
01/06/2008 18:52Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Page 1 of 9http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool

©

COLUMNS COMMUNITY POSTS ISSUES BOOKS FORUM FS NEWS

REVIEWS NEWSLETTERS ADVERTISE SPONSORS HELP FSM WRITE FOR US CONTACTS ABOUT

Home

Autotools: a practitioner's guide
to Autoconf, Automake and
Libtool
by John Calcote

There are few people who would deny that Autoconf,

Automake and Libtool have revolutionized the free software

world. While there are many thousands of Autotools

advocates, some developers absolutely hate the Autotools,

with a passion. Why? Let me try to explain with an analogy.

In the early 1990!s I was working on the final stages of my

bachelor!s degree in computer science at Brigham Young

University. I took a 400-level computer graphics class, wherein

I was introduced to C++, and the object-oriented programming

paradigm. For the next 5 years, I had a love-hate relationship

with C++. I was a pretty good C coder by that time, and I

thought I could easily pick up C++, as close in syntax as it was

to C. How wrong I was. I fought late into the night, more often

than I!d care to recall, with the C++ compiler over performance

issues.

The problem was that the most fundamental differences

between C++ and C are not obvious to the casual observer.

Most of these differences are buried deep within the C++

language specification, rather than on the surface, in the

language syntax. The C++ compiler generates code beneath

the covers at a level never even conceived of by C compiler

writers. This level of code generation provides functionality in a

few lines of C++ code that requires dozens of lines of C code.

Oh, yes—you can write object-oriented software in C. But you

are required to manage all of the details yourself. In C++,

these details are taken care of for you by the compiler. The

advantages should be clear.

But this high-level functionality comes at a price—you have to

learn to understand what the compiler is doing for you, so you

can write your code in a way that complements it. Not

surprisingly, often the most intuitive thing to do in this situation

for the new C++ programmer is to inadvertently write code that

works against the underlying infrastructure generated by the

compiler.

And therein lies the problem. Just as there were many

programmers then (I won!t call them software engineers—that

title comes with experience, not from a college degree)

complaining of the nightmare that was C++, so likewise there

are many programmers today complaining of the nightmare

that is the Autotools. The differences between make and

Source Code Analysis
Tool
Covers 100% of the

execution path to resolve

defects. Get free trial.
Coverity.com

Free programming
magazine
Claim a free subscription

to VSJ The UK's leading

developer title
www.vsj.co.uk

NI Graphical
Programming
Powerful, Intuitive

Programming w/

LabVIEW- Online Tutorials

& Evals.
www.ni.com

Debug Trace Monitor
Collect diagnostics output

from C#, VB.NET, VB6,

VBA, Script, COM, ...
www.devtracer.com

Jobs at Sophos
Career opportunities at

Sophos in IT, Software

Development & Testing
www.sophos.com/careers

Tracking Worms,Spam and

Malware ...

How to Restore Lost

Bookmarks in ...

Google Adsense for RSS

Feeds Coming ...

Best voted
contents

Open letter to

standards

professionals,

developers, and

activists

Pieter Hintjens, 2008-05-13

The 2008 Google

Summer of Code: 21

Projects I'm Excited

About

Andrew Min, 2008-05-13

The Bizarre Cathedral -

6

Ryan Cartwright, 2008-05-25

From the FSM staff...

The Top 10 Everything

(Dave). The good, the bad

and the ugly.

Free Software news (Dave

& Bridget). All about free

software -- free as in

freedom!

Book Reviews: Illiterarty

(Bridget). Book reviews,

blogs, and short stories.

Hot topics - last 60
days

Installing an all-in-one

printer device in Debian

Ryan Cartwright, 2008-05-05

Things you miss with

GNU/Linux

Ryan Cartwright, 2008-05-01

Why Microsoft should not

Static Code Analysis Tool

Deliver bug-free source code. Download whitepaper from

Coverity.
Coverity.com

UK Software Developers

Experienced software developers ASP.NET, SQL, C#,

Expertise
www.pbcsystems.co.uk

Process Mapping Software

MS Visio Process Library solutions with web-enabled

keyword search
www.triaster.co.uk

UK Scrum Training

Certified Scrum Master training throughout the UK and

Europe
www.agilebear.com

01/06/2008 18:52Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Page 2 of 9http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool

that is the Autotools. The differences between make and

Automake are very similar to the differences between C and

C++. The most basic single-line Makefile.am generates a

Makefile.in file (an Autoconf template) containing nearly 350

lines of make script.

Who should read this book

This book is written for the open source software package

maintainer. I!m purposely not using the terms “free software” or

“proprietary software that!s free”. The use of the term “open

source” is critical in this context. You see, open source defines

a type of software distribution channel. One in which the

primary method of obtaining software functionality is

downloading a source archive, unpacking, building and

installing the built products on your system. Free software may

be published in binary form. Proprietary software may be given

away. But open source software implies source-level

distribution.

Source-level distribution relegates a particular portion of the

responsibility of software development to the end-user that

has traditionally been assumed by the software developer. But

end-users are not developers, so most of them won!t know

how to properly build your package. What to do, what to do…

The most widely adopted approach from the earliest days of

the open source movement was to make the package build

process as simple as possible for the end user, such that she

could perform a few well-known steps and have your package

cleanly installed on her system.

Most packages are built using makefiles, and the make utility

is as pervasive a tool as anything else that!s available. It!s very

easy to type make—but that!s not the problem. The problem

crops up when the package doesn!t build successfully,

because of some unanticipated difference between the user!s

system and the developer!s system.

Thus was born the ubiquitous configure script—initially a

simple shell script that configured the end-user!s environment

so that the make utility could successfully build a source

package on the end-user!s system. Hand-coded configure

scripts helped, but they weren!t the final answer. They fixed

about 65 percent of the problems resulting from system

configuration differences—and they were a pain in the neck to

write properly. Dozens of changes were made incrementally

over a period of years, until the script would work properly on

most systems anyone cared about. But the entire process was

clearly in need of an upgrade.

Do you have any idea of the number of build-breaking

differences there are between existing systems today? Neither

do I, but there is a handful of developers in the world who

know a large percentage of these differences. Between them

and the free software community, the Autotools were born.

The Autotools were designed to create configure scripts and

makefiles that work correctly and provide significant chunks of

valuable end-user functionality under most circumstances, and

on most systems—even systems not initially considered (or

even known about) by the package maintainer.

Ryan Cartwright, 2008-05-25

Digital Rights

Management (DRM): is

it in its death throes?

Gary Richmond, 2008-05-07

Buzz authors

Marco Marongiu

Pieter Hintjens

drascus321

dogboi

Richard Rothwell

All news

! "# $%!&%": Party time

with Ubuntu…

Sridhar Dhanapalan: Open

CeBIT

Martin Meredith: Welcome

to the Family, Synergy

Stephen Stalcup: Next

Membershp meeting for the

Americas

Andres Rodriguez: Hello

Planet Ubuntu!!

more

14

14

16

17

18

17

20

19

20 Essential KDE

Applications - Review

10 Reasons to Love

Debian

Burn Your CDs and

DVDs! K3b Review

Novell’s Moonlight:

Crippled and Defective

by Design™

India Appeals Against

OOXML, Joining Brazil,

South Africa, Maybe

More

Wiping your disk drive

clean

Dear Google: Is AGPL

Evil?

Slashdot: World’s

Third-Largest

Population Appeals

ISO’s Decision

Get this widget »

Why Microsoft should not

lose (and free software

will still win)

Ryan Cartwright, 2008-04-21

Drigg (the pligg

alternative) vs. Pligg: why

should people switch?

Tony Mobily, 2008-04-13

Beyond Synaptic - using

apt for better package

management

Ryan Cartwright, 2008-04-03

Hot topics - last 21
days

Dubious ads in Free

Software Magazine

Tony Mobily, 2008-05-25

The Bizarre Cathedral - 6

Ryan Cartwright, 2008-05-25

Open letter to standards

professionals,

developers, and activists

Pieter Hintjens, 2008-05-13

The Bizarre Cathedral - 4

Ryan Cartwright, 2008-05-11

DEDICATED SERVER

Odiogo

01/06/2008 18:52Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Page 3 of 9http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool

So, returning to that passionate hate felt by some developers

toward the Autotools: If you get your head screwed on straight

about the primary purpose of the Autotools, then hate quickly

turns into respect—and even appreciation. Often the root of

such hate is a simple misunderstanding of the rationale behind

the Autotools. The purpose of the Autotools is not to make life

simpler for the package maintainer (although it really does in

the long run). The purpose of the Autotools is to make life

simpler for the end-user.

To drive my point home, I!ll wager that you!ll never see a Linux

distribution packager spouting hateful sentiment on the

Autotools mailing lists. These people are in a class of

engineers by themselves. They!re generally quiet on mailing

lists—asking an occasional well-considered question when

they really need to—but lurking and learning, for the most part.

Packagers grasp the advantages of the Autotools immediately.

They embrace them by studying them until they know them

like an expert C++ programmer knows his compiler. They don!t

write many Autoconf input scripts, but they do patch a lot of

them.

How do you become such an expert? I recommend you start

with this book. I!ve organized it in the best way I know how to

help you get your head around the functionality provided by

the Autotools. But don!t stop there. Pick up the manuals.

They!re free, and links are provided in the References section

of this book, but they!re easy to find with a simple internet

query. I!ve left a LOT of details out of this book, because my

purpose is to quickly get you up to speed on understanding

and using the Autotools. The Autotools manuals are well-

written and concise, but more importantly, they!re complete.

After reading this book, they should be a cake walk.

Then study open source and free software packages that use

the Autotools. See what other experts have done. Learning by

example is an excellent way to begin to retain the information

you!ve read. Finally, instrument some of your own projects

with the Autotools. Doing is by far the best way to learn. The

initial reading will reduce the frustration of this exercise to

something bearable.

Above all, remember why you!re doing this—because you

want your end-user!s experience with your package to be as

delightful as possible. No open source project was ever

successful until it had a well-established user base, and you

don!t get there by alienating your users. You do it by creating a

user build, installation and operation experience that shines.

You!ll still need to handle the operation experience, of course,

but Autotools can provide a great multi-platform build and

installation experience—with far less effort on your part.

The book that was never to be

I!ve wondered often during the last eight years how strange it

is that the only third-party book on Autotools that I!ve been

able to discover is the New Rider!s 2000 publication of GNU

AUTOCONF, AUTOMAKE and LIBTOOL, affectionately

known in the community as “The Goat Book”.

01/06/2008 18:52Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Page 4 of 9http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool

I!ve been in this industry for 25 years, and I!ve worked with

free software for quite some time now. I!ve learned a lot about

free software maintenance and development—most of it,

unfortunately, by trial and error. Had there been other books

on the topic, I would have snatched them all up immediately,

rather than spend hours—even days sometimes—trying to get

the Autotools to do something I could have done in a makefile

in a few minutes.

I!ve been told by publishers that there is simply no market for

such a book. In fact, one editor told me that he himself had

tried unsuccessfully to entice authors to write this book a few

years ago. His authors wouldn!t finish the project, and the

publisher!s market analysis indicated that there was very little

interest in the book.

No interest?! Let!s analyze this picture: There are nearly

200,000 free software projects on sourceforge.net alone. If

only 10 percent of those are still active, that!s still 20,000 live

projects. If 80 percent of those are Linux or Unix based

packages, that!s 16,000 free software packages that might use

the Autotools. And that!s only sourceforge.net. Each of those

packages has at least one maintainer—often two or three.

Each of those maintainers probably uses (or has tried to use)

the Autotools. Many of them have a fairly solid understanding

of the Autotools by now, but at what expense in time and effort

did they gain this understanding?

Publishers believe that free software developers tend to

disdain written documentation—perhaps they!re right.

Interestingly, books on Perl sell like Perl!s going out of style—

which is actually somewhat true these days—and yet people

are still buying enough Perl books to keep their publishers

happy. All of this explains why there are ten books on the shelf

with animal pictures on the cover for perl, but literally nothing

for free software developers.

The authors of the Goat Book, Gary Vaughan, Ben Elliston,

Tom Tromey and Ian Lance Taylor, are well known in the

industry, to say the least—indeed, they!re probably the best

people I know of to write a book on the Autotools. But, as fast

as free software moves these days, a book published in 2000

might as well have been published in 1980. Nevertheless,

because of the need for any book on this subject, the Goat

Book is still being sold new in bookstores. In fairness to the

authors, they have maintained an online version through

February of 2006.

The biggest gripe I have with the Goat Book is the same gripe

I have with the GNU manuals themselves. I!m talking about

the shear volume of information that is assumed to be

understood by the reader. The Goat Book is written in a very

non-linear fashion, so it!s difficult to learn anything from it. It!s

a great reference, but a terrible tutorial. Perhaps the authors

were targeting an audience that had already graduated to

more advanced topics. In either case, the Goat Book, while

being very complete from a content perspective, is definitely

not a great learning resource for the beginner.

And yet a large percentage of their readership today are

young people just starting out with Unix and Linux, and most

01/06/2008 18:52Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Page 5 of 9http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool

young people just starting out with Unix and Linux, and most

of their issues center around Unix utilities not generally

associated with the Autotools. Take sed, for example: What a

dream of a tool to work with—I love it! More to the point

however, a solid understanding of the basic functionality of

sed, m4, shell script and other utilities is critical to

understanding the proper use of the Autotools. The Goat Book

does cover the m4 macro processor in great detail, but it!s not

clear to the uninitiated that one might do well to start with

Chapter 21. Understanding how something works under the

covers is often a good way to master a topic, but a general

introduction at an appropriate point in higher-level discussions

can make all the difference to a beginner.

Existing GNU documentation is more often reference material

than solution-oriented instruction. What we need is a

cookbook-style approach, covering real problems found in real

projects. As each recipe is mastered, the reader makes small

intuitive leaps—I call them minor epiphanies. Put enough of

these under your belt and overall mastery of the Autotools is

ultimately inevitable.

Let me give you another analogy: I!d been away from math

classes for about three years when I took my first college

calculus course. I struggled the entire semester with little

progress. I understood the theory, but I had trouble with the

homework. I just didn!t have the background I needed. So the

next semester, I took college algebra and trigonometry as half-

semester classes each (“on the block”, to use the vernacular).

At the end of that semester I tried calculus again. This time I

did very well—finishing the class with a solid A grade. What

was missing the first time? Just basic math skills. You!d think it

wouldn!t have made that much difference, but it really does.

The same concept applies to understanding the Autotools. You

need a solid understanding of the tools upon which the

Autotools are built in order to become proficient with the

Autotools themselves. For example, here!s a message I came

across a few days ago while I was perusing the Autoconf

mailing list:

>>> If I do this:

>>>

>>> AC_CHECK_FUNC(

>>> [chokeme],

>>> [],

>>> []

>>>)

>>>

>>> It will yield shell code that ends in:

>>>

>>> if

>>> :

>>> else

>>>

>>> fi

>>>

>>> Which produces a configure script that dies

>>> with:

>>> "syntax error near unexpected token `fi'"

>>>

01/06/2008 18:52Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Page 6 of 9http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool

Now, it!s truly wonderful that we have experts on mailing lists

who are so willing to respond cheerfully to questions like this,

and so quickly—this exchange took place within a few hours.

However, without looking, I submit that similar questions have

probably been asked dozens of times in the last 5 years. Not

because mailing list posters don!t read the archives (although

I!ll admit that they probably don!t often do so), but rather

because this problem can rear its ugly head in many different

ways, none of which look remotely related to each other in the

eyes of the uninitiated.

Here are some of the problems with the response to this

request: Does the original poster (OP) even know what m4 is?

If so, does he realize he!s running it when he executes

“autoconf” to generate his configure script? Alright, suppose

he does; either way, he!s clearly not an m4 expert or he

wouldn!t have needed help with this issue to begin with.

Does the OP understand the concept of quoting as it relates to

m4 or to Autoconf? Perhaps he!s always simply copied one

configure.ac script to another, modifying as little as possible to

get it to work with a new project. Given the high-level nature of

configure.ac, this is entirely possible (I!ve done it myself). If so,

he may just assume that the square brackets are necessary

around each parameter in an Autoconf macro. Given the

nature of the question, I!d say the OP believes that the entirety

of each parameter is contained within the brackets, so this

assumption is not at all improbable.

Another problem is seen in the final response where the OP is

told, “…instead use dnl to ignore the trailing whitespace…” If

the OP didn!t understand m4 whitespace rules, he probably

doesn!t know about the m4 built-in macro, dnl. If that!s the

case, then this response made no sense to him whatsoever.

Even if he did understand what he was to do—perhaps based

on having seen dnl being used in other configure.ac scripts,

apparently as a secondary form of comment delimiter—he

probably doesn!t understand the full impact or use of this

macro. Regardless, you can bet there are other mailing list

readers who experienced far more confusion over this

>>>

>>> Is this an autoconf bug, or user error on

>>> my part?

>> The else part is not empty, it consists of

>> explicit whitespace. When collecting arguments

>> only unquoted leading whitespace is skipped by

>> m4, trailing whitespace (quoted or not) is

>> preserved. You need to put the closing paren

>> immediately after the closing quote of the

>> argument.

> Is that something I should always do? I've been

> consistently putting the closing paren on its

> own line. Is that a "never"?

You can instead use dnl to ignore the trailing

whitespace, provided the closing paren is in

column 1.

01/06/2008 18:52Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Page 7 of 9http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool

readers who experienced far more confusion over this

exchange.

This book attempts to alleviate some of the confusion and

reduce the existing learning curve by presenting the Autotools

in a manner conducive to an open source beginner learning

how to use them.

How this book is organized

Chapter 1 presents a general overview of the packages that

are considered part of the GNU Autotools. This chapter

describes the interaction between these packages, and the

files consumed by and generated by each one. In each case,

I!ve provided a graphic depiction of the flow of data from hand-

coded input files, to final output files. Don!t worry if you feel

overwhelmed after reading Chapter 1. The details will become

clear later. I recommend that you give this chapter a quick

read to start with, and then come back to it later, after you!ve

read the rest of this book.

Chapter 2 covers free software project structure and

organization. This chapter also goes into detail on the GNU

coding standards and the Filesystem Hierarchy Standard

documents, both of which have played vital roles in the design

of the Autotools. It presents some fundamental tenets upon

which the design of each of the Autotools is based. With these

concepts, you!ll be prepared to understand some of the most

fundamental rationale behind architectural decisions made by

the Autotools developers. This chapter designs a simple

project (jupiter) from start to finish using a hand-coded

configure script and makefiles. It builds on jupiter in a step-

wise fashion, as we begin to discover useful functionality to

make our!s and our end-users! tasks simpler, relative to the

jupiter project. The project is built on principles taken from

these two documents. As a side benefit, the GNU manuals for

the Autotools should begin to make a lot more sense to you.

Chapters 3, 4 and 5 cover the basic purpose and use of the

GNU Autoconf, Automake and Libtool packages, respectively.

If you already have a basic familiarity with these packages,

you can probably skip these chapters, but please feel free to

revisit them if you find yourself in over your head with the

remaining chapters.

Chapter 6 takes an existing complex open source project

(FLAIM) through the process of converting from a hand-coded

build system to an Autotools build system, from start to finish.

