1 Implementation

We outline the approach taken to implementing the new features required to implement our domain-specific resource management architecture. Specifically, we describe:

· Services for the creation, configuring, and management of accounts and account groups

· Extensions to GRAM allowing it to work with sandboxes created in this way

The current implementation makes the following assumptions:

The initial account and deployment domain is defined as one machine,

Tested for master/sub account relationship
1.1 Management of Dynamic Accounts and Account Groups

The RM agent design requires the existence of two kinds of entities: privileged entities (agents) and ordinary entities (e.g., clients that submit to those agents). In order to ensure both positive and negative enforcement of actions on those entities we will provide mechanisms mapping them to sandboxes with different privilege levels: master accounts and subsidiary accounts.
Specifically, the master account should be able to start and manage jobs in those ordinary accounts and give file ownership on files owned by the master account to those accounts so that only the owner account has read/write privileges on those files. We assume that a group of accounts has only one master and that a master account cannot itself be an ordinary account (i.e., have a master).

The accounts are represented as WS-Resources, thus allowing for inspection, lifetime management, property management (only quota at this point), and policy management (including access policy and management of account relationships). To support this, we implement two services per account domain: dynamic account factory (DAF) and dynamic account service (DAS).
The DAF implements the following methods:

· create Account, where the inputs are account request (time to live, quota, list of DNs that can submit to the account via master, whether a master or subsidiary account, and optionally either a list of subsidiary accounts or a pointer to master account). The output is an EPR to the account resource

· createAccountSet, where the input is an array of account requests comprising of input for a single master account and a set a subsidiary accounts for that master. The output is an AccountSetEPR data type (which contains a master EPR and set of subsidiary EPRs). First the subsidiary accounts are created and then the master account with EPR to each of the subsidiary accounts.

Although better authorization methods would in principle be possible, currently both calls are authorized via access control list (ACL).

The DAFS at start up creates a WS-Resource for each configured creation mechanism. This resource is used to carry state information relevant to the creation mechanism, like default time to live of accounts created, hosts it can create accounts and so on. In this implementation, two creation mechanisms are installed by default: Unix accounts and a test creation mechanism. The former uses underlying system commands in Unix to manipulate accounts, while the latter was a test mechanism that can be used to test the resource state management and lifetime management features of the service. The implementation is extensible to accommodate more different creation methods potentially including account leasing and others.
When account creation request is received by DAFS, the following actions happen. First, a WS-Resource is created for the account using the WS-Resource that represents the creation mechanism, which creates an account in a testbed-specific way. In the case of this implementation ir will be either a Unix system call to create new user account or a test resource that just creates a Java Object for the account. In the case of Unix accounts, a new Unix group is assigned to each newly created account, and the master of this account is added to that group (this is used to implement delegating file ownership).

In the second configuration step, execution policies are configured for the account as follows. The resource (host) level gridmap file (used by GRAM) is modified to allow execution in this account by the entity that created the account. Also, the list of DNs that can submit to the account via an RM agent is added to the RM agent ACL. We will have to allow the policy behavior to be easily extensible in the future.
Each resource that represents the account has a lifetime associated with it (either the requested lifetime or default lifetime for the creation mechanism). When the end of life is reached, the account is automatically shut down and the same steps as described in the deleteAccount bullet below is performed.
The EPR returned by the created account can be used to access the WS-Resource created for the account through the DAS.
The DAS implements the following methods:

· deleteAccount: account termination involves killing all processes running under the account (using GRAM to avoid surprises) cleaning the system, deleting the account and all relevant information from the system, and adjusting the gridmapfile.This again sho
uld be configurable in the future.
· setQuota/getQuota: manage quota settings on an account

· AddAuthzIdentity/removeAuthzIdentity: add or remove entities authorized to use this account according to the RM ACL

· addAccounttoGroup/removeAccountFromGroup: add/remove the account to g
roup with a specified master (master specified as input EPR),
· introspection: local account name, access policies and execution policies.

All account creation and termination operations are currently not logged by GT4 logging mechanisms because GT4 logging has not been implemented yet.
1.2 Extensions to GRAM

Creating multiple accounts will allow an entity (such as a VO agent) to create several accounts and submit as a chosen account. In order to allow an authorized Grid user to gain access as a specific local identity (master or subsidiary account) it is necessary to extend GRAM (pre-WS GRAM in our case) to add this “submit as” functionality. In addition, to allow for dynamic modifications, it is also necessary to add locking to the gridmapfile (?).
Another required extension is the ability for a client to delegate a chosen set of credentials to an executing job. This is done to support a scenario in which a client asks a VO agent to run a program on its behalf: the VO agent may have to use its privilege to start a program, but it is the original client’s credentials that need to be delegated to that program.
We have extended GRAM to implement those functionalities

1.3 Controlling Access to Resources

We implement file access control functions by using Unix groups. Each account is associated with a unique group that the master account is also a member of. When a file is first created, it is initially owned by the master account, which can then change the group to the group associated with a given account thereby giving the account access. The scalability of this solution is limited by the number of groups that a single account can belong to (currently to 16; although this could probably be extended it is not clear how high and there will always be a hard limit).
1.4 Prototype VO Agent
To demonstrate how the capabilities described above can be used to implement a VO agents, we implemented a very simple VO agent program.

The VO agent is installed in a master account (see 1.1) with MASTER DN master credentials. The account is configured with an agent-specific executable and a set of files owned by the agent.

The agent implements a simple interface whereby a client can ask the agent to execute N instances of an executable in separate accounts as long as N is below a certain number (this is a “throttling” policy implemented by the agent)
In the simple demo program a VO agent takes a program name and the The gridmapfile on the resource is initially configured with execution access for the clients and the master’s DN.
 As the accounts get created, the gridmapfile is modified to include entries allowing the entity creating them (the master DN) to map to those accounts (see section 1.1).

On receiving an eligible request (N<limit), the VO agent first creates N accounts to run in noting the client’s association with these accounts in VO agent’s ACL file (see section 1.1). Then, the agent gives access to a specific file to each of those accounts by changing the group ownership of the file to the unique group associated with this account (see section 1.3). Then the agent starts jobs in each of the newly created accounts as requested using master credentials and the GRAM “submit as” feature (see section 1.2). Then it delegates the client’s credentials to the jobs. The jobs write to the files that were made available to them. After the jobs finish, the agent changes file permissions back and the accounts are deleted. When the servicing of request is finished the VO agent returns control to the client.

The VO agent’s interface to the client could be potentially extended to include more of a dialogue: for example instead of deleting accounts, the VO agent could return a handle to an account to the client and use the account access mechanisms to enable different entities to execute in those accounts. This is based on specific needs and has not currently been implemented.

�What does this requirement mean ? As it stands today, the termination time is configurable. Does it means a way to increased it at some point in execution ?

�Not implemented todat

�The grid map file only needs master dn, since the submission to VO is not thro’ GRAM. As the execution continues, gridmap is modified to havecreating entiry (masterDN in this case) to new account mapping.

�VO agent could maybe also return the job contact if client is interested in using that (just another feature that could be based on specific need and not done today)

