Security Descriptor Framework
1. Overview
Security descriptors in the toolkit have schemas defined for them and each of them (container, service, resource and client) has an independent namespace. If a security descriptor file is configured at the container or service level, they are initialized at container start up and service initialization respectively.
The descriptors are validated against the schema and then parsed using Apache Commons Digester. A Java object representation of the descriptor is created.
A single ContainerSecurityDescriptor object is created per JVM and contains all security properties for the container. This poses issues when multiple notification consumers are started up in same JVM with different security properties.

If a service is configured with security descriptor file, a ServiceSecurityDescriptor object is created for it and stored using JNDI. It is keyed on the service name (just the name of service without wsrf/services.) and ServiceSecurityHelper API can be used to set and retrieve security properties for a particular service.
To set up security in a resource, ResourceSecurityDescriptor is used and the security properties can also be read from a descriptor file. The resource security descriptor is stored in the resource itself.
2. Configuring descriptors

2.1. Container Security Descriptor
2.1.1. In global security descriptor section

<parameter name=”containerSecDesc” value=”path/container/descriptor”/>

2.1.2. Command line argument at container start up

-containerSecDesc “path/container/descriptor”

2.2. Service Security Descriptor

2.2.1. In service security descriptor section

<parameter name=”securityDescriptor” value=”path/service/descriptor”/>

2.2.2. Programmatically, using get/set methods.
ServiceSecurityDescriptor descriptor = new ServiceSecurityDescriptor();

// use set methods to set properties

ServiceSecurityHelper.setSecurityDescriptor(“servicePath”, descriptor);

2.2.3. Programmatically, but from file

ServiceSecurityDescriptor descriptor =

new ServiceSecurityDescriptor(“servicePath”,

 “path/service/descriptor”);

2.3. Resource Security Descriptor
2.3.1. Programmatically, from file
ResourceSecurityDescriptor desc =

new ResourceSecurityDescriptor(“/path/resource/descriptor”);
2.3.2. Programatically, using get/set methods.

ResourceSecurityDescriptor desc =

new ResourceSecurityDescriptor();

// use set methods to set properties

3. Security Descriptor Namespaces

Since validation is done, each security descriptor is defined with its own namespace

· Container security descriptor: http://www.globus.org/security/descriptor/container
· Service security descriptor: http://www.globus.org/security/descriptor/service
· Resource security descriptor: http://www.globus.org/security/descriptor/service

4. Configuration Common to Container, Service and Resource descriptor
4.1. Reject Limited Proxy: This property determines if limited proxies are accepted by the server. By default limited proxies are accepted.
<reject-limited-proxy value=”true”/>

4.2. Credentials: This property can be used to configure a proxy or certificate/key file to use.
To set proxy file:

<credential>

<proxy-file value=”/tmp/proxyFile”/>

</credential>

To set certificate and key file:

<credential>

<cert-key-files>

<key-file value=”/home/user1/keyFile”/>

<cert-file value=”/home/user1/certFile”/>

</cert-key-files>

</credential>

4.3. Replay Attack Filter: Property determines whether a reply attack filter should be used when Secure Message security is used. By default the value is true.
<replay-attack-filter value=”false”/>

4.4. Replay Attack Window: Value of the replay window in minutes. If configured value is x minutes, the window is –x to +x and only unique messages with in that window is accepted. By default the window is set to 5 minutes.

<replay-attack-window value=”10”/>

4.5. Authorization: Specifies the authorization chain configuration to use. Each chain can contain an optional list of Bootstrap PIPs, an optional list of PIPs and a list of PDPs (with atleast one PDP).
The Bootstrap PIP configuration allows for setting a boolean attribute called ‘overwrite”. If this is set to true, then the X509BootstrapPIP is not invoked by the framework. If the “overwrite” attribute is not set or set to false, the X509BootstrapPIP is invoked prior to invoking the configured Bootstrap PIPs.

<authzChain combiningAlg=”org.globus.sample.SampleAlg>

<bootstrapPips overwrite=”true”>

<interceptor name=”scope1:org.globus.sample.BootstrapPIP1”/>

</bootstrapPips>

<pips>

<interceptor name=”scope2:org.globus.sample.PIP1”/>

</pips>

<pdps>

<interceptor name=”scope3:org.globus.sample.PDP1”/>

<interceptor name=”scope4:org.globus.sample.PDP2”/>

</pdps>

</authzChain>

Each interceptor can specify a parameter value and the schema defines it as xsd:any to allow for any user defined parameters. The parser extracts the elements in <parameter> element and returns them as DOM Element. It is left up to the Interceptor to parse the Element. The DOM object created is placed in the ChainConfig object passed to the authorization engine as a parameter called “parameterObject”. The prefix will be the scope specified in the interceptor name.
Since schema validation is done, a schema must be supplied for the user defined parameters. The schema location is loaded as a resource and hence can be included in some jar placed in GLOBUS_LOCATION lib directory.
For example, the toolkit provides for a schema that allows a list of name value pairs as parameter.
<?xml version="1.0" encoding="UTF-8"?>

<containerSecurityConfig xmlns="http://www.globus.org/security/descriptor/container" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=http://www.globus.org/security/descriptor name_value_type.xsd
xmlns:param="http://www.globus.org/security/descriptor" >

<authzChain>

<pdps>

<interceptor name="gridmapAuthz:org.globus.wsrf.impl.security.GridMapAuthorization">

 <parameter>

 <param:nameValueParam>

 <param:parameter name="gridmap-file"

 value=”/home/user1/grid-mapfile"/>

 </param:nameValueParam>

 </parameter>

</interceptor>

</pdps>

</containerSecurityConfig>

When the above is parsed, a DOM Element is constructed with element <param:nameValuParam> and stored in the ChainConfig object as parameter with name “gridmapAuthz:parameterObject”. The GridMapAuthorization PDP, uses ObjectDeserializer to retrieve the name/value pairs.
4.6. Context Lifetime: Sets the lifetime of the context created when GSI Secure Conversation is used. By default the lifetime of the credential used to create the context is used.

