The document focuses mainly on the server side authorization framework. It is intended to provide a very brief design overview, but a more detailed explanation of the actual implementation to aid in development efforts.
Key changes from previous version
· Set of attributes is used to identify entities by the authorization framework.

· The authorization engine uses Java Security provider framework to allow different combining algorithms to be plugged in.

· An implementation of permit override combining algorithm, which looks for a permit decision chain, to allow for fine grained delegation of rights.
· Allow for user defined parameters in authorization modules.

Authorization Framework
1. Overview
Each authorization configuration consists of a list of interceptors, configuration parameters for them and a combining algorithm. There are three types of interceptors in the framework:
· Policy Information Point (PIP): Each PIP is an information collection point and collects attributes about various entities of interest. Each PIP should group together attributes about same entities and return a list of entities.

· Bootstrap PIP: These are PIPs that collect information only about the request i.e. the peer subject, requested action and resource. Typically these PIPs are run first in the authorization evaluation process, to build the request context.
· Policy Decision Point: Each PDP evaluates the request using some configured policy and returns a decision whether a said subject can perform a said action on a said resource. A PDP renders two kind s of decision: (a) whether a subject can perform an action on a resource (b) whether a subject can administer a resource to allow other subjects to perform some action on it. These are referred to as access decision and admin decision respectively.
Each authorization configuration consists of a list of Bootstrap PIPs, a list of PIPs and a list of PDPs. The collection of these is referred to as Authorization Chain

The combining algorithm determines how the decisions returned by each PDP is combined to determine whether the operation is allowed or not. The framework uses a Permit Override algorithm, with delegation of rights as the default combining algorithm.

An authorization chain, with combining algorithm, is used to create an AuthorizationEngine. The engine is initialized with an object, which provides access to parameters required by interceptors in the engine.
An authorization chain can be configured at resource, service and container level. The authorization chain to use is determined in the following order, depending on occurrence: resource, service and container.

In addition to configuring authorization at resource, service and container level, there is also an administrator authorization configured at container level. This is evaluated using the "First Applicable" combining algorithm.

1. Authorization Handler Steps

1.1. Invoke Container PIP to collect attributes inherent to the framework

1.2. Evaluate the administrator authorization engine, if one is configured

1.2.1. If bootstrap overwrite is configured, then only BootstrapPIPs in administrator engine is invoked. Else the X509BootstrapPIP is invoked prior to any other Bootstrap PIPs configured.

1.2.2. The authorization engine is run and if a deny decision is returned, the operation is denied. If a permit decision is returned, the operation is permitted. If a not applicable or indeterminate is returned, further authorization engines are evaluated.

1.3. Evaluate the authorization engine configured in the resource, service, container, in that order depending on which is configured

1.3.1. If bootstrap overwrite is configured, then only BootstrapPIPs in administrator engine is invoked. Else the X509BootstrapPIP is invoked prior to any other Bootstrap PIPs configured.

1.3.2. If any decision other than a Permit is returned, the operation is denied. If a permit is returned the operation is allowed.

1.4. If no authorization engine was configured, then default authorization engine is created, which checks whether the caller has same credentials as service (self authorization)

2. Details about Authorization Engine

2.1. Bootstrap PIP: The input to the collect method is a RequestAttributes object. This contains an EntityAttribute object for request entities like the subject, resource, action and environment. Each BootstrapPIP should collect attributes about the request entities and add them to the RequestAttributes object.

2.2. PIP: The input to the collect method is the RequestAttributes, which should have been bootstrapped with information about the request. Each PIP should evaluate whether the collected entity is about one the resource entity and add them to the RequestAttribute object appropriately. If not, it should be added to a PIPResponse object. The PIP must merge all attributes about the same entity into one EntityAttributes object. Attributes about subject entities should be placed in subject attribute list in PIP response, resource entities in resource attribute list, action entities in action attribute list and environment entities in environment attribute list.
2.3. PDP: Each PDP should evaluate the request attributes to determine whether the operation can be allowed. The RequestAttributes and the PIPResponse object with all attributes collected by configured PIPs is passed to the PDP for evaluation. A PDP should return one of the following decisions:
· Permit: If the operation on the resource by the subject is not allowed.

· Deny: If the operation on the resource by subject is not allowed

· Not applicable : If some policy information is unavailable, for example a PDP that evaluates SAML Authorization Assertion, would return not applicable if no assertion was collected about the requestor.

· Indeterminate : If some policy configuration is missing/incomplete and a decision cannot be made about the request

If some fatal exception occurs the AuthorizationException should be thrown. Each decision issued by the PDP should contain a decision issuer (represented as an EntityAttribute) and validity.
2.4. Authorization Engine Steps: A typical authorization engine has the following steps:

· Initialize all the PDPs/PIPs with configuration information. This is done by the framework at the time of service initialization.
· For each request that comes in

· Invoke BootstrapPIPs in configured order, passing the RequestAttribute object created by the framework

· Invoke each PIP in configured order, passing the RequestAttribute object created by the framework

· Merge the PIPResponse object returned by each PIP invoked with the list of subject, resource and action entities stored in engine.

· Invoke provider for the configured combining algorithm, with RequestAttribute and the list of all collected entities

· Return decision from the combining algorithm provider.

