail in the document
, “”, by Frank. Some notes from the document are listed below

· Right to access implies right to delegate

· Each PDP has an issuer of decision represented by subject DN and the framework interprets a decision returned by PDP as the issuer permitting or denying the subject access to resource.

· The resource owner and requestor are identified and treated as special subjects.

· Following checks can be eliminated:
No decision by requestor is relevant
No decision on self matters
No decision on resource owner matters.

· Any decision by resource owner on requestor is a final decision and stops further evaluation.

· Access chain is transitive (if I permits J, J permits K, then I permits K)

· The evaluation engine uses permit override mechanism.

· The engine attempts to identify a permit decision chain from the resource owner to requestor.

Enhancements to framework
· Delegate rights

An enhancement to PDP processing while constructing the decision chain would be to not assume that right to access implies right to delegate. Each PDP could be asked different question to determine if a subject has access and delegate rights.

· Persist decision rendered

Each decision rendered by an authorization chain, given a collection of attributes, can be persisted for use in subsequent calls. So prior to processing the PDP chain, the store can be looked up and if a valid decision exists, it can be used. This can be further enhanced by caching some of the decisions, so a look up to some persistent store is saved.

Caching the decision to not have to go to the persistence
 store each time.

6. Scenarios
6.1. Scenario 1
If we have an x509 EE cert for Rachana that is used for the authentication of her request, then after the x509 path validation, we end up with two attributes:
attr1 = Attribute (name="x509SubjectDN", value="CN=Rachana", identity=true)
attr2= Attribute(name=publicKey, value="#$%$^&$&Rachana&*^*&#", identity=true)

We "know" that both of these attributes are identity attributes for the entity, and we know they refer to the name entity, so we can add them to the same set:

entity1 = Set(a1, a2)

Furthermore, we "know" that this entity was associated with the "requester" of the service invocation, so we keep this special relationship by assigning:
theRequester = entity1

We also "know" what the request is in the form of a porttype, resource, action, such that we can fill-in

attr3 = Attribute(name="portType" value="fileTrabsferPortType")

attr4 = Attribute(name="resourceId", value="#%%@resrcId$$%#", identity=true)

entity2 = Set(attr3, attr4)

theResource = entity2

attr5 = Attribute(name="operation" value="uri:...read")

entity3 = Set(attr5)

theAction = entity3

Now we are ready to ask the question whether the resource is allowed to invoke the operation on the ws-resource. We do that through a function where we pass a list of all the attribute sets, and where we separately pass the references of the subject/resource/action entities:

decisionResult = accessPDP(List(entity1, entity2, entity3),

 theRequester,

 theResource,

 theAction)

If this would be a call-out, then you would pass the list of entities by value, and the subject/resource/action as references to one of the passed sets.
6.2. Scenario 2

Building on Scenario 1, suppose that an attribute assertion was pushed with the request or that an attribute service was configured to be called, and that the asserted attribute was a "group" with value "anl" and asserted through an signature signed by someone with an x509 EE cert with subject name "tim", then we would have the following in addition to the requestor, action and resource attribute collected from the X509 EE Certificate used to authenticate the request.
First we create a new entity for Tim, because we couldn't find any existing entity set that matched the following two identity attribute values:

attr6 = Attribute(

 name="x509SubjectDN",

 value="CN=Tim",

 identity=true)

attr7= Attribute(

 name=publicKey,

 value="#$%$^&$&Tim&*^*&#",

 identity=true)

entity4 = Set(attr6, attr7)

Then we can use this new entity in the new attribute as the issuer. The subject of the attribute assertion had CN=Rachana, so we can find that entity1 has a matching identity attribute with the same name/value, and we can subsequently add the new attribute to that set:

attr8 = Attribute(

 name = "group",

 value = "anl",

 issuer = entity4

entity1 = entity1.add(attr8)

and finally the PDP function call that would have Tim's entity added to the list, while Rachana's additional attribute was added to here entity's attribute set:

decisionResult = accessPDP(List(entity1, entity2, entity3, entity4),

 theRequester,

 theResource,

 theAction)

So even we don't know whether the new attribute will be used, or if the new entity will be used inside of the PDP function, we pass all we have.

6.3. Scenario 3

Building on Scenario 2, assume that Rachana also pushes an authorization assertion signed by Frank, plus another attribute assertion for Frank, signed by Tim.
Then the authorization assertion's signature will be validated, and the issuer will be known through its x509 cert, which in this case will yield yet another new entity:

attr9 = Attribute(

 name="x509SubjectDN",

 value="CN=Frank",

 identity=true)

attr10= Attribute(

 name=publicKey,

 value="#$%$^&$&Frank&*^*&#",

 identity=true)

entity5 = Set(attr9, attr10)

The new attribute assertion will have a subject that will match Frank, such that it should be added to the associated entity5, plus the issuer can be matched to Tim's entity4:

attr11 = Attribute(

 name = "group",

 value = "anl",

 issuer = entity4

entity5 = entity5.add(attr11)

Finally, the PDP call will look like:

decisionResult = accessPDP(List(entity1, entity2, entity3, entity4, entity5),

 theRequester,

 theResource,

 theAction)

Note that Frank's authorization assertion has also yielded a new PDP instance for that authorization statement that may or may not be called in subsequent PDP function call inside of the accessPDP call to find the delegation chains.

So that function call would look like:

theAdmin = entity5

decisionResult = adminPDP(List(entity1, entity2, entity3, entity4, entity5),

 theAdmin

 theRequester,

 theResource,

 theAction)
�Taken from Frank’s email. Needs to be reworded to suit this document.

�Should these be allowed only on PIPs that have remote access ? If not, how do you provide access to the PIP instance that retrieved the attribute.

�Note about not converting: [TF: add note here about our most recent mud conversation? – or at least a pointer to where that lives in the doc?]

�Tim’s comments on this: Right now in Shib, we re-run the attribute gathering if ANY of the attributes about the DN are expired – even if it was a still valid attribute that actually matched the policy. It wouldn’t be too difficult to record what attribute matched the policy and check that as well, the devil here is really how to communicate this in a standardized way from a PDP

�It should be keyed by the requestor, resource, and action identity attributes? (I’m assuming the resource and action attributes will also have the special Identity==true flag). This allows us to forget about the ambiguity created by some attributes being given to a requester based on what it is doing.

�Re. TJF6: I think this paragraph addresses it. If we decide to collect attributes based on context, we also need to rework framework to store it within that context. The document discusses it as an option, so augmenting that with this paragraph. Seem reasonable ?

�One thing about time of access – it is just an attribute of the action, and if you ran the framework in the less advanced manner (one attribute expires, run PIP list again), then technically you would always run it again, since the time-of-access attribute is ALWAYS expired on subsequent invocations.

�Add reference

�Leaving this in not to lose Tim’s comments

�How is #2 different than #1? And maybe the decision should go into the database as well – maybe they’ll never call again. Some sort of reaper will have to go through and check for expired decisions (as well as checking on the way out of the DB in case the reaper hadn’t swept yet and there was a race condition on the expiration time). Either way (DB or in memory) you’d need to reap, but the DB saves JVM mem even before reaping – thoughts? Too slow?