The example provided by this chapter will use the concepts

presented in previous chapters to take it from the original

hand-coded makefiles to a complete Autotools project,

implementing all of the features provided by the original build

system. This process should help you to understand how you

might “autoconfiscate” one of your own existing complex

projects.

Chapter 7 is where we really begin to break ground on

Autoconf. This chapter goes into detail on the m4 macro

language and how it!s used by Autoconf to generate your

configure script from your configure.ac file. A proper grounding

in m4 will leave you very comfortable with a discussion on the

01/06/2008 18:52Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Page 8 of 9http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool

Chapter 1: A brief

introduction to the

GNU Autotools ›

in m4 will leave you very comfortable with a discussion on the

internal workings of Autoconf.

Chapter 8 describes the sed utility and how it!s used by your

Autoconf-generated configure script to generate a Makefile

from a Makefile.in template. In addition, I!ll show you how you

can use the same technique to extend your own Makefiles

(and your Automake Makefile.am files).

Chapter 9 covers the process of writing your own Autoconf

macros, thereby allowing you to provide other projects with

canned versions of your cool solutions.

Chapter 10 discusses the AC Autoconf Macro Archive—an

online repository of reusable Autoconf components (m4

macros) that package maintainers can drop in for various bits

of useful functionality. A base library of such components is

provided by the archive, wherein each macro is discussed in

detail, along with the problem it!s designed to solve, and the

mechanisms used to solve it.

Finally, the References section includes relevant links to the

best material on Autotools available on the internet, including

manuals and tutorials.

01. Chapter 1: A brief introduction to the GNU Autotools

02. Chapter 2: Project management and the GNU coding

standards

03. Chapter 3: Configuring your project with Autoconf

04. Chapter 4: Automatically writing makefiles with

Automake

05. Chapter 5: Building shared libraries with Libtool

06. Chapter 6: An autotools example

07. Chapter 7: The m4 macro processor

08. Chapter 8: You sed what?! Awk com'on!

09. Chapter 9: Reusing your solutions

10. Chapter 10: A catalog of reusable solutions

11. References

Login or register to post comments 12029 reads

Chapter 5+
Submitted by slowfranklin on Tue, 2008-05-20 10:15.

Vote! 0

This is great stuff!

But chapters 5+ are missing?

Login or register to post comments

They are coming...
Submitted by admin on Wed, 2008-05-21 01:04.

01/06/2008 18:52Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Page 9 of 9http://www.freesoftwaremagazine.com/books/autotools_a_guide_to_autoconf_automake_libtool

Vote! 0

Hi,

The book is not complete yet. the other chapters will come soon :-D

Merc.

Login or register to post comments

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 1 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

©

COLUMNS COMMUNITY POSTS ISSUES BOOKS FORUM FS NEWS

REVIEWS NEWSLETTERS ADVERTISE SPONSORS HELP FSM WRITE FOR US CONTACTS ABOUT

Home » Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Chapter 1: A brief introduction
to the GNU Autotools
by John Calcote

I!m going to make a rather broad and sweeping statement

here: If you!re writing free or open source software targeting

Unix or Linux systems, then you should be using the GNU

Autotools. I!m sure I sound a bit biased, but I!m not. And I

shouldn!t be, given the number of long nights I!ve spent

working around what appeared to be shortcomings in the

Autotools system. Normally, I would have been angry enough

to toss the entire project out the window and write a good

hand-coded makefile and configure script. But the one fact

that I always came back to was that there are literally

thousands of projects out there that appear to be very

successfully using the Autotools. This was too much for me.

My pride would never let me give up.

Who should use the Autotools?

The Autotools are supposed to make projects simpler for the

maintainer, right? And the answer to that question is a

definitive “No”. Don!t misunderstand me here—the Autotools

do make your life easier in the long run, but for different

reasons than you may first realize. The primary goal of the

Autotools is not to make project maintenance simpler, although

I honestly believe the system is as simple as it can be, given

the functionality it provides. It took me a while to figure this

out, and really, it was one of my most significant Autotools

epiphanies. Ultimately, I came to understand that the purpose

of the Autotools is two-fold: First, to make life easer for your

users, and second, to make your project more portable—even

to systems on which you!ve never tested, installed or even

built your code.

Well then, what if you don!t work on free or open source

software? Do you still care about these goals? What if you!re

writing proprietary software for Unix or Linux systems? Then, I

say, you would probably still benefit to some degree from

using the Autotools. Even if you only ever intend to target a

single distribution of Linux, the Autotools will provide you with

a build environment that is flexible enough to allow your

project to build successfully on future versions or distributions

with virtually no changes to the build scripts. And, let!s be

honest here—you really can!t know in advance whether or not

your management will want your software to run on other

platforms in the future. This fact alone is enough to warrant my

statement.

IT Support London & SE
Local, cost effective IT

support for your 2003 or

SBS network
www.1st-solution.co.uk

Pump Software
Streamline your pump

sales. Select, configure,

quote, and order online.
www.bigmachines.com

Configuration Software
Product & Service

Configurator. Configure

manufacturing & more.
www.Configur8or.com/manufacturing

Why Is My Computer
Slow?
Perform Registry

Compression, Defrag,

Manage & Cleanup Your

PC.
www.RegClean.com

Get NetOp Software
Free Trials | Gold Partner

for full range of NetOp

Products
www.bluebeamsecurity.com

Microsoft May Seek New

Yahoo ...

Building Semantics is

Different ...

Lux: multi-touch for OS X

Best voted
contents

The Bizarre Cathedral -

3

Ryan Cartwright, 2008-05-05

The Bizarre Cathedral -

2

Ryan Cartwright, 2008-04-27

Indexing offline CD-

ROM archives

Terry Hancock, 2008-05-03

Microsoft and free

software? I don't think

so...

Terry Hancock, 2008-04-26

From the FSM staff...

The Top 10 Everything

(Dave). The good, the bad

and the ugly.

Free Software news (Dave

& Bridget). A site about

short stories and writing.

Book Reviews: Illiterarty

(Bridget). Book reviews,

blogs, and short stories.

Hot topics - last 60
days

Installing an all-in-one

printer device in Debian

Ryan Cartwright, 2008-05-05

What is the free software

community?

Tony Mobily, 2008-03-29

Things you miss with

GNU/Linux

 www.manageengine.adventnet.com Ads by Goooooogle

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 2 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

Who should NOT use the Autotools?

About the only scenario where it makes sense NOT to use the

Autotools is the one in which you are writing software for non-

Unix platforms only—Microsoft Window comes to mind. Some

people will tell you that the Autotools can be used successfully

on Windows as well, but my opinion is that the POSIX/FHS

approach to software build management is just too alien for

Windows development. While it can be done, the tradeoffs are

way too significant to justify shoe-horning a Windows project

into the Autotools build paradigm.

I!ve watched some project managers develop custom versions

of the Autotools which allow the use of all native Windows

tools. These projects were maintained by people who spent

much of their time tweaking the tools and the build

environment to do things it was never intended to do, in a

hostile and foreign environment. Quite frankly, Microsoft has

some of the best tools on the planet for Windows software

development. If I were developing a Windows software

package, I!d use Microsoft!s tools exclusively. In fact, I often

write portable software that targets both Linux and Windows.

In these cases, I maintain two separate build environments—

one for Windows, and one based on the Autotools for

everything else.

The original reasons for using GNU tools to build Windows

software were that GNU tools were free, and Microsoft tools

were expensive. This reason is no longer valid, as Microsoft

makes the better part of their tools available for free download

today. This was a smart move on their part—but it took them

long enough to see the value in it.

Your choice of language

One other important factor in the decision to use or not use

the Autotools with your project is your language of choice.

Let!s face it, the Autotools were designed by GNU people to

manage GNU projects. There are two factors that determine

the importance of a computer language within the GNU

community:

1. Are there any GNU packages written in the language?

2. Does the GNU compiler tool set support the language?

Autoconf provides native support for the following languages

based on these two criteria:

C

C++

Objective C

Fortran

Fortran 77

Erlang

By “native support”, I mean that Autoconf will compile, link and

run source-level feature checks in these languages.

If you want to build a Java package, you can configure

Automake to do so, but you can!t ask Autoconf to compile, link

Buzz authors

Marco Marongiu

Pieter Hintjens

drascus321

dogboi

Richard Rothwell

All news

John Crawford: Arizona

LoCo Hardy Release Party

John Crawford: Ubuntu

Weekly Newsletter #91

Matthew Helmke: Morocco

blocks Google Maps

Andy Price: Synchronicity

and Sharing

Jono Bacon: Beware False

Prophets

more

15

15

17

15

17

25

23

16

How Microsoft Uses

Novell to Fight

GNU/Linux, Xen to

Fight VMWare and

GNU/Linux

Why You Should Reject

Novell’s Moonlight

University of Havana

Finally Switches to

Free Software

Please Welcome

Digistan

Content Protection

madness on Vista

Asus to embed Linux

into all motherboards

Make Your Distro Free

of Miguel de Icaza's

junk code

Firefox 3 Release

Candidate now

available for download

Get this widget »

Ryan Cartwright, 2008-05-01

How do you replace

Microsoft Outlook?

Groupware applications

Ryan Cartwright, 2008-03-20

Drigg (the pligg

alternative) vs. Pligg: why

should people switch?

Tony Mobily, 2008-04-13

Hot topics - last 21
days

Installing an all-in-one

printer device in Debian

Ryan Cartwright, 2008-05-05

Things you miss with

GNU/Linux

Ryan Cartwright, 2008-05-01

Digital Rights

Management (DRM): is it

in its death throes?

Gary Richmond, 2008-05-07

Open letter to standards

professionals,

developers, and activists

Pieter Hintjens, 2008-05-13

DEDICATED SERVER

Odiogo

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 3 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

Automake to do so, but you can!t ask Autoconf to compile, link

or run Java-based checks. Java simply isn!t supported natively

at this time by Autoconf. I believe it!s important to point out

here that the very nature of the Java language and virtual

machine specifications make it far less likely that you!ll need to

perform a Java-based Autoconf check in the first place.

There is work being actively done on the gcj compiler and tool

set, so it!s not unreasonable to think that some native Java

support will be added to Autoconf at some future date, but gcj

is a bit immature yet, and currently very few (if any) GNU

packages are written in Java, so the issue is not critical to the

GNU community.

That said, there is currently rudimentary support in Automake

for both GNU (gcj) and non-GNU Java compilers and VM!s.

I!ve used it myself on a project, and it works well, as long as

you don!t try to push it too far. Given the history of the GNU

project, I think it!s safe to say that this functionality will

definitely improve with age.

If you!re into Smalltalk, ADA, Modula, LISP, Forth, or some

other non-mainstream language, well then you!re probably not

too concerned about porting your code to dozens of platforms

and CPUs.

As an aside, if you are using a non-mainstream language, and

you are in fact concerned about the portability of your build

systems, then please consider adding support for your

language to the Autotools. This is not as daunting a task as

you may think, and I gaurantee that you!ll be an Autotools

expert when you!re finished. If you think this statement is

funny, then consider how Erlang support made it into the

Autotools. I!m betting most developers have never heard of

Erlang, but members of the Erlang community thought it was

important enough to add Erlang support themselves.

Generating your package build system

The GNU Autotools framework is comprised of three main

packages, each of which provides and relies on several

smaller components. The three main packages are Autoconf,

Automake and Libtool. These packages were invented in that

order, and evolved over time. Additionally, the tools in the

Autotools packages can depend on or use utilities and

functionality from the gettext, m4, sed, make and perl

packages, as well as others.

It!s very important at this point to distinguish between a

maintainer!s system and an end-user!s system. The design

goals of the Autotools specify that an Autotools-generated

build system rely only on readily available, preinstalled tools

on the host machine. Perl is only required on machines that

maintainers use to create distributions, not on end-user

machines that build packages from resulting release

distributions packages. A corollary to this is that end-users!

machines need not have the Autotools installed.

If you!ve ever downloaded, built and installed software from a

“tarball”—a compressed archive with a .tar.gz, .tgz or .tar.bz2

extension—then you!re probably aware of the fact that there is

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 4 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

extension—then you!re probably aware of the fact that there is

a common theme to this process. It usually looks something

like this:

NOTE: I have to assume some level of knowledge on your

part, and I!m stating right now that this is it. If you!ve

performed this sequence of commands before and you know

what it means, and if you have a basic understanding of the

software development process, then you!ll have no trouble

following the content of this book.

Most developers know and understand the purpose of the

make utility. But what!s the point of the configure script? The

use of configuration scripts (generally named configure)

started a long time ago on Unix systems due to the variety

imposed by the fast growing and divergent set of Unix and

Unix-like platforms. It!s interesting to note that while Unix

systems have generally followed the defacto-standard Unix

kernel interface for decades, most software that does anything

significant generally has to stretch outside of these more or

less standardized boundaries. Configuration scripts are hand-

coded shell scripts designed to determine platform-specific

characteristics, and to allow users to choose package options

before running make.

This approach worked well for decades. With the advent of

dozens of Linux distributions, the explosion of feature

permutations has made writing a decent portable configuration

script very difficult—much more so than writing the makefiles

for a new project. Most people have come up with

configuration scripts for their projects using a well-understood

and pervasive technique—copy and modify a similar project!s

script. By the early 90!s it was becoming apparent to many

developers that project configuration was going to become

painful if something weren!t done to ease the burden of writing

massive shell scripts to manage configuration options—both

those related to platform differences, and those related to

package options.

Autoconf

Autoconf changed this paradigm almost overnight. A quick

glance at the AUTHORS file in the Savannah Autoconf project

repository will give you an idea of the number of people that

have had a hand in the making of Autoconf. The original

author was David MacKenzie, who started the Autoconf

project in 1991. While configuration scripts were becoming

longer and more complex, there were really only a few

variables that needed to be specified by the user. Most of

these were simply choices to be made regarding components,

features and options: Where do I find libraries and header

files? Where do I want to install my finished product? Which

optional components do I want to build into my products? With

$ gzip -cd hackers-delight-1.0.tar.gz | tar -xvf -

...

$ cd hackers-delight-1.0

$./configure

$ make all

$ sudo make install

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 5 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

optional components do I want to build into my products? With

Autoconf, instead of modifying, debugging and losing sleep

over literally thousands of lines of supposedly portable shell

script, developers can write a short meta-script file, using a

concise macro-based language, and let Autoconf generate a

perfect configuration script.

A generated configuration script is more portable, more

correct, and more maintainable than a hand-code version of

the same script. In addition, Autoconf often catches semantic

or logic errors that the author would have spent days

debugging. Another benefit of Autoconf is that the shell code it

generates is as portable as possible between systems that

supply any form of the Bourne shell. Mistakes made in

portability between shells are by far the most common, and

unfortunately the most difficult to find, because no one

programmer has access to all versions or brands of Bourne-

like shells in existence.

Autoconf generated configure scripts provide a common set of

options that are important to all portable, free, open source,

and proprietary software projects running on LSB-compliant

systems. These include options to modify “standard locations”,

a concept I!ll cover in more detail in Chapter 2. Autoconf

generated configure scripts also provide project-specific

options. These are defined in the configure.ac file for each

project. I!ll detail this process in Chapter 3.

The Autoconf package provides several programs. Autoconf

itself is written in Bourne shell script, while the others are perl

scripts.

autoconf

autoheader

autom4te

autoreconf

autoscan

autoupdate

ifnames

Autoheader

The autoheader utility generates a C language header file

template from configure.ac. This template file is usually called

config.h.in. We!ll cover autoheader in greater detail in Chapter

3.

Autom4te

The autom4te utility is a cache manager used by most of the

other Autotools. In the early days of Autoconf there was really

no need for such a cache, but because most of the Autotools

use constructs found in configure.ac, the cache speeds up

access by successive programs to configure.ac by about 40

percent or more. I won!t spend a lot of time on autom4te

(which is pronounced “automate”, by the way), because it!s

mainly used internally by the Autotools, and the only sign

you!re given that it!s working is the existence of an

autom4te.cache directory in your top-level project directory.

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 6 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

Autoreconf

The autoreconf program can be used to execute the

configuration tools in the Autoconf, Automake and Libtool

packages as required by the project. The purpose of

autoreconf is to minimize the amount of regeneration that

needs to be done, based on timestamps, features, and project

state. Think of autoreconf as an Autotools bootstrap utility. If

all you have is a configure.ac file, running autoreconf will run

the tools you need in order to run configure and then make.

Autoscan

The autoscan program is used to generate a reasonable

configure.ac file for a new project. We!ll spend some time on

autoscan later in Chapter!s 3 and 6, as we go through the

process of setting up the Autotools on a basic project.

Autoupdate

The autoupdate utility is used to update your configure.ac or

template (*.in) files to the syntax of the current version of the

Autotools. I!ll cover autoupdate in more detail in Chapter 2.

Ifnames

The ifnames program is a small, and generally under-utilized

program that accepts a list of source files names on the

command line, and displays a list of C preprocessor definitions

and their containing files on the stdout device. This utility is

designed to help you determine what to put into your

configure.ac and Makefile.am files for the sake of portability. If

your project has already been written with some level of

portability in mind, ifnames can help you find out where those

attempts are located in your source tree, and what the names

of potential portability defintions might be.

Of the tools in this list, only autoconf and autoheader are used

directly by the project maintainer while generating a configure

script, and actually, as we!ll see later, only autoreconf really

needs to be called directly. The following diagram shows the

interaction between input files and the Autoconf and

autoheader programs to generate product files:

Figure 1: Autoconf and autoheader data flow diagram

NOTE: I!ll follow this data flow diagram format through the rest

of this book. Darker colored boxes represent objects that are

provided either by the user or by an Autotools package. Lighter

shades of the same colors represent generated objects of the

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 7 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

shades of the same colors represent generated objects of the

same type.

These tools! primary task is to generate a configure script that

can be used by you or others to configure a project build

directory. The configure script generated does not rely in any

way on the Autotools themselves. In fact, Autoconf is

specifically designed to generate configure scripts that will run

on all Unix or Unix-like platforms that support a Bourne shell.

You should be able to generate a configure script from

Autoconf, and then successfully execute that script on a

machine which does not have the Autotools installed. Not

surprisingly, this is actually a common use-case in the free

software world, so it!s also a well-tested use case.

As you can see in this diagram, Autoconf and autoheader are

called by the user. These tools take their input from your

project!s configure.ac file, and various Autoconf-flavored m4

macro definition files. They use autom4te to maintain cache

information. Autoconf generates your configure script, a very

portable Bourne shell script that provides your project with

configuration capabilities. Autoheader generates the config.h.in

template based on macro definitions in configure.ac.

You may have noticed the apparent identity crisis being

suffered by the aclocal.m4 input file. Is that a bit of a blush on

that box—is it a generated file, or a user-provided file? Well,

the answer is that it!s both, and I!ll explain this in more detail in

the next section.

Automake

So, what!s so difficult about writing a makefile? Well, actually,

once you!ve done it a few times, writing a basic makefile for a

new project is really rather trivial. The problems occur when

you try to do more than just the basics. And let!s face it—what

project maintainer has ever been satisfied with just a basic

makefile?

The single most significant difference between a successful

free software project and one that rarely gets a second glance

can be found deep in the heart of project maintenance details.