3. Interceptor Parameter Configuration
Each interceptor has API that can be used to initialize it with chain name, a scope prefix and an object that implements ChainConfig. The ChainConfig interface allows for the retrieving and setting parameters. To retrieve a parameter the scope prefix and parameter is used as the key. Any Java Object can be stored as parameter.

4. PIP Implementations
The following PIPs are shipped with the authorization framework:
4.1. Container PIP: This creates attributes for the following entities in the framework and is always invoked by the AuthorizationHandler:

· Service name: protocol://host:port/wsrf/services/ServiceName (Resource)

· Operation name: Only the local part of (Action)
4.2. X509 Bootstrap PIP: This is invoked by the AuthorizationHandler, unless the authorization configuration overwrites it. It assumes that X509 Certificates were used for authentication and collects the following attributes about the requestor:
· Peer subject (Requestor)
· Peer principals (Requestor)
4.3. SAML Authorization Assertion PIP: This PIP needs to be explicitly configured in some authorization engine. It looks for a SAML Authorization Assertion as a non-critical X509 Extension in the peer’s credential and if one is found, the following is done:

4.3.1. The assertion is extracted and signature on assertion is verified

4.3.2. Issuer of assertion is ascertained

4.3.3. Each Authorization Decision Statement in the assertion is parsed and an attribute with the statement as value and assertion issuer as issuer of attribute is created. If the subject DN in the statement matches the requestor’s DN, then the attribute is added to the RequestAttributes object. If not, it is returned in the subject list of the PIPReponse.

5. PDP Implementations
5.1. AccessControlListPDP: Consults a local configuration file to determine of a subject can perform an operation on a service. Decision issuer is the container entity.
5.2. GridMapAuthorizaion: Looks at a GridMap file to determine if a subject can access the service. Decision issuer is container entity.

5.3. HostAuthorization: Checks whether a host based DN is used by the peer. Decision issuer is container entity.

5.4. IdentityAuthorization: Checks whether the peer’s DN matches a configured SubjectDN. Decision issuer is container entity.

5.5. SAMLAuthorizationCallout: Talks to a configured authorization service that implements the OGSA-AuthZ interface and returns the decision from the service. If any error occurs prior to contacting the service, decision is returned by container. If not, the decision issuer is the identity used to sign the response returned. If an unsigned response is sent and the PDP configuration accepts it, the decision issuer is the identity used in securing the message.
5.6. SAMLAuthzAssertionPDP: Analyzes any SAML Authorization Decision Statement as part of requestor attribute, to determine if the subject has rights to invoke the operation on the service. The issuer of the decision is the issuer of the attribute with the statements. This is expected to be used with SAMLAuthzAssertionPIP, which creates the attribute, with SAMLAssertion issuer as attribute issuer.
5.7. SelfAuthorization: Ascertains that the peer has same credential as resource. Decision is issued by container.

5.8. UsernameAuthorization: Uses the Java Logon Module to determine of the user with said username and password can access the service.
6. Combining Algorithms Implementations
The following combining algorithms have been implemented and can be plugged into the authorization engine.

6.1. First Applicable

 This algorithm invoked each PDP in the order specified and returns when a PDP returns a “permit” or “deny”, without evaluating the rest of the configured PDPs. If any PDP returns an “indeterminate” or “not applicable”, the next PDP in the configuration is invoked. This is used as default algorithm for the administrator authorization engine configured at container level.
6.2. Permit Override

This algorithm searches for a single permit decision chain, from the resource owner to the requestor, using the configured PDPs. It expects that the first PDP that is configured to be owned by the resource owner. The steps that are involved are:
6.2.1. The first PDP is queried with requestor as subject to get a decision on whether the subject has access rights to perform the requested action on the requested resource.

6.2.2. If the PDP returns a permit, the decision is returned by provider.

6.2.3. If a decision other than permit is obtained from first PDP, rests of the PDPs are posed the same query, in the order they are configured.

6.2.4. If a permit is returned from any PDP and the decision issuer is resource owner a permit is returned.

6.2.5. If a permit is returned from any PDP, but decision issuer is not resource owner, then the algorithm is repeated with following query: does the decision issuer have the administrator rights to allow requested action to be performed on requested resource.
6.2.6. If by following steps 1 to 5, a decision chain can be constructed from resource owner to requestor, a permit is returned. If not, a deny decision is returned.

The implementation of the above algorithm also keeps track of decision issuers from whom a decision chain to owner could not be constructed. This helps abort pursuing chains that do not lead to owner, early.

7. ChainConfig Implementations

Each of these implementations maintains a mapping from a scoped name to a parameter value. A hyphen (“-“) is used to separate the scope and the parameter. The following are implementations that can be used to pass in configuration parameters to the authorization chain.

7.1. ContainerChainConfig: This retrieves properties from the global descriptor section in the server-config.wsdd file.

7.2. ServicePropertiesChainConfig: This retrieves properties from a said service’s descriptor block in server-config.wsdd
7.3. ResourceChainConfig: This implementation maintains a HashMap of properties and returns parameter values from the HashMap.

8. Notes on writing PIPs

Fill me. API, Steps and samples.
9. Notes on writing PDPs

Fill me.

10. Notes on writing Combining Algorithms

Fill me.

