Dynamic Accounts and Account Groups
(Draft)
About this document

This is an evolving document describing work in progress on dynamic accounts and account groups. The requirements here are motivated by the EGEE project.
This file is modified by Kate Keahey and Ian Foster.

1 Project Description

Unix accounts can be a useful mechanism for preventing interference between computations and (in some systems at least) for controlling and accounting for resource usage by those computations. For example, EGEE architects propose to run every independent task scheduled to a site within a separate account, to ensure that the (potentially hundreds of) tasks running at a site at the same time do not interfere with each other. 

To simplify such approaches, we propose to define and implement interfaces that allow accounts to be created and destroyed under program control. In addition to creating ordinary accounts, we will also create a master account which can exercise certain privileges over a group of ordinary accounts. Specifically, the master account should be able to allocate jobs to those ordinary accounts and give file ownership on files owned by the master account to those ordinary accounts so that only the owner account has read/write privileges on those files. We will assume that a group of accounts has only one master and that a master account cannot itself be an ordinary account (i.e., have a master).

In this campaign we will focus on providing infrastructure to dynamically create and manage accounts so that this relationship is maintained, i.e. any entity with Grid access to the master account has Grid access to the ordinary accounts in the master’s group. The ability to give files existing on the master account to other accounts in the group, whether by changing permissions on a shared file system or by copying, will be handled by other campaigns (see section X).

The purposes of this campaign are as follows:

1) To implement, test, and measure the performance of a account factory interface that provides operations for creating (and configuring) local (ordinary and master) accounts

2) To implement, test, and measure the performance of an account management interface that provides operations for inspecting, modifying, and performing lifetime management on individual accounts; and 

3) To extend and test the latest pre-WS version of GRAM to make sure that it can work with the generated gridmapfile.

The infrastructure will be tested on a target community testbed to make sure that it is in accordance with testbed policies
.

It is proposed that accounts be represented as WS-Resources, thus allowing for account inspection and lifetime management. 

We note that ultimately we may want to monitor and/or control the total number of resources allocated to a set of accounts. However, we do not address that requirement here.

2 Account Factory and Management Interfaces

The account factory interface will support the create_accounts operation. All requests will be authorized based on client Grid credentials. This authorization will be performed via the GT4 authorization callout, with policy initially expressed via an access control list.

The operations described below are limited to a specific account domain (i.e., cluster, or even a single host). The relevant policies and other changes to the Grid infrastructure (such as modifications to the gridmapfile) will be propagated across this domain.
2.1 Operation create_accounts
The create_accounts operation is defined as follows:

Input:

1) Number of accounts to create

2) Table of account configuration arguments for each account to be created (such as quota, see below)

3) Policy for each account specifying (a) a list of Grid identities that can map to this account (b) if the account is a master and if so over which ordinary accounts.

Input/Output

1) Table of account names/handles

Faults: tbd

The result of a create_accounts operation will be:

1. Interaction/modification to the local account management system creating the accounts themselves as well as configuring various things associated with the accounts (i.e., quota). This may take the form of something very simple (such as modification to passwd file) or something more complex such as leasing.
2. Creation of a stateful resource representing an account, and

3. Generation of policy for GRAM execution: currently the GT2 format gridmapfile. 

The gridmapfile will be modified as follows: (1) access policy will be added for every ordinary account as specified by the policy included in the create operation, and (2) access policy for every master account will be copied to every ordinary account. In order to avoid race conditions, gridmapfile will be locked by the factory, the WS-Resource managing the accounts, and GRAM.

The factory will also allow for the inspection of some default properties of the creation process, such as potentially (based on need): which hosts the account gets created on or initial creation time for a new account. The properties may be overridden by optional arguments to the account creation (tbd: to some extent depends on site policies).


Accounts will be represented as WS-Resource with stateful resources corresponding to each account. Its properties will describe: termination time, the local name of the account, other local information about the account (such as group associated with the account to implement file sharing scheme), information on whether master or ordinary account (if ordinary pointer to master), policy relevant to this account (access, and if master which accounts master over), other account properties to be determined in the context of a concrete testbed (e.g., quota).