These details include providing the so-called “standard make

targets”. Potential users become disgusted with a project fairly

easily—especially when certain bits of expected functionality

are missing or improperly written. Users have come to expect

certain more or less standard make targets. A make target is a

goal specified on the make command line:

In this example, install is the goal or target. Common

make targets include all, clean and install, among

others. You!ll note that none of these are real targets. A real

target is a file produced by the build system. If you!re building

an executable called doofabble, then you!d expect to be able

to type:

$ make install

$ make doofabble

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 8 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

This would generate an actual executable file called

doofabble. But specifying real targets on the make

command line is more work than necessary. Each project

must be built differently—make doofabble, make foodabble,

make abfooble, etc. Why not just type make or make all, if

there is more than one binary to be made? So all has

become an expected pseudo-target, but “expected” doesn!t

mean “automatic”.

Supporting the expected set of standard targets can be fairly

challenging. As with configuration scripts, the most widely

used implementation is one written in the late 80!s and copied

from project to project throughout the internet. Why? Because

writing it yourself is error prone. In fact, copying it is just as

error-prone. It!s like getting a linked-list implementation right

the first time. The process is well-understood by any veteran

software engineer, but it still rarely happens. Object-oriented

programming languages like C++ and Java provide libraries

and templates for these constructs now—not because they!re

hard to implement by hand, but because doing so is error-

prone, and there!s no point in re-inventing the wheel—yet

again.

Automake!s job is to convert a much simplified specification of

your project!s build process into standard boilerplate makefile

syntax that always works correctly the first time, and provides

all the standard functionality expected of a free software

project. In actuality, Automake creates projects that support

guidelines defined in the GNU Coding Standards, which I!ll

cover in greater detail in Chapter 2.

The Automake package provides the following tools in the form

of perl scripts:

automake

aclocal

The primary task of the Automake program is to generate

standard makefile templates (named Makefile.in) from high-

level build specification files (named Makefile.am). One of the

most interesting and useful aspects of the way Automake

works is that the Makefile.am input files are mostly just regular

makefiles. If you put only the few required Automake

definitions in a Makefile.am, you!ll get a Makefile.in file

containing several hundred lines of makefile code. But if you

add additional makefile syntax to your Makefile.am files, this

code will be transferred to the most functionally correct

location in the resulting Makefile.in. In fact, you can (if you

wish) write pure make syntax in your Makefile.am files, and

they!ll work just fine (as long as you actually write them

correctly, that is). This pass-through feature gives you the

power and flexibility to extend Automake!s functionality with

your project!s own special requirements.

Aclocal

The aclocal utility is actually documented by the GNU manuals

as a temporary work-around for a certain lack of flexibility in

Autoconf. Autoconf was designed and written first, and then a

few years later, the idea for Automake was conceived as an

add-on for Autoconf. But Autoconf was really not designed to

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 9 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

add-on for Autoconf. But Autoconf was really not designed to

be extensible on the scale required by Automake.

Automake adds an extensive set of macros to those provided

by Autoconf. The originally documented method for adding

user-defined macros to an Autoconf project was to create a

file called aclocal.m4 in the same directory as configure.ac.

Any user-provided extension macros were to be placed in this

file, and Autoconf would automatically read it while processing

configure.ac. From the perspective of the Automake designers,

this existing extension mechanism was too good to pass up.

But requiring the user to add an m4_include line to

aclocal.m4 seemed a bit brittle. Instead, the aclocal utility was

designed to create a project!s aclocal.m4 file, containing all the

required Automake macros. Since Automake!s aclocal utility

basically took over aclocal.m4 for its own purposes, it was also

designed to read a new user-provided macro file called

acinclude.m4.

Essentially, aclocal!s job is to create an aclocal.m4 file by

consolidating various macro files from installed Autotool

packages and user-specified locations, such that Autoconf

can find them all in one place.

For the sake of modularity, the Autoconf manual is still

unaware of the aclocal utility—for the most part. The current

revision of the manual rants a bit on the subject of where

aclocal functionality should actually be. Automake!s manual

originally suggested that you should rename aclocal.m4 to

acinclude.m4 when adding Automake to an existing Autoconf

project. This method is still followed rigorously in new projects.

However, the latest documentation from both sets of tools

suggests that the entire aclocal/acinclude paradigm is now

obsolete, in favor of a newer method of specifying a directory

containing m4 macro files. The current recommendation is that

you create a directory in your project directory called simply

m4 (acinclude seems more appropriate to this author), and

add macros in the form of individual .m4 files to this directory.

All files in this directory will be gathered into aclocal.m4 before

Autoconf processes your configure.ac file. Ultimately, aclocal

will be replaced by functionality in Autoconf itself. (Given the

fairly complex nature of aclocal functionality, and given that

most of the other tools are already written in perl, I!m guessing

that Autoconf will be rewritten in perl, at this point.)

Figure 2: Aclocal data flow diagram

With aclocal behind us, it should be more apparent now why

the aclocal.m4 box in the Autoconf data flow diagram of Figure

1 above couldn!t decide which color it should be. When used

without Automake and Libtool, the aclocal.m4 file is written by

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 10 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

without Automake and Libtool, the aclocal.m4 file is written by

hand, but when used in conjunction with Automake and

Libtool, the file is generated by the aclocal utility, and

acinclude.m4 is used to provide project-specific macros.

Libtool

How do you build shared libraries on different Unix platforms

without adding a lot of very platform-specific conditional code

to your build system and source code? This is the question

that the Libtool package tries to address.

There!s a significant amount of visible functionality in Unix and

Unix-like platforms that is the same from one platform to

another. However, one very significant difference is how

shared libraries are built, named and managed. Some

platforms don!t even provide native shared libraries (although

it!s rare these days). Some platforms name their libraries

libsomething.so, while others use something.o.

Some use libsomething.a, while others use

libsomething.sa. Some platforms provide libdl

(dlopen/dlsym/dlclose) to allow software to dynamically load

and access library functionality at runtime. Others provide

other mechanisms—or none at all.

All of these differences have been carefully considered by the

authors of the Libtool project. Dozens of platforms are

currently supported by Libtool, and adding support for new

platforms is done via the open source way—someone who

cares (and knows how) supplies a patch to the Libtool mailing

list, and the maintainers look it over and apply it to the source

code for the next release.

Libtool not only provides a set of Autoconf macros that hide

library naming differences in makefiles, but it also provides an

optional library of dynamic loader functionality that can be

added to your programs, allowing you to write more portable

runtime dynamic shared object management code.

The libool package provides the following programs, libraries

and header files:

libtool (program)

libtoolize (program)

ltdl (static and shared libraries)

ltdl.h (header)

The libtool shell script is a generic version of Libtool designed

to be used by programs on your platform. There!s nothing

specific to a project in this particular copy of libtool.

Libtoolize

The libtoolize shell script is used to prepare your project to use

Libtool. In reality, libtoolize generates a custom version of the

libtool script in your project directory. This script is then

executed at the appropriate time by Automake-generated

makefiles.

The Libtool C API—ltdl

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 11 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

The Libtool package also provides the ltdl library and header

files, which provide a consistent run-time shared object

manager across platforms. The ltdl library may be linked

statically or dynamically into your programs, giving them a

consistent runtime shared library access interface from one

platform to another.

The following data flow diagram illustrates the interaction

between Automake and Libtool scripts and input files to create

products used by users to configure and build your project:

Figure 3: Automake and Libtool data flow diagram

Automake and Libtool are both standard pluggable options

that can be added to configure.ac with a few simple macro

calls.

Building your package

While, as maintainer, you probably build your software

packages a lot more often than do your users, you also have

the advantage of being intimately familiar with your project!s

components, architecture and build system. That!s why you

ought to be concerned that your users! build experience is

much simpler than yours. (And it wouldn!t hurt a bit if you got

some benefit from this concern, as well.)

Running configure

Once the Autotools have finished their work, you!re left with a

shell script called configure, and one or more Makefiles.in

files. These product files are intended to be packages with

project release distribution packages. Your users download

these packages, unpack them, and run configure and make.

The configure script generates Makefiles from the Makefile.in

files. It also generates a config.h header file from the

config.h.in file built by autoheader.

So why didn!t the Autotools just generate the makefiles directly

to be shipped with your release? One reason is that without

makefiles, you can!t run make. This means that you!re forced

to run configure first, after you download and unpack a project

distribution package. Makefile.in files are nearly identical to the

makefiles you might write by hand, except that you didn!t have

to. And they do a lot more than most people are willing to

hand code into a set of makefiles. Another reason is that the

configure script may then insert platform-characteristics and

user-specified optional features directly into your makefiles,

making them more specifically tailored to the platforms on

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 12 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

making them more specifically tailored to the platforms on

which they are being used.

The following diagram illustrates the interaction between

configure and the scripts that it executes during the build

process to create your Makefiles and your config.h header file:

Figure 4: Configure script data flow diagram

The configure script appears to have this weird sort of

incestuous relationship with another script called config.status.

I!ll bet you!ve always thought that your configure script

generated your makefiles. As it turns out, the only file (besides

a log file) that configure generates is config.status. The

configure script!s function is to determine platform

characteristics and features available, as specified in

configure.ac. Once it has this information, it generates

config.status such that it contains all of the check results, and

then calls it. The newly generated config.status file uses the

check information (now embedded within it) to generate

platform-specific config.h and makefiles, as well as any other

files specified for instantiation in configure.ac. As the double

ended red arrow shows, config.status can also call configure.

When used with the —recheck option, config.status will call

configure with the same command line options with which it

was originally generated.

The configure script also generates a log file called config.log,

which contains very useful information about why a particular

execution of configure failed on your user!s platform. As

maintainer, you can use this information to help you debug

user problems. Just ask them to send you their config.log file.

The problem is often in plain sight. Another nice feature of

config.log is that it logs how configure was executed—which

command line options were used.

From a user perspective, this could be really handy, as he

comes back from a long vacation, and can!t remember what

options he used to generate the project build directory. But

Autoconf-generated configure scripts make it even simpler

than this. If you need to re-generate makefiles and config.h

header files for some reason, just type ./config.status in the

project build directory. The output files will be generated using

the same options originally used to generate the config.status

file.

Remote build directories

A little-known feature of Autotools build environments is that

they need not be generated within a project source directory

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 13 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

they need not be generated within a project source directory

tree. That is, a user may execute configure remotely, and

generate a full build environment within a remote build

directory.

In the following example, Joe User downloads doofabble 3.0

and unpacks it. Then he creates two sibling directories called

doofabble-3.0.debug and doofabble-3.0.release. He cd!s into

doofabble-3.0.debug, executes doofabble-3.0!s configure script

remotely with a doofabble-specific debug option, and then

runs make. Finally, he switches over to the doofabble-

3.0.release directory and does the same thing, this time

running configure without the debug option enabled:

Users don!t often care about remote build functionality

because all they generally want to do is configure, make and

install your code on their own platforms. Maintainers, on the

other hand should find remote build functionality very useful,

as it allows them to, 1) maintain a reasonably pristine source

tree, and 2) maintain multiple build environments for their

project, each with potentially complex configuration options.

Rather than reconfigure a single build environment, they may

simply switch between build directories configured in multiple

different ways.

Running make

Finally, you run make. Just plain old make. In fact, the

Autotools designers went to a LOT of trouble to ensure that

you didn!t need any special version or brand of make. You

don!t need GNU make—you can use Solaris make, or BSD

Unix make if you wish (read, “if you must”).

The following diagram depicts the interaction between the

make utility and the generated makefiles during the build

process to create your project products:

Figure 5: Make data flow diagram

$ tar -zxvf doofabble-3.0.tar.gz

$ mkdir doofabble-3.0.debug

$ cd doofabble-3.0.debug

$../doofabble-3.0/configure --enable-debug

$ make

...

$ cd ..

$ mkdir doofabble-3.0.release

$ cd doofabble-3.0.release

$../doofabble-3.0/configure

$ make

...

19/05/2008 11:04Chapter 1: A brief introduction to the GNU Autotools

Page 14 of 14http://www.freesoftwaremagazine.com/books/agaal/brief_introduction_to_gnu_autotools

‹ Autotools: a

practitioner's guide to

Autoconf, Automake

and Libtool

u

p

Chapter 2: Project

management and the

GNU coding standards

›

This diagram shows make running several generated scripts,

but these are all really ancillary to the make process.

Summary

In this chapter I!ve presented a high-level overview of the

Autotools to give you a feel for how everything ties together.

In the next chapter, we!ll begin creating a hand-coded build

system for a toy project. The idea is that you!ll become familiar

with the requirements of a reasonable build system, and how

much can be done for you by the Autotools.

Too many developers these days start out with the Autotools,

not having aquired through the “school of hard knocks” the

experience to know what it!s really doing for them. This can

lead to frustration, and a negative attitude. In the next chapter,

you!ll become familiar with the rationale for a lot of the original

design of the Autotools. In understanding this background

information, my hope is that any potential negative bias you

may already have for the Autotools will be tempered a bit.

Login or register to post comments 8858 reads

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 1 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

©

COLUMNS COMMUNITY POSTS ISSUES BOOKS FORUM FS NEWS

REVIEWS NEWSLETTERS ADVERTISE SPONSORS HELP FSM WRITE FOR US CONTACTS ABOUT

Home » Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Chapter 2: Project management
and the GNU coding standards
by John Calcote

In Chapter 1, I gave a brief overview of the Autotools and

some of the resources that are currently available to help

reduce the learning curve. In this chapter, we!re going to step

back a little and examine project organization techniques that

are applicable to all projects, not just those whose build

system is managed by the Autotools.

When you!re done reading this chapter, you should be familiar

with the common make targets, and why they exists. You

should also have a solid understanding of why projects are

organized the way they are. Trust me—by the time you finish

this chapter, you!ll already be well on your way to a solid

understanding of the GNU Autotools.

The information provided by this chapter comes primarily from

two sources:

The GNU Coding Standards Document

The Filesystem Hierarchy Standard

In addition, you may find the GNU make manual very useful, if

you!d like to brush up on your make syntax:

The GNU Make Utility Manual

Creating a new project directory structure

There are two questions to ask yourself when setting up a new

open source software (OSS) project build system:

What platforms will I target?

What do my users expect?

The first is an easy question to answer - you get to decide, but

don!t be too restrictive. Free software projects become great

due to the number of people who!ve adopted them. Limiting

the number of platforms arbitrarily is the direct equivalent of

limiting the number of users. Now, why would you want to do

that?!

The second question is more difficult, but not unsolvable. First,

let!s narrow the scope to something managable. We really

mean to say, “What do my users expect of my build system?”

A common approach for many OSS developers of determining

these expectations is to download, unpack, build and install

about a thousand different packages. You think I!m kidding? If

you do this, eventually, you will come to know intuitively what

Digital Command
Control
Digitrains supply & install

systems and decoders;

help & advice is free
www.digitrains.co.uk

Why Is My Computer
Slow?
Perform Registry

Compression, Defrag,

Manage & Cleanup Your

PC.
www.RegClean.com

PostgreSQL Courses
DBA and Developer

courses from the experts
www.2ndQuadrant.com

Zip & Unzip Free
Download
Download free zip &

unzip software. Free Full

Version, no need to buy
UberDownloads.com/Unzip

Registry Scanners
Exposed
Don't Download Any

Registry Scanner Until

You See This Shocking

Review!
RegistryCleanerGuide.org

Microsoft May Seek New

Yahoo ...

Building Semantics is

Different ...

Lux: multi-touch for OS X

Best voted
contents

The Bizarre Cathedral -

3

Ryan Cartwright, 2008-05-05

The Bizarre Cathedral -

2

Ryan Cartwright, 2008-04-27

Indexing offline CD-

ROM archives

Terry Hancock, 2008-05-03

Microsoft and free

software? I don't think

so...

Terry Hancock, 2008-04-26

From the FSM staff...

The Top 10 Everything

(Dave). The good, the bad

and the ugly.

Free Software news (Dave

& Bridget). A site about

short stories and writing.

Book Reviews: Illiterarty

(Bridget). Book reviews,

blogs, and short stories.

Hot topics - last 60
days

Installing an all-in-one

printer device in Debian

Ryan Cartwright, 2008-05-05

What is the free software

community?

Tony Mobily, 2008-03-29

Things you miss with

GNU/Linux

Need EDM Now?
Enterprise Decision Management Accelerate your
decision process!
www.zementis.com

Registry Scanners Exposed
Don't Download Any Registry Scanner Until You
See This Shocking Review!
RegistryCleanerGuide.org

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 2 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

you do this, eventually, you will come to know intuitively what

your users expect of your build system. Unforutunately,

package configuration, build and install processes vary so far

from the “norm” that it!s difficult to come to a solid conclusion

about what the norm really is when using this technique.

A better way is to go directly to the source of the information.

Like many developers new to the OSS world, I didn!t even

know there was a source of such information when I first

started working on OSS projects. As it turns out, the source is

quite obvious, after a little thought: The Free Software

Foundation (FSF), better known as the GNU project. The FSF

has published a document called The GNU Coding Standards,

which covers a wide variety of topics related to writing,

publishing and distributing free software—specifically for the

FSF. Most non-GNU free software projects align themselves to

one degree or another with the GNU Coding Standards. Why?

Well…just because they were there first. And because their

ideas make sense, for the most part.

Project structure

We!ll start with a simple example project, and build on it as we

continue our exploration of source-level software distribution.

OSS projects generally have some sort of catchy name—often

they!re named after some past hero or ancient god, or even

some made-up word—perhaps an acronym that can be

pronounced like a real word. I!ll call this the jupiter project,

mainly because that way I don!t have to come up with

functionality that matches my project name! For jupiter, I!ll

create a project directory structure something like this:

Woot! One directory called src, one C source file called

main.c, and a makefile for each of the two directories.

Minimal yes, but hey, this is a new project, and everyone

knows that the key to a successful OSS project is evolution,

right? Start small and grow as needed (and, as you have time

and inclination).

We!ll start with support for the most basic of targets in any

software project: all and clean. As we progress, it!ll

become clear that we need to add a few more important

targets to this list, but for now, these will get us going. The top-

level Makefile does very little at this point, merely passing

requests for all and clean down to src/Makefile

recursively. In fact, this is a fairly common type of build

system, known as a recursive build system. Here are the

contents of each of the three files in our project:

Makefile

$ cd projects

$ mkdir -p jupiter/src

$ touch jupiter/Makefile

$ touch jupiter/src/Makefile

$ touch jupiter/src/main.c

$ cd jupiter

$

Buzz authors

Marco Marongiu

Pieter Hintjens

drascus321

dogboi

Richard Rothwell

All news

John Crawford: Arizona

LoCo Hardy Release Party

John Crawford: Ubuntu

Weekly Newsletter #91

Matthew Helmke: Morocco

blocks Google Maps

Andy Price: Synchronicity

and Sharing

Jono Bacon: Beware False

Prophets

more

15

15

17

15

17

25

23

16

How Microsoft Uses

Novell to Fight

GNU/Linux, Xen to

Fight VMWare and

GNU/Linux

Why You Should Reject

Novell’s Moonlight

University of Havana

Finally Switches to

Free Software

Please Welcome

Digistan

Content Protection

madness on Vista

Asus to embed Linux

into all motherboards

Make Your Distro Free

of Miguel de Icaza's

junk code

Firefox 3 Release

Candidate now

available for download

Get this widget »

GNU/Linux

Ryan Cartwright, 2008-05-01

How do you replace

Microsoft Outlook?