<context-lifetime value=”1000”/>

5. Container Descriptor Specific Configuration

5.1. Trusted Certificates: This is used to set up location of trusted certificates to be used. The value should be a comma separated list of locations.

<trusted-certificates

value=”/home/user1/trustedCerts /home/user1/newCerts”/>

5.2. Admin Authorization Chain: This configured the administrator authorization chain and is configured just like the authorization chain described in 8.3.5. But the element is <adminAuthzChain>
5.3. Default Authorization Parameters: This element is used to configure default properties for any interceptor configured in authorization chains. The schema for this is similar to the authorization chain specification and allows for xsd:any as interceptor parameter.
<defaultAuthzParam>

<interceptor name=”scope1:org.globus.sample.SamplePDP”/>

 <parameter>

 <param:nameValueParam>

 <param:parameter name="policy-file"

 value=”/home/user1/samplePDPConfig"/>

 </param:nameValueParam>

 </parameter>

</interceptor>

</defaultAuthzParam>

5.4. Replay Timer Interval: Sets the interval on the timer thread that collects expired message digest ids, stored to prevent replay attack. The value is set in seconds and the default value is 1 minute.
<replay-timer-interval value=”1000”/>

5.5. Context Timer Interval: Sets the interval on the timer thread that collects expired contexts established when GSI Secure Conversation is used. The value is the number of seconds between each run and defaults to 10minutes.

<context-timer-interval value=”1000”/>
6. Service/Resource Descriptor Specific Configuration

6.1. Method Authentication: This element allows for per method configuration of required security mechanism
<methodAuthenticaiton>

<method name=”add”>

<GSISecureMessage>

<protection-level>

<privacy/>

<integrity/>

</protection>

</GSISecureMessage>

<GSISecureTransport/>

</method>

<method name=”create”>

<GSISecureConversation/>

</method>

6.2. Default Authentication: This element specifies the default security mechanism required by methods in this service. A per method configuration override this.
<auth-method>

<GSISecureTransport/>

</auth-method>

6.3. Method Run As: This element determines the credentials to associate with the thread in which the actual operation is invoked. By default resource credentials are used.
<methodAuthentication>

<method name=”add”>

<run-as value=”service”/>

</method>

</methodAuthentication>

6.4. Default Run As: This element determines the credentials to use when a run-as configuration is not done for a method.

<run-as value=”system”>

7. Descriptor Processing Details.
7.1. Container Descriptor: If container security descriptor is configured at start up on command line or in server-config.wsdd, it is initialized when container is started. If not, the first call to ContainerSecurityDescriptor.getInstance() creates an object and a single instance of ContainerSecurityDescriptor object is maintained per JVM.

7.1.1. Loading descriptor files: The configured file is loaded in the following order:

· If path specified is absolute, it is loaded as a file

· If not, it is loaded as resource

· If load as resource is null, it is loaded relative to config directory (retrieved using MC_CONFIGPATH)

The initialization step sets up the following if container security configuration file is configured: credentials, container-levl authorization and default authorization, and trusted certificates. The rest of the parameters in the file are also parsed and stored. Credentials are loaded per configuration file and if not specified, an attempt is made to load default credentials. If it is a secure container, then default credentials must be present if none is specified in the configuration file, otherwise an error is thrown.

Notification consumers can be configured with a ContainerSecurityDescriptor object to set up properties for the container it starts up. If the consumer is started up with in the same JVM as the container, the descriptor object is overwritten.

7.2. Service Descriptor: Each service can be configured with a descriptor in its service descriptor section in sever-config.wsdd. At container startup, when the service is initialized, the service security descriptor is also initialized using ServiceSecurityHelper.initialize(). Initialization steps include the following:
· Load descriptor from configured file. It is loaded as described in Section 7.1.1
· Validate and parse it to create a ServiceSecurityDescriptor object.
· Load credential, if configured

· Create AuthorizationEngine instance, if configured. Initialize all component PDPs and PIPs.

· Store ServiceSecurityDescriptor object in JNDI, with service name as path. (just the service name without wsrf/services)
· Set initialized property for this service to true in JNDI, so that the descriptor is not initialized each time service is access.

The ServiceSecurityHelper provides API to get and set security properties for various services. The setSecurityDescriptor method allows to set a completely different security descriptor object, while the other methods manipulate the existing descriptor. Note that, if setSubject is used to set a new subject and credential paths are also configured, a refresh overwrites the subject with one that is configured as credential paths.
7.3. Resource Descriptor: Each resource, that implements the SecureResource, interface can be configured with a resource security descriptor. The descriptor can either be created programmatically or loaded from a file. This descriptor is identical to the service security descriptor and the ResourceSecurityDescriptor class defines it.

If the descriptor is setup from a file, then the constructed in ResourceSecurityDescriptor loads it from the file and initializes it like described in previous section. The descriptors are not stored in JNDI though and are stored in the resource itself.

SecureResourcePropertiesHelper provides API to get and set security properties for various resources.