The WS-Resource will provide interface allowing the management of an account: its termination as well as policy and configuration management. Specifically, policy management will allow an authorized user to change account access policy or modify group membership in the case of a master account. Configuration management will allow changing configuration parameters such as quota. 

Account termination will involve killing all processes running under the account, cleaning the system, deleting the account and all relevant information from the system, and adjusting the gridmapfile. All account creation and termination operations must be logged by GT4 logging mechanisms.

In order to provide consistency, step (2) of account creation should be applied to all the static accounts already in the gridmapfile. In fact, the dynamic account factory will be initialized by reading a gridmapfile. Although, this will represent all static accounts as resources and therefore allow a client to ask for related information, the clients will not be able to manage those accounts in any way. In addition to the gridmapfile, the factory will use another file for recovery purposes. This file will record account status static/dynamic as well as other additional information (time to live).

3 Account Group Management

An account can be added to a group by changing policy on the master account; this will lead to generating new entries in the gridmapfile. An account can be deleted from the group also by changing policy on the gridmapfile (here, we need to avoid deleting too much). For information about group membership the policy in master account can be looked up.

4 File Access Management

Processes executing in an account can be given a range of rights including access to files, databases, etc. In this project we focus on access to files: we want to be able to give and take away access to file to a local account.

Eventually it is desirable to do it via Grid tools (such as gridftp) as “giving access” could potentially involve copying a file. For now, we will assume that we are operating on shared directories. Using the “chown” command has many disadvantages (setuid problems, not relevant in many contexts). As an alternative we could apply ACLs or other techniques that still need to be explored.
The current working solution is to create a new group per account, have the master account own the files to begin with and manipulate the group access permission in order to “give” the file to a process. Apart from group creation, these actions need to be implemented by processes running under the master account that want to “give” objects to other accounts. 
5 Pre-WS GRAM

The second task of this campaign will be to test the latest pre-WS version of GRAM to (a) make sure that it can work with the generated gridmapfile and (b) extend it to allow submitting against a chosen account. Other adjustments (such as locking) will be required. There may be issues to resolve such as: when the account is terminated all the processes associated with it are killed; how should GRAM react to that? 

The pre-WS GRAM will be extended so that a client can submit jobs to run under a specific username. This scenario assumes that a Grid identity can map to more than one distinct local identity in the gridmapfile. Rather than modifying RSL or otherwise changing the protocol, we will send the local name of the account to be used as Subject in the contact string. The contact string will then later be examined by the gatekeeper to retrieve the account name and gridmapfile will be searched for a DN/account name match for authorization. If no name is specified the current functionality which returns the first match will be preserved. 

6 Future and related campaigns

1) Better authorization for account creation (not via ACL), may depend on improving the callout

2) Work with GT4 GRAM

3) Integrate with file sharing/copying functionality (the “chown” campaign)

4) Ultimately we may want to monitor and/or control the total number of resources allocated to a set of accounts. 

5) Higher-level service that will allow GRAM to request an account on behalf of the user and execute in that account either returning the account handle to the user or simply destroying the account after use.

7 Prerequsites

For verification of this implementation will need the following:

1) to identify a concrete testbed where the site policies permit deploying this infrastructure

8 Issues

1. Naming accounts. Originally the names were meant to be EPRs --- to allow clients to discover account properties etc. But now we are writing policies about the accounts, so EPRs don’t look particularly suitable: they don’t have canonical form (although we could come up with one), and besides in the same batch of inputs we could have both accounts to be created and policies to be written about those accounts. Working resolution: define a working canonical form.
2. Policy language. So far we have a total of two different policy statements; anything would do, but it might perhaps make sense to use a specific language. Working resolution: anything will do.
�What does this mean?

�What are the operations? What is the WSDL?




7/21/2004