Groupware applications

Ryan Cartwright, 2008-03-20

Drigg (the pligg

alternative) vs. Pligg: why

should people switch?

Tony Mobily, 2008-04-13

Hot topics - last 21
days

Installing an all-in-one

printer device in Debian

Ryan Cartwright, 2008-05-05

Things you miss with

GNU/Linux

Ryan Cartwright, 2008-05-01

Digital Rights

Management (DRM): is it

in its death throes?

Gary Richmond, 2008-05-07

Open letter to standards

professionals,

developers, and activists

Pieter Hintjens, 2008-05-13

DEDICATED SERVER

Odiogo

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 3 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

src/Makefile

src/main.c

At this point, you may need to stop and take a refresher

course in make syntax. If you!re already pretty well versed on

make, then you can skip the sidebar entitled, “Some makefile

basics”. Otherwise, give it a quick read, and then we!ll

continue building on this project.

Some makefile basics

For those like myself who use make only when they have

to, it!s often difficult to remember exactly what goes where

in a makefile. Well, here are a few things to keep in mind.

Besides comments, which begin with a HASH mark, there

are only three types of entities in a makefile:

variable assignments

rules

commands

NOTE: There are also conditional statements, but for the

purposes of this chapter, we need not go into conditionals.

See the GNU make manual for more information.

Commands always start with a TAB character. Any line in a

makefile beginning with a TAB character is ALWAYS

considered by make to be a command. Commands should

always be associated with a preceeding rule. In fact, if you

insert a TAB character before a line not preceeded by a

rule, you!ll get a very strange error message from make.

GNU make is a little better these days about figuring out

what you did wrong and telling you.

The general layout of a makefile is:

all clean jupiter:

 $(MAKE) -C src $@

all: jupiter

jupiter: main.c

 gcc -g -O0 -o $@ $+

clean:

 -rm jupiter

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char * argv[])

{

 printf("Hello from %s!\n", argv[0]);

 return 0;

}

var1=val1

var2=val2

...

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 4 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

Variable assignments may take place at any point in the

makefile, however you should be aware that make reads

each makefile twice. The first pass gathers variables, and

the second pass resolves dependencies defined by the

rules. So regardless of where you put your variable

definitions, make will act as though they!d all been

declared at the top. Furthermore, make binds variable

references to values at the very last minute—at the point

they are actually used in a command or rule. So, in general,

variables may be assigned values by reference to other

variables that haven!t even been assigned yet. Thus, the

order of variable assignment isn!t really that important.

make is a rule-based command engine. The rules indicate

when and which commands should be executed. When you

prefix a line with a TAB character, you!re telling make that

you want it to execute these statements from a shell

according to the rules specified on the line above.

NOTE: The fact that commands are required to be prefixed

with an essentially invisible character is one of the most

frustrating aspects of makefile syntax to both neophites and

experts alike. The error messages generated by the make

utility when a required TAB is missing or when an

unintentional TAB is inserted are obscure at best. As

mentioned earlier, GNU make does a better job with such

error messages these days. Nonetheless, be careful to use

TAB characters properly in your makefiles—only before

commands, which in turn immediately follow rules.

Of the remaining lines, those containing an EQUAL sign are

variable definitions. Variables in makefiles are nearly

identical to shell or environment variables. In Bourne shell

syntax, you!d reference a variable in this manner:

${my_var}. In a makefile, the same syntax applies,

except you would use parentheses instead of french

braces: $(my_var). As in shell syntax, the delimiters are

optional, but should be used to avoid ambiguous syntax,

thus $my_var is functionally equivalent to $(my_var).

One caveat: If you ever want to use a shell variable inside

a make command, you need to escape the DOLLAR sign

by doubling it. For instance, $${shell_var}. This need

arises occasionally, and it nearly always catches me off-

guard the first time I use it in a new project.

Variables may be defined anywhere and used anywhere

within a makefile. By default, make will read the entire

process environment into the make variable table before

...

rule1

 cmd1a

 cmd1b

 ...

rule2

 cmd2a

 cmd2b

 ...

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 5 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

process environment into the make variable table before

processing the makefile, so you can access any

environment variables as if they were defined in the

makefile itself. In addition, make defines several useful

variables of its own, such as the MAKE variable, whose

value is the file system path used to invoke the current

make process.

All other lines in a makefile are rules of one type or

another. The rules used in my examples are known as

“common” make rules, containing a single COLON

character. The COLON character separates targets on the

left from dependencies on the right. Targets are products—

generally file system entities that can be produced by

running one or more commands, such as a C compiler.

Dependencies are source objects, or objects from which

targets may be created. These may be computer language

source files, or anything really that can be used by a

command to generate a target object.

For example, a C compiler takes dependency main.c as

input, and generates target main.o. A linker takes

dependency main.o as input, and generates a named

executable target, jupiter in these examples:

Figure 6: Compile and link process

The make utility implements some fairly complex logic to

determine when a rule should be run based on whether the

target exists or is older than its dependencies, but the

syntax is trivial enough:

This sample makefile contains two rules. The first says that

jupiter depends on main.o, and the second says that

main.o depends on main.c. Ultimately, of course,

jupiter depends on main.c, but main.o is a necessary

intermediate dependency, because there are two steps to

the process—compile and link—with an intermediate result

in between. For each rule, there is an associated list of

commands that make uses to build the target from the list

of dependencies.

Of course, there is an easier way—gcc (as with most

compilers) will call the linker for you—which, as you can

probably tell from the elipsis in my example above, is very

desirable. This alleviates the need for one of the rules, and

provides a convenient way of adding more dependent files

jupiter: main.o

 ld main.o ... -o jupiter

main.o: main.c

 gcc -c -g -O2 -o main.o main.c

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 6 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

provides a convenient way of adding more dependent files

to the single remaining rule:

In this example, I!ve added a make variable to reduce

redundancy. We now have a list of source files that is

referenced in two places. But, it seems a shame to be

required to reference this list twice in this manner, when the

make utility knows which rule and which command it!s

dealing with at any moment during the process.

Additionally, there may be other objects in the dependency

list that are not in the sources variable. It would be nice

to be able to reference the entire dependencies list without

duplicating the list.

As it happens, there are various “automatic” variables that

can be used to reference portions of the controlling rule

during the execution of a command. For example $(@) (or

the more common syntax $@) references the current target,

while $+ references the current list of dependencies:

If you enter “make” on the command line, the make utility

will look for the first target in a file named “Makefile” in

the current directory, and try to build it using the rules

defined in that file. If you specify a different target on the

command line, make will attempt to build that target

instead.

Targets need not be files only. They can also be so-called

“phony targets”, defined for convenience, as in the case of

all and clean. These targets don!t refer to true products

in the file system, but rather to particular outcomes—the

directory is “cleaned”, or “all” desirable targets are built, etc.

In the same way that dependencies may be listed on the

right side of the COLON, rules for multiple targets with the

same dependencies may be combined by listing targets on

the left side of the COLON, in this manner:

The -C command-line option tells make to change to the

specified directory before looking for a makefile to run.

GNU Make is significantly more powerful than the original

Unix make, although completely backward compatible, as

long as GNU extensions are avoided. The GNU Make

manual is available online. O!Reilly has an excellent book

on the original Unix make utility and all of its many

nuances. They also have a more recent book written

specifically for GNU make that covers GNU Make

sources = main.c print.c display.c

jupiter: $(sources)

 gcc -g -O2 -o jupiter $(sources)

sources = main.c print.c display.c

jupiter: $(sources)

 gcc -g -O2 -o $@ $+

all clean jupiter:

 $(MAKE) -C src $@

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 7 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

specifically for GNU make that covers GNU Make

extensions.

Creating a source distribution archive

It!s great to be able to type “make all” or “make clean”

from the command line to build and clean up this project. But

in order to get the jupiter project source code to our users,

we!re going to have to create and distribute a source archive.

What better place to do this than from our build system. We

could create a separate script to perform this task, and many

people have done this in the past, but since we have the

ability, through phony targets, to create arbitrary sets of

functionality in make, and since we already have this general

purpose build system anyway, we!ll just let make do the work

for us.

Building a source distribution archive is usually relegated to

the dist target, so we!ll add one. Normally, the rule of thumb

is to take advantage of the recursive nature of the build

system, by allowing each directory to manage its own portions

of a global process. An example of this is how we passed

control of building jupiter down to the src directory, where the

jupiter source code is located. However, the process of

building a compressed archive from a directory structure isn!t

really a recusive process—well, okay, yes it is, but the

recursive portions of the process are tucked away inside the

tar utility. This being the case, we!ll just add the dist target

to our top-level makefile:

Makefile

Now, there are a couple of noteworthy items in this version of

the makefile. The first is that we!ve added a new construct, the

.PHONY rule. At least it seems like a rule—it contains a

package = jupiter

version = 1.0

tarname = $(package)

distdir = $(tarname)-$(version)

all clean jupiter:

 $(MAKE) -C src $@

dist: $(distdir).tar.gz

$(distdir).tar.gz: $(distdir)

 tar chof - $(distdir) |\

 gzip -9 -c >$(distdir).tar.gz

 rm -rf $(distdir)

$(distdir):

 mkdir -p $(distdir)/src

 cp Makefile $(distdir)

 cp src/Makefile $(distdir)/src

 cp src/main.c $(distdir)/src

.PHONY: all clean dist

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 8 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

.PHONY rule. At least it seems like a rule—it contains a

COLON character, anyway. The .PHONY rule is a special kind

of rule called a dot-rule, which is built in to make. The make

utility understands several different dot-rules. The purpose of

the .PHONY rule is simply to tell make that certain targets

don!t generate file system objects, so make won!t go looking

for product files in the file system that are named after these

targets.

The second point of interest is the use of a leading DASH

character in some of our commands. A leading DASH

character tells make to not care about the status code of the

associated command. Normally make will stop execution with

an error message on the first command that returns a non-

zero status code to the shell. We use a leading DASH

character on the initial rm commands because we want to

delete previously created product files that may or may not

exist, and rm will return an error if we attempt to delete a non-

existent file.

Another such character that you may encounter is the leading

ATSIGN (@) character. A command prefixed with an ATSIGN

character tells make not to print the command as it executes

it. Normally make will print each command (unless you!ve

given make a command line parameter (-s), or used another

dot-rule, the .SILENT rule, to keep it quiet). A leading ATSIGN

tells make that you never want to see this command. This is a

common thing to do on echo commands—you don!t want

make to print echo commands because then your message

will be printed twice, and that!s just ugly.

We!ve added the new dist target in the form of three rules

for the sake of readability, modularity and maintenance. This is

a great rule of thumb to following in any software engineering

process: Build large processes from smaller ones, and reuse

the smaller processes where it makes sense to do so.

The dist target depends on the existance of the ultimate

goal, a source-level compressed archive package, jupiter-

1.0.tar.gz—also known as a “tarball”. We!ve added a

make variable for the version number to ease the process of

updating the project version later, and We!ve used another

variable for the package name for the sake of possibly porting

this makefile to another project. We!ve also logically split the

functions of package name and tar name, in case we want

them to be different later—the default tar name is the package

name. Finally, We!ve combined references to these variables

into a distdir variable to reduce duplication and complexity

in the makefile.

The rule that builds the tarball indicates how this should be

done with a command that uses the gzip and tar utilities to

create the file. But, notice also that the rule has a dependency

—the directory to be archived. We don!t want everything in our

project to go into our tarball—only exactly those files that are

necessary for the distribution. Basically, this means any file

required to build and install our project. We certainly don!t

want object files and executables from our last build attempt to

end up in the archive, so we have to build a directory

containing exactly what we want to ship. This pretty much

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 9 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

containing exactly what we want to ship. This pretty much

means using individual cp commands, unfortunately.

Since there!s a rule in the makefile that tells how this directory

should be created, make runs the commands for this rule

before running the commands for the current rule. The make

utility runs rules to build dependencies recursively until the

actual requested target!s commands can be run.

Forcing a rule to run

There!s a subtle flaw in the $(distdir) target that may not

be obvious, but it will rear its ugly head at the worst times. If

the archive directory already exists when you type make

dist, then make won!t try to create it. Try this:

Notice that the dist target didn!t copy any files—it just built

an archive out of the existing jupiter-1.0 directory, which

was empty. Our end-users would have gotten a real surpise

when they unpacked this tarball!

The problem is that the $(distdir) target is a real target

with no dependencies, which means that make will consider it

up-to-date as long as it exists in the file system. We could add

$(distdir) to the .PHONY rule, but this would be a lie—

it!s not a phony target, it!s just that we want to force it to be

rebuilt every time.

The proper way to ensure it gets rebuilt is to have it not exist

before make attempts to build it. A common method for

accomplishing this task to to create a true phony target that

will run every time, and add it to the dependency chain at or

above the $(distdir) target. For obvious reasons, a

commonly used name for this sort of target is “FORCE”:

Makefile

$ mkdir jupiter-1.0

$ make dist

tar chof - jupiter-1.0 | gzip -9 -c >jupiter-1.0...

rm -rf jupiter-1.0 &> /dev/null

$

...

$(distdir).tar.gz: FORCE $(distdir)

 tar chof - $(distdir) |\

 gzip -9 -c >$(distdir).tar.gz

 rm -rf $(distdir)

$(distdir):

 mkdir -p $(distdir)/src

 cp Makefile $(distdir)

 cp src/Makefile $(distdir)/src

 cp src/main.c $(distdir)/src

FORCE:

 -rm $(distdir).tar.gz &> /dev/null

 -rm -rf $(distdir) &> /dev/null

.PHONY: FORCE all clean dist

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 10 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

The FORCE commands are executed every time because

FORCE is a phony target. By making FORCE a dependency

of the tarball, we!re given the opportunity to delete any

previously created files and directories before make begins to

evaluate whether or not these targets! commands should be

executed. This is really much cleaner, because we can now

remove the “pre-cleanup” commands from all of the rules,

except for FORCE, where they really belong.

There are actually more accurate ways of doing this—we

could make the $(distdir) target dependent on all of the

files in the archive directory. If any of these files are newer

than the directory, the target would be executed. This scheme

would require an elaborate shell script containing sed

commands or non-portable GNU Make functions to replace

file paths in the dependency list for the copy commands. For

our purposes, this implementation is adequate. Perhaps it

would be worth the effort if our project were huge, and

creating an archive directory required copying and/or

generating thousands of files.

The rule for building the archive directory is the most

frustrating of any in this makefile—it contains commands to

copy files individually into the distribution directory. What a sad

shame! Everytime we change the file structure in our project,

we have to update this rule in our top-level makefile, or we!ll

break our dist target.

But, there!s nothing to be done for it. We!ve made the rule as

simple as possible. Now, we just have to remember to

manage this process properly. But unfortunately, breaking the

dist target is not the worst thing that could happen if we

forget to update the distdir rule!s commands. The dist

target may continue to appear to work, but not actually copy all

of the required files into the tarball. This will cause us some

embarassment when our users begin to send us emails asking

why our tarball doesn!t build on their systems.

In fact, this is a far more common possibility than that of

breaking the dist target, because the more common activity

while working on a project is to add files to the project, not

move them around or delete them. New files will not be

copied, but the dist rule won!t notice the difference.

If only there were some way of unit-testing this process. As it

turns out, there is a way of performing a sort of self-check on

the dist target. We can create yet another phony target

called “distcheck” that does exactly what our users will do

—unpack the tarball, and build the project. If the build process

fails, then the distcheck target will break, telling us that we

forgot something crucial in our distribution.

Makefile

.PHONY: FORCE all clean dist

...

distcheck: $(distdir).tar.gz

 gzip -cd $+ | tar xvf -

 $(MAKE) -C $(distdir) all clean

 rm -rf $(distdir)

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 11 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

Here, we!ve added the distcheck target to the top-level

makefile. Since the distcheck target depends on the tarball

itself, it will first build a tarball using the same targets used by

the dist target. It will then execute the distcheck

commands, which are to unpack the tarball it just built and run

“make all clean” on the resulting directory. This will build

both the all and clean targets, successively. If that

process succeeds, it will print out a message, telling us that

we can sleep well knowing that our users will probably not

have a problem with this tarball.

Now all we have to do is remember to run “make

distcheck” before we post our tarballs for public

distribution!

Unit testing anyone?

Some people think unit testing is evil, but really—the only

rationale they can come up with for not doing it is laziness.

Let!s face it—proper unit testing is hard work, but it pays off in

the end. Those who do it have learned a lesson (usually as

children) about the value of delayed gratification.

A good build system is no exception. It should encorporate

proper unit testing. The commonly used target for testing a

build is the check target, so we!ll go ahead and add the

check target in the usual manner. The test should probably

go in src/Makefile because jupiter is built in

src/Makefile, so we!ll have to pass the check target

down from the top-level makefile.

But what commands do we put in the check rule? Well,

jupiter is a pretty simple program—it prints out a message,

“Hello from <path>jupiter!”, where <path> is variable,

depending on the location from which jupiter was executed.

We could check to see that jupiter actually does output such a

string. We!ll use the grep utility to test our assertion.

Makefile

src/Makefile

 rm -rf $(distdir)

 @echo "*** Package $(distdir).tar.gz\

 ready for distribution."

...

.PHONY: FORCE all clean dist distcheck

...

all clean check jupiter:

 $(MAKE) -C src $@

...

.PHONY: FORCE all clean dist distcheck

...

check: all

 ./jupiter | grep "Hello from .*jupiter!"

 @echo "*** ALL TESTS PASSED ***"

...

.PHONY: all clean check dist distcheck

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 12 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

Note that check is dependent on all. We can!t really test

our products unless they!ve been built. We can ensure they!re

up to date by creating such a dependency. Now make will run

commands for all if it needs to before running the

commands for check.

There!s one more thing we could do to enhance our system a

bit. We can add the check target to the make command in

our distcheck target. Between the all and clean targets

seems appropriate:

Makefile

Now, when we run “make distcheck”, our entire build

system will be tested before packaging is considered

successful. What more could you ask for?!

Installing products

Well, we!ve now reached the point where our users!

experiences with our project should be fairly painless—even

pleasant, as far as building the project is concerned. Our users

will simply unpack the distribution tarball, change into the

distribution directory, and type “make”. It can!t really get any

simpler than that.

But still we lack one important feature—installation. In the

case of the jupiter project, this is fairly trivial - there!s only one

executable, and most users could probably guess that this file

should be copied into either the /usr/bin or

/usr/local/bin directory. More complex projects,

however could cause our users some real consternation when

it comes to where to put user and system binaries, libraries,

header files, and documentation, including man pages, info

pages, pdf files, and README, INSTALL and COPYRIGHT

files. Do we really want our users to have to figure all that out?

I don!t think so. So we!ll just create an install target that

manages putting things where they go, once they!re built

properly. Why not just make installation part of the all target?

A few reasons, really. First, build and installation are separate

logical concepts. Remember the rule: Break up large

processes into smaller ones and reuse the smaller ones where

you can. The second reason is a matter of rights. Users have

rights to build in their own home directories, but installation

often requires root-level rights to copy files into system

directories. Finally, there are several reasons why a user may

wish to build, but not install.

.PHONY: all clean check dist distcheck

...

distcheck: $(distdir).tar.gz

 gzip -cd $+ | tar xvf -

 $(MAKE) -C $(distdir) all check clean

 rm -rf $(distdir)

 @echo "*** Package $(distdir).tar.gz\

 ready for distribution."

...

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 13 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

While creating a distribution package may not be an inherently

recursive process, installation certainly is, so we!ll allow each

subdirectory in our project to manage installation of its own

components. To do this, we need to modify both makefiles.

The top-level makefile is easy. Since there are no products to

be installed in the top-level directory, we!ll just pass on the

responsibility to src/Makefile in the usual way:

Makefile

src/Makefile

In the top-level makefile, we!ve added install to the list of

targets passed down to src/Makefile. In both files we!ve

added install to the phony target list.

As it turns out, installation was a bit more complex than simply

copying files. If a file is placed in the /usr/bin directory,

then the root user should own it so that only the root user can

delete or modify it. Additionally, we should ensure that the

jupiter binary is executable, so we use the chmod command

to set the mode of the file to executable. This is probably

redundant, as the linker ensures that jupiter gets created as an

executable file, but it never hurts to be safe.

Now our users can just type the following sequence of

commands, and have our project built and installed with the

correct system attributes and ownership on their platforms:

All of this is well and good, but it could be a bit more flexible

with regard to where things get installed. Some of our users

may be okay with having jupiter installed into the /usr/bin

directory. Others are going to ask us why we didn!t put it into

...

all clean install jupiter:

 $(MAKE) -C src $@

...

.PHONY: FORCE all clean dist distcheck install

all: jupiter

jupiter: main.c

 gcc -g -O0 -o $@ $+

clean:

 -rm jupiter

install:

 cp jupiter /usr/bin

 chown root:root /usr/bin/jupiter

 chmod +x /usr/bin/jupiter

.PHONY: all clean install

$ tar -zxvf jupiter-1.0.tar.gz

$ cd jupiter-1.0

$ make all

$ sudo make install

$

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 14 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

directory. Others are going to ask us why we didn!t put it into

the /usr/local/bin directory—after all, it was built

locally. Well, we could change the target directory to

/usr/local/bin, but then others will ask us why we didn!t

just put it into the /usr/bin directory. This is the perfect

situation for a little command-line flexibility.

Another problem we have with these makefiles is the amount

of stuff we have to do to install files. Most Unix systems

provide a system-level program called “install”, which

allows a user to specify, in an intelligent manner, various

attributes of the files being installed. The proper use of this

utility could simplify things a bit. We!ll just make a few

changes to include to use of the install utility:

Makefile

src/Makefile

If you!re astute, you may have noticed that we declared and

assigned the prefix variable in the top-level makefile, but

we referenced it in src/Makefile. This is possible

because we used the export keyword in the top-level

makefile to export this make variable to the shell that make

spawns when it executes itself in the src directory. This is a

nice feature of make because it allows us to define all of our

user variables in one obvious location—at the top of the top-

level makefile.

We!ve now declared our prefix variable to be

/usr/local, which is very nice for those who want jupiter

to be installed in /usr/local/bin, but not so nice for

those who just want it installed in /usr/bin. Fortunately,

make allows the definition of make variables on the command

line, in this manner:

Variables defined on the command line override those defined

in the makefile. Thus, users who want to install jupiter into

their /usr/bin directory now have the option of specifying

this on the make command line when they install jupiter.

Actually, with this system in place, our users may install jupiter

into any directory they choose, including a location in their

...

prefix=/usr/local

export prefix

all clean install jupiter:

 $(MAKE) -C src $@

...

...

install:

 mkdir -p $(prefix)/bin

 install -m 0755 jupiter $(prefix)/bin

...

$ sudo make prefix=/usr install

...

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 15 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

into any directory they choose, including a location in their

home directory, for which they do not need additional rights

granted. This is the reason for the addition of the mkdir -p

command. We don!t actually know where the user is going to

install jupiter now, so we have to be prepared for the possiblity

that the location may not yet exist.

A bit of trivia about the install utility—it has the interesting

property of changing the ownership of any file it copies to the

owner and group of the containing directory. So it

automatically sets the owner and group of our installed files to

root:root if the user tries to use the default /usr/local

prefix, or to the user!s id and group if she tries to install into a

location within her home directory. Nice, huh?

Uninstalling a package

What if a user doesn!t like our package after it!s been

installed, and she just wants to get it off her system? This is

fairly likely with the jupiter package, as it!s rather useless and

takes up valuable space in her bin directory. In the case of

your projects however, it!s more likely that she wants to install

a newer version of your project cleanly, or she wants to

change from the test build she downloaded from your website

to a professionally packaged version of your project provided

by her Linux distribution. We really should have an

uninstall target, for these and other reasons:

Makefile

src/Makefile

And, again, this particular target will require root-level rights if

the user is using a system prefix, such as /usr or

/usr/local. The list of things to maintain is getting a out of

hand, if you ask me. We now have two places to update when

changing our installation processes—the install and

uninstall targets. Unfortunately, this is really about the

best we can hope for when writing our own makefiles, without

resorting to fairly complex shell script commands. Hang in

there—in Chapter 6, I!ll show you how this example can be

rewritten in a much simpler way using Automake.

The Filesystem Hierarchy Standard

...

all clean install uninstall jupiter:

 $(MAKE) -C src $@

...

.PHONY: FORCE all clean dist distcheck

.PHONY: install uninstall

...

uninstall:

 -rm $(prefix)/bin/jupiter

.PHONY: all clean install uninstall

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 16 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

By the way, where am I getting these directory names from?

What if some Unix system out there doesn!t use /usr or

/usr/local? Well, in the first place, this is another reason

for providing the prefix variable—to handle those sorts of

situations. However, most Unix and Unix-like systems

nowadays follow the Filesystem Hierarchy Standard (FHS), as

closely as possible. The FHS defines a number of “standard

places”, including the following root-level directories:

/bin

/etc

/home

/opt

/sbin

/srv

/tmp

/usr

/var

This list is not exhaustive. I!ve only mentioned the ones most

relevant to our purposes. In addition, the FHS defines several

standard locations beneath these root-level directories. For

instance, the /usr directory should contain the following sub-

directories:

/usr/bin

/usr/include

/usr/lib

/usr/local

/usr/sbin

/usr/share

/usr/src

The /usr/local directory should contain a structure very

similar to the /usr directory structure, so that if the

/usr/bin directory (for instance) is an NFS mount, then

/usr/local/bin (which should always be local) may

contain local copies of some programs. This way, if the

network is down, the system may still be used to a degree.

Not only does the FHS define these standard locations, but it

also explains in fair detail what they are for, and what types of

files should be kept there. All in all, the FHS leaves just

enough flexibility and choice to you as a project maintainer to

keep your life interesting, but not enough to make you lose

sleep at night, wondering if you!re installing your files in the

right places.

Before I found out about the FHS, I relied on my personal

experience to decide where files should be installed in my

projects. Mostly I was right, because I!m a careful guy, but I

have gone back to some of my past projects with a bit of

chagrin and changes things once I read the FHS document. I

heartily recommend you become thoroughly familiar with this

document if you seriously intend to develop open source

software.

Supporting standard targets and variables

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 17 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

In addition to those I!ve already mentioned, the GNU Coding

Standards document lists some important targets and

variables that you should support in your projects, mainly

because everyone else does and your users will expect them.

Some of the chapters in the GNU Coding Standards should be

taken with a grain of salt (unless you!re actually working on a

GNU sponsored project, in which case, you!re probably not

reading this book because you need to). For example, you

probably won!t care much about the C source code formatting

suggestions in Chapter 5. Your users certainly won!t care, so

you can use whatever source code formatting style you wish.

That!s not to say that all of Chapter 5 is worthless. Sections

5.5 and 5.6, for instance, provide excellent information on C

source code portability between POSIX-oriented platforms and

CPU types. Section 5.8 gives some tips on using GNU

software to internationalize your program. This is excellent

material.

While Chapter 6 discusses documentation the GNU way,

some sections of Chapter 6 describe various top-level text files

found commonly in projects, such as the AUTHORS, NEWS,

INSTALL, README and ChangeLog files. These are all bits

that the well-read OSS user expects to see in any decent OSS

project.

But, the really useful information in the GNU Coding Standards

document begins in Chapter 7, “The Release Process”. The

reason why this chapter is so critical to you as an OSS project

maintainer, is that it pretty much defines what your users will

expect of your project!s build system. Chapter 7 is the defacto-

standard for user options provided by packages using source-

level distribution.

Section 7.1 defines the configuration process, about which we

haven!t spent much time so far in this chapter, but we!ll get to

it. Section 7.2 covers makefile conventions, including all of the

“standard targets” and “standard variables” that users have

come to expect in OSS packages. Standard targets defined by

the GNU Coding Standards document include:

all

install

install-html

install-dvi

install-pdf

install-ps

uninstall

install-strip

clean

distclean

mostlyclean

maintainer-clean

TAGS

info

dvi

html

pdf

ps

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 18 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

dist

check

installcheck

installdirs

Note that you don!t need to support all of these targets, but

you should consider supporting those which make sense for

your project. For example, if you build and install HTML pages

in your project, then you should probably consider supporting

the html and install-html targets. Autotools projects

support these, and more. Some of these are useful to users,

while others are only useful to maintainers.

Variables that your project should support (as you see fit)

include the following. I!ve added the default values for these

variables on the right. You!ll note that most of these variables

are defined in terms of a few of them, and ultimately only one

of them, prefix. The reason for this is (again) flexibility to

the end user. I call these “prefix variables”, for lack of a better

name:

Autotools projects support these and other useful variables

automatically. Projects that use Automake get these variables

for free. Autoconf provides a mid-level form of support for

these variables. If you write your own makefiles and build

system, you should support as many of these as you use in

your build and install processes.

To support the variables and targets that we!ve used so far in

the jupiter project, we need to add the bindir variable, in

this manner:

prefix = /usr/local

exec-prefix = $(prefix)

bindir = $(exec_prefix)/bin

sbindir = $(exec_prefix)/sbin

libexecdir = $(exec_prefix)/libexec

datarootdir = $(prefix)/share

datadir = $(datarootdir)

sysconfdir = $(prefix)/etc

sharedstatedir = $(prefix)/com

localstatedir = $(prefix)/var

includedir = $(prefix)/include

oldincludedir = /usr/include

docdir = $(datarootdir)/doc/$(package)

infodir = $(datarootdir)/info

htmldir = $(docdir)

dvidir = $(docdir)

pdfdir = $(docdir)

psdir = $(docdir)

libdir = $(exec_prefix)/lib

lispdir = $(datarootdir)/emacs/site-lisp

localedir = $(datarootdir)/locale

mandir = $(datarootdir)/man

manNdir = $(mandir)/manN (N = 1..9)

manext = .1

manNext = .N (N = 1..9)

srcdir = (compiled project root)

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 19 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

Makefile

src/Makefile

Note that we have to export prefix, exec_prefix and

bindir, even though we only use bindir explicitly. The

reason for this is that bindir is defined in terms of

exec_prefix, which is itself defined in terms of prefix.

So when make runs the install command, it will first resolve

bindir to $(exec_prefix)/bin, and then to

$(prefix)/bin, and finally to

/usr/local/bin—src/Makefile obviously needs

access to all three variables during this process.

How do such recursive variable definitions make life better for

the end-user? The user can change the root install location

from /usr/local to /usr by simply typing:

The ability to change these variables like this is particularly

useful to a Linux distribution packager, who needs to install

packages into very specific system locations:

Getting your project into a Linux distro

The dream of every OSS maintainer is that his or her project

will be picked up by a Linux distribution. When a Linux “distro”

picks up your package for distribution on their CD!s and

DVD!s, your project will be moved magically from the realm of

tens of users to that of tens of thousands of users—almost

overnight.

By following the GNU Coding Standards with your build

system, you remove many barriers to including your project in

a Linux distro, because distro packagers (employees of the

company, whose job it is to professionally package your

project as RPM or APT packages) will immediately know what

to do with your tarball if it follows all the usual conventions.

And, in general, packagers get to decide based on needed

...

prefix = /usr/local

exec_prefix = $(prefix)

bindir = $(exec_prefix)/bin

export prefix exec_prefix bindir

...

...

install:

 mkdir -p $(bindir)

 install -m 0755 jupiter $(bindir)

uninstall:

 -rm $(bindir)/jupiter

...

$ make prefix=/usr install

...

$ make prefix=/usr sysconfdir=/etc install

...

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 20 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

And, in general, packagers get to decide based on needed

functionality, and their feelings about your package, whether

or not it should be included in their flavor of Linux.

Section 7.2.4 of the GNU Coding Standards talks about the

concept of supporting “staged installations”. This is a concept

easily supported by a build system, but which if neglected, will

almost always cause major problems for Linux distro

packagers.

Packaging systems such as the Redhat Package Manager

(RPM) system accept one or more tarballs, a set of patches

and a specification file (in the case of RPM, called an “rpm

spec file”). The spec file describes the process of building and

installing your package. In addition, it defines all of the

products installed into the targeted installation directory

hierarchy. The package manager uses this information to

install your package into a temporary directory, from which it

pulls the specified binaries, storing them in a special binary

archive that the package installer (eg., rpm) understands.

To support staged installation, all you really need to do is

provide a variable named “DESTDIR” in your build system that

is a sort of super-prefix to all of your installed products. To

show you how this is done, I!ll add staged installation support

to the jupiter project. This is so trivial, it only requires two

changes to src/Makefile:

src/Makefile

As you can see, I!ve added the $(DESTDIR) prefix to the

commands in our install target that reference any installation

paths. You!ll perhaps have noticed that I didn!t need to change

the uninstall target. The reason for this is that package

managers don!t care how your package is uninstalled, as they

only install it so they can copy the products from a temporary

install directory, which they then delete entirely after the

package is created. Package managers like RPM use their

own rules for removing products from a system.

At this point, an RPM spec file (for example) could provide the

following text as the installation commands for the jupiter

package:

But don!t worry about package manager file formats. Just

focus on providing staged installation functionality through the

DESTDIR variable.

You may be wondering why this functionality could not be

provided by the prefix variable. Well, for one thing, not

every path in a system-level installation is defined relative to

the prefix variable. The system configuration directory

...

install:

 mkdir -p $(DESTDIR)$(bindir)

 install -m 0755 jupiter $(DESTDIR)$(bindir)

...

%install

make prefix=/usr DESTDIR=%BUILDROOT install

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 21 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

(sysconfdir), for instance, is often defined simply as /etc

by packagers. Defining prefix to anything other than / will

have little effect on sysconfdir during staged installation,

unless a build system uses $(DESTDIR)$(sysconfdir)

to reference the system configuration directory. Other reasons

for this will become more clear as we talk about project

configuration in the next section.

Build versus installation prefix overrides

At this point, I!d like to digress slightly for just a moment to

explain an illusive (or at least non-obvious) concept regarding

the prefix and other path variables defined by the GNU Coding

Standards document.

In the preceeding examples, I!ve always used prefix overrides

on the make install command line, like this:

The question I wish to address is: What!s the difference

between using a prefix override for make all and make

install? In our small sample makefiles, we!ve managed to

avoid using prefixes in any targets not related to installation, so

it may not be clear at this point that a prefix is ever useful

during the build stages.

One key use of prefix variables during the build stage is to

substitute paths into source code at compile time, in this

manner:

In this example, I!m defining a C preprocessor variable called

CFGDIR on the compiler command line for use by main.c.

Presumably, there!s some code in main.c that looks like

this:

Later in the code, the C global variable cfgdir might be

used to access the application!s configuration file.

Okay, with that background then, would you ever want to use

different prefix variable overrides on the build and installation

command lines? Sure—Linux distro packagers do this all the

time in RPM spec files. During the build stage, the actual run-

time directories are hard-coded into the executable by using a

command like this:

$ make prefix=/usr install

...

main.o : main.c

 gcc -DCFGDIR=\"$(sysconfdir)\" -o $@ $+

#ifndef CFGDIR

define CFGDIR "/etc"

#endif

char cfgdir[FILENAME_MAX] = CFGDIR;

%build

%setup

./configure prefix=/usr sysconfdir=/etc

make

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 22 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

The RPM build process installs these executables into a stage

directory, so it can copy them out. The corresponding

installation command looks like this:

I mentioned the DESTDIR variable previously as a tool used

by packagers for staged installation. This has the same effect

as using:

The key take-away point here is this: Never recompile from an

install target in your makefiles. Otherwise your users

won!t be able to access your staged installation features when

using prefix overrides.

Another reason for is to allow the user to install into a grouped

location, and then create links to the actual files in the proper

locations. Some people like to do this, especially when they

are testing out a package, and want to keep track of all of its

components. For example, some Linux distributions provide a

way of installing multiple versions of come common packages.

Java is a great exmaple here. To support using multiple

versions or brands (perhaps Sun Java vs IBM Java), the Linux

distribution provides a script set called the “alternatives”

scripts, which allows a user (running as root) to swap all of the

links in the various system directories from one grouped

installation to another. Thus, both sets of files may be installed

in different auxilliary locations, but links in the true installation

locations can be changed to refer to each group at different

times.

One final point about this issue. If you!re installing into a

system directory hierarchy, you!ll need root permissions. Often

people run make install like this:

If your install target depends on your build targets, and

you!ve neglected to build beforehand, then make will happily

build your program before installing it, but the local copies will

all be owned by root. Just an inconvenience, but easily

avoided by having `make install! fail for lack of things to install,

rather than simply jump right into a build while running as root.

Standard user variables

There!s one more topic I!d like to cover before we move on to

configuration. The GNU Coding Standards document defines a

set of variables that are sort of sacred to the user. That is,

these variables should be used by a GNU build system, but

never modified by a GNU build system. These are called “user

variables”, and they include the following for C and C++

programs:

%install

rm -rf %BUILDROOT%

make DESTDIR=%BUILDROOT% install

%install

rm -rf %BUILDROOT%

make prefix=%BUILDROOT%/usr \

 sysconfdir=%BUILDROOT%/etc install

$ sudo make install

...

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 23 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

programs:

This list is by no means comprehensive, and ironically, there

isn!t a comprehensive list to be found in the GCS document.

Interestingly, most of these user variables come from the

documentation for the make utility. You can find a fairly

complete list of program name and flag variables in section

10.3 of the GNU make manual. The reason for this is that

these variables are used in the built-in rules of the make utility.

For our purposes, these few are sufficient, but for a more

complex makefile, you should become familiar with the larger

list so that you can use them as the occasion arises. To use

these in our makefiles, we!ll just replace “gcc” with $(CC),

and then set CC to the gcc compiler at the top of the makefile.

We!ll do the same for CFLAGS and CPPFLAGS, although this

last one will contain nothing by default:

src/Makefile

The reason this works is that the make utility allows such

variables to be overridden by the environment. Environment

and make command-line variable assignments always

override values set in the makefiles themselves. Thus, to

change the compiler and set some compiler flags, a user need

simply type:

In this case, our user has decided to use gcc version 3 instead

of 4, and to disable optimization and leave the debugging

symbols in place. She!s also decided to enable the “test”

option through the use of a preprocessor definition. These

variables are set on the make command line, but may also be

exported in the environment before running make.

Configuring your package

The GNU Coding Standards document describes the

configuration process in section 7.1, “How Configuration

Should Work”. Up to this point, we!ve been able to do about

everything we!ve wanted to do with the jupiter project using

only makefiles. You might be wondering at this point what

configuration is actually for! The opening paragraphs of

CC - the C compiler

CFLAGS - C compiler flags

CXX - the C++ compiler

CXXFLAGS - C++ compiler flags

LDFLAGS - linker flags

CPPFLAGS - C preprocessor flags

...

...

CC = gcc

CFLAGS = -g -O2

...

jupiter: main.c

 $(CC) $(CFLAGS) $(CPPFLAGS) -o $@ $+

...

$ make CC=gcc3 CFLAGS=-g -O0 CPPFLAGS=-dtest

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 24 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

configuration is actually for! The opening paragraphs of

Section 7.1 state:

Each GNU distribution should come with a shell

script named configure. This script is given

arguments which describe the kind of machine and

system you want to compile the program for.

The configure script must record the

configuration options so that they affect

compilation.

One way to do this is to make a link from a

standard name such as config.h to the proper

configuration file for the chosen system. If you use

this technique, the distribution should not contain a

file named config.h. This is so that people

won!t be able to build the program without

configuring it first.

Another thing that configure can do is to edit

the makefiles. If you do this, the distribution should

not contain a file named Makefile. Instead, it

should include a file Makefile.in which

contains the input used for editing. Once again,

this is so that people won!t be able to build the

program without configuring it first.

So then, the primary tasks of a typical configure script are to:

generate files from templates containing replacement

variables,

generate a C language header file (often called

config.h) for inclusion by project source code,

set user options for a particular make environment—

such as debug flags, etc.,

set various package options as environment variables,

and test for the existance of tools, libraries, and header

files.

For complex projects, configure scripts often generate the

project makefile(s) from one or more templates maintained by

the project manager. A makefile template contains

configuration variables in an easily recognized (and

substituted) format. The configure script replaces these

variables with values determined during configuration—either

from command line options specified by the user, or from a

thorough analysis of the platform environment. Often this

analysis entails such things as checking for the existence of

certain include files and libraries, searching various file system

paths for required utilities and tools, and even running small

programs designed to indicate the feature set of the shell, C

compiler, or desired libraries.

The tool of choice here for variable replacement has, in the

past, been the sed stream editor. A simple sed command

can replace all of the configuration variables in a makefile

template in a single pass through the file. In the latest version

of Autoconf (2.62, as of this writing) prefers awk to sed for

this process. The awk utility is almost as pervasive as sed

these days, and it much more powerful with respect to the

19/05/2008 11:04Chapter 2: Project management and the GNU coding standards

Page 25 of 25http://www.freesoftwaremagazine.com/books/agaal/gnu_coding_standards_applied_to_autotools

‹ Chapter 1: A brief

introduction to the

GNU Autotools

u

p

Chapter 3: Configuring

your project with

autoconf ›

these days, and it much more powerful with respect to the

operations it can perform on a stream of data. For the

purposes of the jupiter project, either one of these tools would

suffice.

Summary

At this point, we!ve created a complete project build system by

hand—with one important exception. We haven!t designed a

configure script according to the design criteria specified

in the GNU Coding Standards document that works with this

build system. We could do this, but it would take a dozen more

pages of text to build one that even comes close to

conforming to these specifications.

There are yet a few key build system features related

specifically to the makefiles that are indicated as being

desirable by the GNU Coding Standards. Among these is the

concept of VPATH building. This is an important feature that

can only be properly illustrated by actually writing a

configure script that works as specified by the GNU

Coding Standards.

Rather than spend this time and effort, I!d like to simply move

on to a discussion of Autoconf in Chapter 3, which will allow

us to build one of these configure scripts in as little as two

or three lines of code, as you!ll see in the opening paragraphs

of that chapter. With that step behind us, it will be trival to add

VPATH building, and other features, to the jupiter project.

Login or register to post comments 3158 reads

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 1 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

©

COLUMNS COMMUNITY POSTS ISSUES BOOKS FORUM FS NEWS

REVIEWS NEWSLETTERS ADVERTISE SPONSORS HELP FSM WRITE FOR US CONTACTS ABOUT

Home » Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Chapter 3: Configuring your
project with autoconf
by John Calcote

We should all be very grateful to David MacKenzie for having

the foresight to—metaphorically speaking—stop and sharpen

the ax. Otherwise we!d still be writing (copying) and

maintaining long, complex hand-coded configure scripts

today.

Before Automake, Autoconf was used alone, and many legacy

open source projects have never really made the transition to

the full Autotools suite. As a result, it would not be uncommon

to find an open source project containing a file called

configure.in (the older naming convention used by

Autoconf) and hand-written Makefile.in templates.

Configure scripts, the Autoconf way

It!s instructive for this and other reasons that will become clear

shortly, to spend some time just focusing on the use of

Autoconf alone. Exploring in this manner can provide a fair

amount of insight into the operation of Autoconf by exposing

aspects of this tool that are often hidden by Automake and

other add-on tools.

The input to Autoconf is … (drum roll please) … shell script.

Man, what an anti-climax! Okay, so it!s not pure shell script.

That is, it!s shell script with macros, plus a bunch of macro

definition files—both those that ship with an Autoconf

distribution, as well as those that you or I write. The macro

language used is called M4. (“M-what?!”, you ask?) The M4

utility is a general purpose macro language processor that was

originally written by none other than Brian Kernighan and

Dennis Ritchie in 1977. (The name M4 means “m plus 4 more

letters” or the word “Macro” - cute, huh? As a point of interest,

this naming convention is a fairly common practice in some

software engineering domains. For example, the term

internationalization is often abrieviated i18n, and the term

localization is sometimes replaced with l10n, for the sake of

brevity. The use of the term m4 here is no-doubt a play on this

concept.)

Some form of the M4 macro language processor is found on

every Unix and Linux variant (as well as other systems) in use

today. In fact, this proliferance is the primary reason for its use

in Autoconf. The design goals of Autoconf included primarily

that it should run on all systems without the addition of

complex tool chains and utility sets. Autoconf depends on the

Linux
Make The Web Tier A

Cooler Place. Try Sun

Hardware For Free!
uk.sun.com

Ubuntu linux
Multi-platform Remote

Access. No installation

necessary. Free Trial!
www.Bomgar.com/linux

Server Monitoring Tools
Download Our Server

Monitoring Software Risk-

Free. Get Started Now
www.uptimesoftware.com

Full SUSE 11.0 DVD £6
Plus 2 additional full distro

DVDs Don't waste time

downloading Linux!
linux-magazine.co.uk

Core 2 Duo Servers £49
Unlimited

bandwidth.Windows/Linux.

Full remote control,

Private LAN.
www.Fasthosts.co.uk/DedicatedServer

Microsoft May Seek New

Yahoo ...

Building Semantics is

Different ...

Lux: multi-touch for OS X

Best voted
contents

The Bizarre Cathedral -

3

Ryan Cartwright, 2008-05-05

The Bizarre Cathedral -

2

Ryan Cartwright, 2008-04-27

Indexing offline CD-

ROM archives

Terry Hancock, 2008-05-03

Microsoft and free

software? I don't think

so...

Terry Hancock, 2008-04-26

From the FSM staff...

The Top 10 Everything

(Dave). The good, the bad

and the ugly.

Free Software news (Dave

& Bridget). A site about

short stories and writing.

Book Reviews: Illiterarty

(Bridget). Book reviews,

blogs, and short stories.

Hot topics - last 60
days

Installing an all-in-one

printer device in Debian

Ryan Cartwright, 2008-05-05

What is the free software

community?

Tony Mobily, 2008-03-29

Things you miss with

GNU/Linux

PostgreSQL Replication
Slony, Warm Standby & Multi-master Training
from the Developers
www.2ndQuadrant.com

VMware Certified Training
VMware VCP courses. We train the the trainers,
and VMware themselves
www.magirus-training.co.uk

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 2 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

complex tool chains and utility sets. Autoconf depends on the

existence of relatively few tools, including M4, sed and now in

version 2.62, the awk utility. Most of the Autotools (Autoconf

being the exception) rely on the existence of a perl processor,

as well.

NOTE: Do not confuse the requirements of the Autotools with

the requirements of the scripts and makefiles generated by

them. The Autotools are maintainer tools, while the resulting

scripts and makefiles are end-user tools. We can reasonably

expect a higher level of installed functionality on development

systems than we can on end-user systems. Nevertheless, the

Autotools design goals still include a reliance only on a

minimal set of pre-installed functionality, much of which is part

of a default installation.

While it!s true that configure.ac is written in shell script

sprinkled with M4 syntax, the proper use of the M4 macro

processor is the subject of Chapter 7. Because I want to stick

to Autoconf in this chapter, I!ll gloss over some key concepts

related to M4, which I!ll cover in more detail in Chapter 7. This

chapter is designed to help you understand Autoconf

concepts, however, so I will cover minor aspects of M4 as it

makes sense to do so.

The smallest configure.ac file

The simplest possible configure.ac file has just two lines:

NOTE: This chapter builds on the Jupiter project begun in

Chapter 2.

To those new to Autoconf, these two lines appear to be a

couple of function calls, perhaps in the syntax of some

obscure computer language. Don!t let this appearance throw

you—these are M4 macro expansions. The macros are

defined in files distributed with Autoconf. The definition of

AC_INIT is found in

$PREFIX/share/autoconf/autoconf/general.m4

, while AC_OUTPUT is defined in status.m4, in the same

directory.

M4 macros are similar in many ways to macros defined in C

language source files for the C preprocessor, which is also a

text replacement tool. This isn!t surprising, given that both M4

and cpp were originally designed by Kernighan and Ritchie.

The square brackets around the parameters are used by

Autoconf as a quoting mechanism. Such quotes are only really

necessary in cases where the context of the macro call could

cause an ambiguity that the macro processor may resolve

incorrectly (usually without telling you). We!ll discuss M4

quoting in much more detail in Chapter 7. For now, just use

Autoconf quotes ([and]) around every argument to ensure

that the expected macro expansions are generated.

$ cat configure.ac

AC_INIT([jupiter], [1.0])

AC_OUTPUT

$

Buzz authors

Marco Marongiu

Pieter Hintjens

drascus321

dogboi

Richard Rothwell

All news

John Crawford: Arizona

LoCo Hardy Release Party

John Crawford: Ubuntu

Weekly Newsletter #91

Matthew Helmke: Morocco

blocks Google Maps

Andy Price: Synchronicity

and Sharing

Jono Bacon: Beware False

Prophets

more

15

15

17

15

17

25

23

16

How Microsoft Uses

Novell to Fight

GNU/Linux, Xen to

Fight VMWare and

GNU/Linux

Why You Should Reject

Novell’s Moonlight

University of Havana

Finally Switches to

Free Software

Please Welcome

Digistan

Content Protection

madness on Vista

Asus to embed Linux

into all motherboards

Make Your Distro Free

of Miguel de Icaza's

junk code

Firefox 3 Release

Candidate now

available for download

Get this widget »

GNU/Linux

Ryan Cartwright, 2008-05-01

How do you replace

Microsoft Outlook?

Groupware applications

Ryan Cartwright, 2008-03-20

Drigg (the pligg

alternative) vs. Pligg: why

should people switch?

Tony Mobily, 2008-04-13

Hot topics - last 21
days

Installing an all-in-one

printer device in Debian

Ryan Cartwright, 2008-05-05

Things you miss with

GNU/Linux

Ryan Cartwright, 2008-05-01

Digital Rights

Management (DRM): is it

in its death throes?

Gary Richmond, 2008-05-07

Open letter to standards

professionals,

developers, and activists

Pieter Hintjens, 2008-05-13

DEDICATED SERVER

Odiogo

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 3 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

As with cpp macros, M4 macros may or may not take

parameters. And (also as with cpp) when they do, then a set

of parentheses must be used when passing the arguments. In

both M4 and cpp, the opening parenthesis must immediately

follow the macro name, with no intervening white space. When

they don!t accept parameters, the parenthesis are simply

omitted. Unlike cpp, M4 has the ability to specify optional

parameters, in which case, you may omit the parenthesis if

you choose not to pass a parameter.

The result of passing this configure.ac file through

Autoconf is essentially the same file (now called

configure), only with these two macros fully expanded.

Now, if you!ve been programming in C for many years, as I

have, then you!ve no doubt run across a few C preprocessor

macros from the dark regions of the lower realm. I!m talking

about those truly evil cpp macros that expand into one or two

pages of C code! You know the ones I!m talking about—they

should really have been written as C functions, but the author

was overly worried about performance!

Well baby, you ain!t seen nothin! yet! These two M4 macros

expand into a file containing over 2200 lines of Bourne shell

script that!s over 60K bytes in size! Interestingly, you wouldn!t

really know this by looking at their definitions. They!re both

fairly short—only a dozen or two lines each. The reason for

this apparent disparity is simple—they!re written in a modular

fashion, each macro expanding several others, which in turn

expand several others, and so on.

Executing Autoconf

Running Autoconf couldn!t be simpler. Just execute

autoconf in the same directory as your configure.ac

file. While we could do this for each example in this chapter,

we!re going to use the autoREconf (capitalization added for

emphasis) command instead of the autoconf command.

The reason for this is that running autoreconf has exactly

the same effect as running autoconf, except that

autoreconf will also do “the right thing” when you start

adding Automake and Libtool functionality to your build

system. autoreconf is the recommended method for

executing the Autotools tool chain, and it!s smart enough to

only execute the tools that you need, in the order that you

need them, and with the options that you need (with one

exception that I!ll mention shortly here).

First, notice that autoreconf operates at exactly the same

level of verbosity as the tools it runs. By default, zero. If you

want to see something happening, use the -v or --

verbose option. If you want autoreconf to run the other

$ autoreconf

$ ls -lp

autom4te.cache/

configure

configure.ac

$

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 4 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

verbose option. If you want autoreconf to run the other

Autotools in verbose mode, add -vv to the command line.

(You may also pass --verbose --verbose, but this

syntax seems a bit verbose to me—sorry, I couldn!t resist!)

First, notice that Autoconf creates a directory called

autom4te.cache. This is the autom4te (pronounced

“automate”) cache directory. This cache is used to speed up

access to configure.ac by successive executions of

utilities in the Autotools tool chain. I!ll cover autom4te in

greater detail in Chapter 9, where I!ll show you how to write

your own Autoconf macros that are “environmentally friendly”.

Executing configure

If you recall from the last section of Chapter 2, the GNU

Coding Standards document indicates that configure

should generate a script called config.status, whose job

it is to generate files from templates. Well, this is exactly the

sort of functionality found in an Autoconf-generated

configure script. An autoconf configure script has

two primary tasks:

perform requested checks

generate, and then call config.status

The results of all of the checks performed by the configure

script are written, as environment variable settings to the top of

config.status, which uses the values in these

environment variables as replacement text for Autoconf

substitution variables used in template files (Makefile.in,

config.h.in, etc).

When you execute configure, it tells you that it!s creating

the config.status file. In fact, it also creates a log file

called config.log that has several important attributes:

The config.log file contains the following information:

the command line used to invoke configure (Very

handy!)

information about the platform on which configure

was executed

information about the core tests executed by

configure

the line number in configure at which

config.status is generated

At this point in the log file, config.status takes over

$./configure

configure: creating ./config.status

$

$ ls -lp

autom4te.cache/

config.log

config.status

configure

configure.ac

$

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 5 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

generating log information—it adds the command line used to

invoke config.status. After config.status

generates all of the files from their templates, control then

returns to configure, which adds the following information

to the log:

the cache variables used by config.status to

perform its tasks

the list of output variables that may be replaced in

templates

the exit code returned by configure to the shell

This information is invaluable when debugging a configure

script and its associated configure.ac file.

Executing config.status

Now that you know how configure works, you can

probably see that there might be times when you!d be tempted

to simply execute config.status yourself, rather than

going to all the trouble of having configure perform all

those time-consuming checks first. And right you!d be. This

was exactly the intent of the Autoconf designers—and the

authors of the GNU Coding Standards, by whom these design

goals were originally conceived.

There are in fact, times when you!d just like to manually

regenerate all of your output files from their corresponding

templates. But, far more importantly, config.status can

be used by your makefiles to regenerate themselves

individually from their templates, when make determines that

something in a template file has changed.

Rather than call configure to perform needless checks

(your environment hasn!t changed, has it? Just your template

files), your makefiles should be written in a way that ensures

that output files are dependent on their templates. If a

template file changes (because, for example, you modified one

of your Makefile.in templates), then make calls

config.status to regenerate this file. Once the

Makefile is regenerated, then make re-executes the

original make command line—basically, it restarts itself.

Let!s take a look at the relevant portion of just such a

Makefile.in template:

An interesting bit of make functionality is that it always looks

for a rule with a target named “Makefile”. Such a rule

allows make to regenerate the source makefile from its

template, in the event that the template changes. It does this

before executing either the user!s specified targets, or the

default target, if none was given.

This example indicates that its makefile is dependent on a

Makefile.in template. Note that Makefile is also

...

Makefile: Makefile.in config.status

 ./config.status Makefile

...

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 6 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

dependent on config.status. After all, if

config.status is regenerated by the configure script,

then it may generate a makefile differently—perhaps

something in the compilation environment changed, such as

when a new package is added to the system, so that

configure can now find libraries and headers not

previously found. In this case, Autoconf substitution variables

may have different values. Thus, Makefile should be

regenerated if either Makefile.in or config.status

changes.

Since config.status is itself a generated file, it stands to

reason that this line of thinking can be carried to the

configure script as well. Expanding on the previous

example:

Since config.status is a dependency of the Makefile

rule, then make will check for a rule whose target is

config.status and run its commands if the dependencies

of config.status (configure) are newer than

config.status.

Adding some real functionality

Well, it!s about time we move forward and put some true

functionality into this configure.ac file. I!ve danced

around the topic of having config.status generate a

makefile up to this point. Here!s the code to actually make this

happen in configure.ac. It constitutes a single additional

macro expansion between the original two lines:

This code assumes we have templates for Makefile and

src/Makefile, called Makefile.in and

src/Makefile.in, respectively. These files look exactly

like their Makefile counterparts, with one exception: Any

text we want Autoconf to replace should be marked as

Autoconf substitution variables, using the @xxxxx@ syntax.

To create these files, I!ve merely renamed the existing

makefiles to Makefile.in in the top-level and src

directories. By the way, this is a common practice when

“autoconfiscating” a project. Next, I added a few Autoconf

substitution variables to replace our orignal default values. I!ve

also added the makefile regeneration rules from above to each

of these templates, with slight file path differences to account

...

Makefile: Makefile.in config.status

 ./config.status $@

config.status: configure

 ./config.status --recheck

...

$ cat configure.ac

AC_INIT([jupiter], [1.0])

AC_CONFIG_FILES([Makefile

 src/Makefile])

AC_OUTPUT

$

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 7 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

of these templates, with slight file path differences to account

for their different positions relative to config.status and

configure:

Makefile.in

Makefile: generated from Makefile.in by autoconf

Package-related substitution variables

package = @PACKAGE_NAME@

version = @PACKAGE_VERSION@

tarname = @PACKAGE_TARNAME@

distdir = $(tarname)-$(version)

Prefix-related substitution variables

prefix = @prefix@

exec_prefix = @exec_prefix@

bindir = @bindir@

all clean check install uninstall jupiter:

 $(MAKE) -C src $@

dist: $(distdir).tar.gz

$(distdir).tar.gz: FORCE $(distdir)

 tar chof - $(distdir) |\

 gzip -9 -c >$(distdir).tar.gz

 rm -rf $(distdir)

$(distdir):

 mkdir -p $(distdir)/src

 cp configure $(distdir)

 cp Makefile.in $(distdir)

 cp src/Makefile.in $(distdir)/src

 cp src/main.c $(distdir)/src

distcheck: $(distdir).tar.gz

 gzip -cd $+ | tar xvf -

 cd $(distdir); ./configure

 $(MAKE) -C $(distdir) all check clean

 rm -rf $(distdir)

 @echo "*** Package $(distdir).tar.gz\

 ready for distribution."

Makefile: Makefile.in config.status

 ./config.status $@

config.status: configure

 ./config.status --recheck

FORCE:

 -rm $(distdir).tar.gz &> /dev/null

 -rm -rf $(distdir) &> /dev/null

.PHONY: FORCE all clean check dist distcheck

.PHONY: install uninstall

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 8 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

src/Makefile.in

I!ve removed the export statement in the top-level

Makefile.in, and added a copy of all of the substitution

variables into src/Makefile.in. Since

config.status is generating both of these files, we can

reap excellent benefits by substituting everything into both

files. The primary advantage of doing this is that we can now

run make in any sub-directory, and not be concerned about

environment variables that would have been passed down by

a higher-level makefile.

I!ve also changed the distribution targets a bit. Rather than

distribute makefiles, we now want to distribute

Makefile.in templates, as well as the configure script.

In addition, the distcheck target needs to be updated so

that it runs the configure script before running make.

Makefile: generated from Makefile.in by autoconf

Package-related substitution variables

package = @PACKAGE_NAME@

version = @PACKAGE_VERSION@

tarname = @PACKAGE_TARNAME@

distdir = $(tarname)-$(version)

Prefix-related substitution variables

prefix = @prefix@

exec_prefix = @exec_prefix@

bindir = @bindir@

all: jupiter

jupiter: main.c

 gcc -g -O0 -o $@ $+

clean:

 -rm jupiter

check: all

 ./jupiter | grep "Hello from .*jupiter!"

 @echo "*** All TESTS PASSED"

install:

 mkdir -p $(bindir)

 install -m 0755 jupiter $(bindir)

uninstall:

 -rm $(bindir)/jupiter

Makefile: Makefile.in ../config.status

 cd .. && ./config.status $@

../config.status: ../configure

 cd .. && ./config.status --recheck

.PHONY: all clean check install uninstall

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 9 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

Generating files from templates

I!m now generating makefiles from Makefile.in templates.

The fact is, however, that any (white space delimited) file you

list in AC_CONFIG_FILES will be generated from a file of the

same name with a .in extension, and found in the same

directory. The .in extension is the default template naming

pattern for AC_CONFIG_FILES, but this default behavior may

be overridden, if you wish. I!ll get into the details shortly.

Autoconf generates sed or awk expressions into the resulting

configure script, which then copies them into the

config.status script. The config.status script uses

these tools to perform this simple string replacement.

Both sed and awk are text processing tools that operate on

file streams. The advantage of a stream editor (sed is actually

named after the concept of Stream EDitor) is that it replaces

text patterns in a byte stream. Thus, both sed and awk can

operate on huge files, because they don!t need to load an

entire file into memory in order to process it. The expression

list passed to sed or awk by config.status is built by

Autoconf from a list of variables defined by various macros,

many of which we!ll cover in greater detail in this chapter.

The important thing to notice here is that the Autoconf

variables are the only items replaced in Makefile.in while

generating the makefile. The reason this is important is that it

helps you to realize the flexibility you have when allowing

Autoconf to generate a file from a template. This flexibility will

become more apparent as we get into various use cases for

the pre-defined Autoconf macros, and later in Chapter 9 when

we delve into the topic of writing your own Autoconf macros.

At this point, we!ve created a basic configure.ac file, and

we can indeed run autoreconf, the generated

configure script, and then make to build the jupiter project.

The idea that I want to promote at this point is that this simple

three-line configure.ac file generates a configure

script that is fully functional, according to the definition of a

configure script given in Chapter 7 of the the GNU Coding

Standards document. The resulting configure script runs

various system checks and generates a config.status

file, which can replace a fair number of substitution variables

in a set of specified template files in a build system. That!s a

lot of stuff for three lines of code. (You!ll recall my comments in

the introduction to this book about C++ doing a lot for you with

just a few lines of code?)

Adding VPATH build functionality

Okay, you may recall at the end of Chapter 2, I mentioned that

we hadn!t yet covered a key concept—that of VPATH builds.

A VPATH build is a way of using a construct supported by

make (VPATH) to configure and build your project in a

directory other than the source directory. Why is this

important? Well, for several reasons. You may need to:

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 10 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

1. maintain a separate debug configuration,

2. test different configurations, side by side,

3. keep a clean source directory for patch diffs after local

modifications,

4. or build from a read-only source directory.

These are all great reasons, but won!t we have to change our

entire build system to support this type of remote build? As it

turns out, it!s quite simple using the make VPATH statement.

VPATH is short for virtual path, meaning virtual search path. A

VPATH statement contains a colon-separated list of places to

look for dependencies, when they can!t be found relative to the

current directory:

In this (contrived) example, if make can!t find main.c in the

current directory while processing the rule, it will look for

some/path/main.c, and then for

some/other/path/main.c, and finally for

yet/another/path/main.c, before finally giving up in

dispair—okay, perhaps only with an error message about not

knowing how to make main.c.

“Nice feature!”, you say? Nicer than you think, because with

just a couple of lines of additional code and a few simple

modifications, I can now completely support remote builds in

my jupiter project build system:

Makefile.in

src/Makefile.in

VPATH = some/path:some/other/path:yet/another/path

jupiter : main.c

 gcc ...

...

VPATH-related substitution variables

srcdir = @srcdir@

VPATH = @srcdir@

...

$(distdir):

 -rm -rf $(distdir) &> /dev/null

 mkdir -p $(distdir)/src

 cp $(srcdir)/configure $(distdir)

 cp $(srcdir)/Makefile.in $(distdir)

 cp $(srcdir)/src/Makefile.in $(distdir)/src

 cp $(srcdir)/src/main.c $(distdir)/src

...

Makefile: Makefile.in config.status

 ./config.status $@

config.status: configure

 ./config.status --recheck

...

...

VPATH-related substitution variables

srcdir = @srcdir@

VPATH = @srcdir@

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 11 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

That!s it. Really. When config.status generates a file, it

replaces an Autoconf substitution variable called @srcdir@

with the relative path to the template!s source directory. Each

makefile will get a different value for @srcdir@, depending

on the relative location of its template.

The rules then for supporting VPATH builds in your make

system are as follows:

1. Set a make variable, srcdir to the @srcdir@

substitution variable.

2. Set VPATH to $(srcdir).

3. Prefix all file dependencies used in commands with

$(srcdir)/.

If the source directory is the same as the build directory, then

the @srcdir@ substitution variable degenerates to ., so all

of these $(srcdir)/ prefixes will degenerate to ./, which

is just so much harmless baggage.

A quick example is the easiest way to show you how this

works. Now that jupiter is fully functional with respect to

VPATH builds, let!s just give it a try. Start in the jupiter project

directory, create a subdirectory called build, and then

change into that directory. Now run configure using a

relative path, and then list the current directory contents:

Our entire build system seems to have been constructed by

configure and config.status within the build sub-

directory, just as it should be. What!s more, it actually works:

VPATH = @srcdir@

...

jupiter: main.c

 gcc -g -O0 -o $@ $(srcdir)/main.c

...

Makefile: Makefile.in ../config.status

 cd .. && ./config.status src/$@

../config.status: ../configure

 cd .. && ./config.status --recheck

...

$ pwd

.../prj/jupiter

$ mkdir build

$ cd build

$../configure

configure: creating ./config.status

config.status: creating Makefile

config.status: creating src/Makefile

$ ls -1p

config.log

config.status

Makefile

src/

$

$ pwd

.../prj/jupiter/build

$ make

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 12 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

VPATH builds work, not just from sub-directories of the project

directory, but from anywhere you can access the project

directory, using either a relative or an absolute path. This is

just one more thing that Autoconf does for you in Autoconf-

generated configure scripts. Just imagine managing

proper relative paths to source directories in your own hand-

coded configure scripts!

Let!s take a breather

At this point, I!d like you to stop and consider what you!ve

seen so far: I!ve shown you a mostly complete build system

that includes most of the features outlined in the GNU Coding

Standards document. The features of the jupiter project!s

make system are all fairly self-contained, and reasonably

simple to grasp. The most difficult feature to implement by

hand is the configure script. In fact, writing a configure

script by hand is so labor intensive relative to the simplicity of

the Autoconf version that I just skipped over the hand-coded

version entirely.

If you!ve been one to complain about Autoconf in the past, I!d

like you to consider what you have to complain about now.

You now know how to get very feature-rich configuration

functionality in just three lines of code. Given what you know

now about how configure scripts are meant to work, can

you see the value in Autoconf?

Most people never have trouble with that portion of Autoconf

that I!ve covered up to this point. The trouble is that most

people don!t create their build systems in the manner I!ve just

shown you. They try to copy the build system of another

project, and then tweak it to make it work in their own project.

Later when they start a new project, they do the same thing

again. Are they going to run into problems? Sure—the stuff

they!re copying was often never meant to be used the way

they!re trying to use it.

I!ve seen projects in my experience whose configure.ac

file contained junk that had nothing to do with the project to

which it belonged. These left-over bits came from the previous

project, from which configure.ac was copied. But the

maintainer didn!t know enough about Autoconf to remove the

cruft. It!s better to start small, and add what you need, than to

start with a full-featured build system, and try to pare it down

to size.

Well, I!m sure you!re feeling like there!s a lot more learn about

Autoconf. And you!re right, but what additional Autoconf

$ make

make -C src all

make[1]: Entering directory `../prj/jupiter/bui...

gcc -g -O2 -o jupiter ../../src/main.c

make[1]: Leaving directory `../prj/jupiter/bui...

$

$ ls -1p src

jupiter

Makefile

$

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 13 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

Autoconf. And you!re right, but what additional Autoconf

macros are appropriate for the jupiter project?

An even quicker start with autoscan

The simplest way to create a (mostly) complete

configure.ac file is to run the autoscan utility, which, if

you remember from Chapter 1, is part of the Autoconf

package.

First, we!ll clean up the droppings from our earlier experiments,

and then run the autoscan utility in the jupiter directory.

Note here that I!m NOT deleting my original configure.ac

file - I!ll just let autoscan tell me what!s wrong with it. In less

than a second I!m left with a couple of new files in the top-level

directory:

NOTE: I!ve wrapped some of the output lines for the sake of

column width during publication.

autoscan creates two files called configure.scan, and

autoscan.log from a project directory hierarchy. The

project may already be instrumented for Autotools, or not. It

doesn!t really matter because autoscan is decidedly non-

destructive. It will never alter any existing files in a project.

autoscan generates a warning message for each issue

discovered in an existing configure.ac file. In this

example, autoscan noticed that configure.ac really

should be using the AC_CHECK_HEADERS,

AC_HEADER_STDC, AC_PROG_CC and

AC_PROG_INSTALL macros. It made these assumptions

based on scanning our existing Makefile.in templates

and C source files, as you can see by the comments after

$ rm config.* Makefile src/Makefile ...

$

$ ls -1p

configure.ac

Makefile.in

src/

$

$ autoscan

configure.ac: warning: missing AC_CHECK_HEADERS

 ([stdlib.h]) wanted by: src/main.c:2

configure.ac: warning: missing AC_HEADER_STDC

 wanted by: src/main.c:2

configure.ac: warning: missing AC_PROG_CC

 wanted by: src/main.c

configure.ac: warning: missing AC_PROG_INSTALL

 wanted by: Makefile.in:11

$

$ ls -1p

autom4te.cache/

autoscan.log

configure.ac

configure.scan

Makefile.in

src/

$

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 14 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

and C source files, as you can see by the comments after

each warning statement. You can always see these messages

(in even greater detail) by examining the autoscan.log

file.

Now let!s examine the generated configure.scan file.

autoscan has added more text to configure.scan than

was originally in our configure.ac file, so it!s probably

easier for us to just overwrite configure.ac with

configure.scan and then change the few bits of

information that are specific to jupiter:

NOTE: The contents of your configure.ac file may differ

slightly from mine, depending on the version of Autoconf you

have installed. I have version 2.62 of GNU Autoconf installed

on my system (the latest, as of this writing), but if your version

of autoscan is older (or newer), you may see some minor

differences.

I!ll then edit the file and change the AC_INIT macro to reflect

the jupiter project parameters:

$ mv configure.scan configure.ac

$

$ cat configure.ac

-*- Autoconf -*-

Process this file with autoconf to produce ...

AC_PREREQ(2.61)

AC_INIT(FULL-PACKAGE-NAME, VERSION,

 BUG-REPORT-ADDRESS)

AC_CONFIG_SRCDIR([src/main.c])

AC_CONFIG_HEADERS([config.h])

Checks for programs.

AC_PROG_CC

AC_PROG_INSTALL

Checks for libraries.

Checks for header files.

AC_HEADER_STDC

AC_CHECK_HEADERS([stdlib.h])

Checks for typedefs, structures, and compiler ...

Checks for library functions.

AC_CONFIG_FILES([Makefile

 src/Makefile])

AC_OUTPUT

$

$ head configure.ac

-*- Autoconf -*-

Process this file with autoconf to produce ...

AC_PREREQ([2.61])

AC_INIT([jupiter], [1.0], [bugs@jupiter.org])

AC_CONFIG_SRCDIR([src/main.c])

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 15 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

The autoscan utility really does a lot of the work for you.

The GNU Autoconf manual states that you should hand-tailor

this file to your project before using it. This is true, but there

are only a few key issues to worry about (besides those

related to the AC_INIT macro). We!ll take each of these as we

come to them, starting at the top of the file.

Trying out configure

I like to experiment, so the first thing I!d do at this point would

be to try to run autoreconf on this new configure.ac.

and then try to run the generated configure script to see

what happens. If autoscan is all it!s cracked up to be, then

the resulting configure script should generate some

makefiles for me:

Well, we didn!t get too far. I mentioned the install utility in

Chapter 1, and you may have already been aware of it. It

appears here that Autoconf is looking for a shell script called

install-sh or install.sh.

Autoconf is all about portability, and unfortunately, the

install utility is not as portable as we!d like it to be. From

one platform to another, critical bits of installation functionality

are just different enough to cause problems, so the Autotools

provide a shell script called install-sh (deprecated name:

install.sh) that acts as a wrapper around the platform

install utility. This wrapper script masks important

differences among various versions of install.

autoscan noticed that we used the install program in

our src/Makefile.in template, and generated an

expansion of the AC_PROG_INSTALL macro into the

configure.scan file based on this observation. The

problem is that the generated configure script couldn!t find

the install-sh wrapper script.

This seems to be a minor defect in Autoconf—if Autoconf

expects install-sh to be in our project directory, then it

should just put it there, right? Well, autoreconf has a

command line option, --install, which is supposed to

AC_CONFIG_SRCDIR([src/main.c])

AC_CONFIG_HEADERS([config.h])

$

$ autoreconf

$./configure

checking for gcc... gcc

checking for C compiler default output file name...

checking whether the C compiler works... yes

checking whether we are cross compiling... no

checking for suffix of executables...

checking for suffix of object files... o

checking whether we are using the GNU C compiler...

checking whether gcc accepts -g... yes

checking for gcc option to accept ISO C89...

configure: error: cannot find install-sh or

 install.sh in "." "./.." "./../.."

$

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 16 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

command line option, --install, which is supposed to

install missing files like this for me. I!ll give it a try. Here!s a

before-and-after picture of my directory structure:

Hmmm. It didn!t seem to work, as there!s no install-sh

file in the directory after running autoreconf --

install. This is, in my opinion, a defect in both

autoreconf and autoconf. You see, when

autoreconf is used with the --install command-line

option, it should install all auxilliary files required by all

Autoconf macros used in configure.ac. The trouble is,

this auxilliary-file-installation functionality is actually a part of

Automake, not Autoconf. So when you use --install on

the autoreconf command-line, it passes tool-specific

install-missing-files options down to each of the tools that it

calls. This technique would have worked just fine, except that

Autoconf doesn!t provide an option to install any missing files.

Worse still, the GNU Autoconf manual tells you in Section

5.2.1 under AC_PROG_INSTALL, “Autoconf comes with a

copy of install-sh that you can use.” But this is a lie. In

fact, it!s Automake and Libtool that come with copies of

install-sh, not Autoconf.

We could just copy install-sh from the Automake

installation directory (PREFIX/share/automake...), but

let!s try running automake instead:

Ignoring the warnings indicating that I!ve not yet configured my

project properly for Automake, I can now see that install-

sh was copied into my project root directory:

$ ls -1p

autoscan.log

configure.ac

Makefile.in

src/

$

$ autoreconf --install

$ ls -1p

autom4te.cache/

autoscan.log

config.h.in

configure

configure.ac

Makefile.in

src/

$

$ automake --add-missing --copy

configure.ac: no proper invocation of AM_INIT_...

configure.ac: You should verify that configure...

configure.ac: that aclocal.m4 is present in th...

configure.ac: and that aclocal.m4 was recently...

configure.ac:11: installing `./install-sh'

automake: no `Makefile.am' found for any confi...

$

$ ls -1p

autom4te.cache/

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 17 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

So why didn!t autoreconf --install do this for me?

Isn!t it supposed to run all the programs that it needed to,

based on my configure.ac? As it happens, it was exactly

because my project was not configured for Automake, that

autoreconf failed to run automake --add-missing

--copy. Autoreconf saw no reason to run automake

because configure.ac doesn!t contain the requisite

macros for initializing Automake.

And therein lies the defect. First, Autoconf should ship with

install-sh, since it provides a macro that requires it, and

because autoscan adds that macro based on the contents

of a Makefile.in template. In addition, Autoconf should

provide an “add-missing” command-line option, and

autoreconf should use it when called with the --

install option. This is most likely an example of the “work-

in-progress” nature of the Autotools.

Before autoreconf came along, maintainers used a shell

script, often called autogen.sh to run all of the Autotools

required for their projects in the proper order. To solve this

problem temporarily, I!ll just add a simple temporary

autogen.sh script to the project root directory:

If you don!t want to see all the error messages from

automake, just redirect the stderr and stdout output to

/dev/null. By the way, the --copy option tells Automake

to copy the missing auxilliary files, rather than simply creating

links to them from where they!re installed in

/usr/share/automake.

Eventually, we!ll be able to get rid of autogen.sh file, and

just run autoreconf --install, but for now, this will

solve our missing files problems. Hopefully, you read this

section before scratching your head too much over the missing

install-sh script. We can now run our newly generated

configure script without errors. I!ll cover the details of

properly using the AC_PROG_INSTALL macro shortly. I!ll

cover Automake in much greater detail in Chapter 4.

Updating Makefile.in

Okay, so how do the additional macros added by autoscan

affect our make system? Well, we have some new files to

consider. For one, the config.h.in file is generated for us

now by autoheader. We can assume that autoreconf

autoscan.log

configure.ac

configure.scan

install-sh

Makefile.in

src/

$

$ echo "automake --add-missing --copy

autoreconf --install" > autogen.sh

chmod 0755 autogen.sh

$

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 18 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

now by autoheader. We can assume that autoreconf

now executes autoheader for us when we run it.

Additionally, we have a new file in our project called

install-sh.

Anything provide by, or generated by the Autotools should be

copied into the archive directory so that it can be shipped with

our release tarballs. So, we should add these two files. Note

that we don!t need to install autogen.sh, as it!s purely a

maintainer tool—our users shouldn!t ever need to execute it:

If you!re beginning to think that this could become a

maintenance nightmare, then you!re right. I warned you that

the $(distdir) target was painful to maintain in Chapter 2.

Luckily the distcheck target still exists, and still works as

designed. It would have caught this problem, because the

distribution build will not work without these additional files,

and certainly the check target wouldn!t work, if the build

didn!t work. When we discuss Automake in Chapter 4, much of

this mess will be cleared up.

Initialization and package information

The first section in our new configure.ac file (copied from

configure.scan) contains Autoconf initialization macros.

These are required for all projects. Let!s consider each of

these macros individually.

AC_PREREQ

The AC_PREREQ macro simply defines the lowest version of

Autoconf that may be used to successfully process the

configure.ac script. The manual indicates that

AC_PREREQ is the only macro that may be used before

AC_INIT. The reason for this should be obvious—you!d like to

be able to ensure you!re using a late enough version of

Autoconf before you begin processing any other macros,

which may be version dependent. As it turns out, AC_INIT is

not version dependent anyway, so you may place it first, if

you!re so inclined. I happen to prefer the way autoscan

generates the file, so I!ll leave it alone.

AC_INIT

...

srcdir = @srcdir@

VPATH = $(srcdir)

...

$(distdir):

 mkdir -p $(distdir)/src

 cp $(srcdir)/configure $(distdir)

 cp $(srcdir)/config.h.in $(distdir)

 cp $(srcdir)/install-sh $(distdir)

 cp $(srcdir)/Makefile.in $(distdir)

 cp $(srcdir)/src/Makefile.in $(distdir)/src

 cp $(srcdir)/src/main.c $(distdir)/src

...

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 19 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

The AC_INIT macro (as its name implies) initializes the

Autoconf system. It accepts up to four arguments (autoscan

only generates a call with the first three), PACKAGE,

VERSION, and optional BUG-REPORT and TARNAME

arguments. The PACKAGE argument is intended to be the

name of your package. It will end up (in a canonicalized form)

as the first part of the name of an Automake-generated

release distribution tarball when you run make dist.

In fact, by default, Automake-generated tarballs will be named

TARNAME-VERSION.tar.gz, but TARNAME is set to a

canonicalized form of the PACKAGE string (lower-cased with

all punctuation converted to underscores), unless you specify

`ARNAME manually, so bear this in mind when you choose

your package name and version string. Incidentally, M4 macro

arguments, including PACKAGE and VERSION, are just

strings. M4 doesn!t attempt to interpret any of the text that it

processes.

The optional BUG-REPORT argument is usually set to an

email address, but it can be any text really. An Autoconf

substitution variable called PACKAGE_BUGREPORT will be

created for it, and that variable will be added to a

config.h.in template as a C preprocessor string, as well.

The intent is that you use the variable in your code (or in

template text files anywhere in your project) to present an

email address for bug reports at appropriate places—possibly

when the user requests help or version information from your

application.

While the VERSION argument can be anything you like, there

are a few free software conventions that will make life a little

easier for you if you follow them. The widely used convention

is to pass in MAJOR.MINOR (eg., 1.2). However, there!s

nothing that says you can!t use MAJOR.MINOR.REVISION if

you want, and there!s nothing wrong with this approach. None

of the resulting VERSION macros (Autoconf, shell or make)

are parsed or analysed anywhere—only used in various

places as replacement text, so if you want, you can even add

non-numeric text into this macro, such as 0.15.alpha1,

which is useful occasionally.

Note that the RPM package manager does indeed care what

you put in the version string. For the sake of RPM, you may

wish to limit the version string text to only alpha-numerics and

periods—no dashes or underscores, unfortunately.

Autoconf will generate the substitution variables

PACKAGE_NAME, PACKAGE_VERSION,

PACKAGE_TARNAME, PACKAGE_STRING (a stylized

concatenation of the package name and version information

and PACKAGE_BUGREPORT from arguments to AC_INIT.

AC_CONFIG_SRCDIR

The AC_CONFIG_SRCDIR macro is just a sanity check. Its

purpose is to ensure that the generated configure script

knows that the directory on which it is being executed is in fact

the correct project directory. The argument can be a relative

path to any source file you like - I try to pick one that sort of

defines the project. That way, in case I ever decide to

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 20 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

defines the project. That way, in case I ever decide to

reorganize source code, I!m not likely to lose it in a file

rename. But it doesn!t really matter, because if you do rename

the file or move it to some other location some time down the

road, you can always change the argument passed to

AC_CONFIG_SRCDIR. Autoconf will tell you immediately if it

can!t find this file—after all, that!s the purpose of this macro in

the first place!

The instantiating macros

Before we dive into the details of AC_CONFIG_HEADERS, I!d

like to spend a little time on the framework provided by

Autoconf. From a high-level perspective, there are four major

things happening in configure.ac:

1. Initialization

2. File instantiation

3. Check requests

4. Generation of the configure script

We!ve pretty much covered initialization—there!s not much to

it, although there are a few more macros you should be aware

of. (Check out the GNU Autoconf manual to see what these

are—look up AC_COPYRIGHT, for an example.) Now, let!s

move on to file instantiation.

There are actually four so-called instantiating macros, which

include AC_CONFIG_FILES, AC_CONFIG_HEADERS,

AC_CONFIG_COMMANDS and AC_CONFIG_LINKS. An

instantiating macro is one which defines one or more tags,

usually referring to files that are to be translated, by the

generated configure scripts, from a template containing

Autoconf substitution variables.

NOTE: You might need to change the name of

AC_CONFIG_HEADER (singular) to AC_CONFIG_HEADERS

(plural) in your version of configure.scan. This was a

defect in autoscan that had not been fixed yet in Autoconf

version 2.61. I reported the defect and a patch was committed.

Version 2.62 works correctly. If your configure.scan is

generated with a call to AC_CONFIG_HEADER, just change it

manually. Both macros will work, as the singular version was

the older name of this macro, but the older macro is less

functional than the newer one.

These four instantiating macros have an interesting signature

in common:

For each of these four macros, the tag argument has the

form, OUT[:INLIST] where INLIST has the form,

IN0[:IN1:...:INn]. Often, you!ll see a call to one of

these macros with only a single simple argument, like this:

In this case, config.h is the OUT portion of the above

specification. The default INLIST is the OUT portion with “.in”

appended to it. So the above call is equivalent to:

AC_CONFIG_xxxS([tag ...], [commands], [init-cmds])

AC_CONFIG_HEADERS([config.h])

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 21 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

appended to it. So the above call is equivalent to:

What this means is that config.status will contain shell

code that will generate config.h from config.h.in,

substituting all Autoconf variables in the process. You may

also provide a list of input files to be concatenated, like this:

In this example, config.status will generate config.h

by concatenating cfg0, cfg1 and cfg2, after substituting

all Autoconf variables. The GNU Autoconf manual calls this

entire “OUT:INLIST” thing a “tag”.

What!s that all about? Why not call it a file? Well, the fact is,

this parameter!s primary purpose is to provide a sort of

command-line target name—much like Makefile targets. It

also happens to be used as a file system name, if the

associated macro happens to generate file system names, as

is the case when calling AC_CONFIG_HEADERS,

AC_CONFIG_FILES and AC_CONFIG_LINKS.

But AC_CONFIG_COMMANDS doesn!t actually generate any

files. Rather, it runs arbitrary shell code, as specified by the

user in the macro. Thus, rather than name this first parameter

after a secondary function (the generation of files), the manual

refers to it by its primary purpose - as a command line tag-

name that may be specified on the config.status

command line. Here!s an example:

This config.status command line will regenerate the

config.h file based on the macro call to

AC_CONFIG_HEADERS in configure.ac. It will only

regenerate config.h. Now, if you!re curious like me, you!ve

already been playing around a little, and have tried typing

./config.status --help to see what options are

available when executing config.status. You may have

noticed that config.status has a help signature like this:

NOTE: I left out portions of the help display irrelevant to this

discussion.

AC_CONFIG_HEADERS([config.h:config.h.in])

AC_CONFIG_HEADERS([config.h:cfg0:cfg1:cfg2])

./config.status config.h

$./config.status --help

`config.status' instantiates files from templates

according to the current configuration.

Usage: ./config.status [OPTIONS] [FILE]...

 -h, --help print this help, then exit

...

 --file=FILE[:TEMPLATE]

...

Configuration files:

 Makefile src/Makefile

Configuration headers:

 config.h

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 22 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

discussion.

I!d like you to notice a couple of thing about this help display.

First, config.status is designed to give you custom help

about this particular project!s config.status file. It lists

“Configuration files” and “Configuration headers” that you may

use as tags. Oddly, given the “tag” nomenclature used in the

manual so rigorously, the help line still refers to such tags as

[FILE]s in the “Usage:” line. Regardless, where the usage

specifies [FILE]s you may use one or more of the listed

configuration files, headers, links, or commands displayed

below. In this case, config.status will only instantiate

those objects. In the case of commands, it will execute the

commands specified by the tag passed in the associated

expansion of the AC_CONFIG_COMMANDS macro.

Each of these macros may be used multiple times in a

configure.ac script. The results are cumulative. This

mean that we can use AC_CONFIG_FILES as many times as

we need to in our configure.ac file. Reasons why we

may want to use it more than once are not obvious right now,

but I!ll get to them eventually.

Another noteworthy item here is that there is a --file

option. Now why would config.status allow us to specify

files either with or without the --file= in front of them?

Well, these are actually different usages of the [FILE]

option, which is why it would make more sense for the usage

text to read:

When config.status is called with tag names on the

command line, only those tags listed in the help text as

available configuration files, headers, links and commands

may be used as tags. When you execute config.status

with the --file= option, you!re really telling

config.status to generate a new file not already

associated with any of the calls to instantiating macros in your

configure.ac. The file is generated from a template using

configuration options and check results determined by the the

last execution of the configure script. For example, I could

execute config.status like this:

NOTE: The default template name is the file name with a “.in”

suffix, so this call could have been made without using the

“:extra.in” portion of the option.

Let!s get back to the instantiating macro signature. The tag

argument has a complex format, but it also represents multiple

tags. Take another look:

The elipsis after tag indicates there may be more than one,

and in fact, this is true. The tag argument accepts multiple

tag specifications, separated by white space or new-line

$./config.status --help

...

Usage: ./config.status [OPTIONS] [TAG]...

./config.status --file=extra:extra.in

AC_CONFIG_xxxS([tag ...], [commands], [init-cmds])

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 23 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

tag specifications, separated by white space or new-line

characters. Often you!ll see a call like this:

Each entry here is one tag specification, which if fully specified

would look like this:

One more point to cover. There are two optional arguments

that you!ll not often see used in the instantiating macros,

commands and init-cmds. The commands argument

may be used to specify some arbitrary shell code that should

be executed by config.status just before the files

associated with the tags are generated. You!ll not often see

this used with the file generating instantiating macros, but in

the case of AC_CONFIG_COMMANDS, which generates no

files by default, you almost always see this arugument used,

because a call to this macro is basically useless without it! In

this case, the tag argument becomes a way of telling

config.status to execute a set of shell commands.

The init-cmds argument is used to initialize shell variables

at the top of config.status with values available in

configure.ac and configure. It!s important to

remember that all calls to instantiating macros share a

common namespace along with config.status, so

choose shell variable names carefully.

The old adage about the relative value of a picture vs. an

explanation holds true here, so let!s try a little experiment.

Create a test version of your configure.ac file containing

only the following lines:

Then execute autoreconf, configure, and

config.status in various ways to see what happens:

AC_CONFIG_FILES([Makefile

 src/Makefile

 lib/Makefile

 etc/project.cfg])

AC_CONFIG_FILES([Makefile:Makefile.in

 src/Makefile:src/Makefile.in

 lib/Makefile:lib/Makefile.in

 etc/proj.cfg:etc/proj.cfg.in])

AC_INIT(test, 1.0)

AC_CONFIG_COMMANDS([abc],

 [echo "Testing $mypkgname"],

 [mypkgname=$PACKAGE_NAME])

AC_OUTPUT

$ autoreconf

$./configure

configure: creating ./config.status

config.status: executing abc commands

Testing test

$./config.status

config.status: executing abc commands

Testing test

$./config.status --help

`config.status' instantiates files from templates

according to the current configuration.

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 24 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

As you can see here, executing configure caused

config.status to be executed with no command line

options. There are no checks specified in configure.ac.

so executing config.status has nearly the same effect.

Querying config.status for help indicates that “abc” is a

valid tag, and executing config.status with that tag

simply runs the associated commands.

Okay, enough fooling around. The important points to

remember here are:

1. Both configure and config.status may be

called individually to perform their individual tasks.

2. The config.status script generates all files from

templates.

3. The configure script performs all checks and then

executes config.status.

4. config.status generates files based on the last set

of check results.

5. config.status may be called to execute file

generation or command sets specified by any of the tag

names specified in any of the instantiating macro calls.

6. config.status may generate files not associated

with any tags specified in configure.ac.

7. config.status can be used to call configure

with the same set of command line options used in the

last execution of configure.

AC_CONFIG_HEADERS

As you!ve no doubt concluded by now, the

AC_CONFIG_HEADERS macro allows you to specify one or

more header files to be generated from template files. You

may write multiple template header files yourself, if you wish.

The format of a configuration header template is very specific:

Multiple such statements may be placed in your header

template. The comments are optional, of course. Let!s try

another experiment. Create a new configure.ac file with

the following contents:

according to the current configuration.

Usage: ./config.status [OPTIONS] [FILE]...

...

Configuration commands:

 abc

Report bugs to <bug-autoconf@gnu.org>.

$./config.status abc

config.status: executing abc commands

Testing test

$

/* Define as 1 if you have unistd.h. */

#undef HAVE_UNISTD_H

AC_INIT([test], [1.0])

AC_CONFIG_HEADERS([config.h])

AC_CHECK_HEADERS([unistd.h foobar.h])

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 25 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

Now create a configuration header template file called

config.h.in, which contains the following two lines:

Finally, execute the following commands:

You can see that config.status generated a config.h

file from your config.h.in template file. The contents of

this header file are based on the checks executed by the

configure script. Since the shell code generated by

AC_CHECK_HEADERS([unistd.h foobar.h]) was

able to locate a unistd.h header file in the standard include

directory, the corresponding #undef statement was

converted into a #define statement. Of course, no

foobar.h header was found in the system include directory,

as you can also see by the output of configure, so it!s

definition was left commented out in the template.

Thus, you may add this sort of code to appropriate C source

files in your project:

Using autoheader to generate an include file template

Maintaining your config.h.in template is more pain than

necessary. After all, most of the information you need is

already encapsulated in your configure.ac script, and the

format of config.h.in is very strict. For example, you may

not have any leading or trailing white space on the #undef

lines.

Fortunately, the autoheader utility will generate an include

header template for you based on your configure.ac file

AC_CHECK_HEADERS([unistd.h foobar.h])

AC_OUTPUT

#undef HAVE_UNISTD_H

#undef HAVE_FOOBAR_H

$ autoconf

$./configure

checking for gcc... gcc

...

checking for unistd.h... yes

checking for unistd.h... (cached) yes

checking foobar.h usability... no

checking foobar.h presence... no

checking for foobar.h... no

configure: creating ./config.status

config.status: creating config.h

$ cat config.h

/* config.h. Generated from ... */

#define HAVE_UNISTD_H 1

/* #undef HAVE_FOOBAR_H */

#if HAVE_CONFIG_H

include <config.h>

#endif

#if HAVE_UNISTD_H

include <unistd.h>

#endif

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 26 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

header template for you based on your configure.ac file

contents. Back to the command prompt for another quick

experiment. This one is easy—just delete your

config.h.in template before you run autoheader and

autoconf, like this:

NOTE: Here again, I encourage you to use autoreconf,

which will automatically run autoheader for you if it notices an

expansion of the AC_CONFIG_HEADERS macro in your

configure.ac script.

You may also want to take a peek at the config.h.in

template file generated by autoheader. In the meantime,

here!s a much more realistic example of using a generated

config.h file for the sake of portability of project source

code.

$ rm config.h.in

$ autoheader

$ autoconf

$./configure

checking for gcc... gcc

...

checking for unistd.h... yes

checking for unistd.h... (cached) yes

checking foobar.h usability... no

checking foobar.h presence... no

checking for foobar.h... no

configure: creating ./config.status

config.status: creating config.h

$ cat config.h

/* config.h. Generated from config.h.in... */

/* config.h.in. Generated from configure.ac... */

...

/* Define to 1 if you have... */

/* #undef HAVE_FOOBAR_H */

/* Define to 1 if you have... */

#define HAVE_UNISTD_H 1

/* Define to the address where bug... */

#define PACKAGE_BUGREPORT ""

/* Define to the full name of this package. */

#define PACKAGE_NAME "test"

/* Define to the full name and version... */

#define PACKAGE_STRING "test 1.0"

/* Define to the one symbol short name... */

#define PACKAGE_TARNAME "test"

/* Define to the version... */

#define PACKAGE_VERSION "1.0"

/* Define to 1 if you have the ANSI C... */

#define STDC_HEADERS 1

AC_INIT([test], [1.0])

AC_CONFIG_HEADERS([config.h])

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 27 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

The config.h file is obviously intended to be included in

your source code in locations where you might wish to test a

configured option in the code itself using the C preprocessor.

Using this configure.ac script, Autoconf will generate a

config.h header file with appropriate definitions for

determining at compile time if the current system provides the

dlfcn interface. To complete the portability check, you can

add the following code to a source file in your project that

uses dynamic loader functionality:

If you already had code that included dlfcn.h then autoscan

will have generated a configure.ac call to

AC_CHECK_HEADERS, which contains dlfcn.h as one of the

header files to be checked. Your job as the maintainer is to

add the conditional to your source code around the existing

use of the dlfcn header inclusion and the libdl API calls. This is

the crux of Autoconf provided portability.

Your project may be able to get along at compile time without

the dynamic loader functionality if it must, but it would be nice

to have it. Perhaps, your project will function in a limited

manner without it. Sometimes you just have to bail out with a

compiler error (as this code does) if the key functionality is

missing. Often this is an acceptable first-attempt solution, until

someone comes along and adds support to the code base for

some other dynamic loader service that is perhaps available

on non-dlfcn-oriented systems.

NOTE: If you have to bail out with an error, it!s best to do so at

configuration time, rather than at compile time. I!ll cover

examples of this sort of activity shortly.

One obvious flaw in this source code is that config.h is

only included if HAVE_CONFIG_H is defined in your

compilation environment. But wait…doesn!t that definition

happen in config.h?! Well, no, not in the case of this

particular definition. HAVE_CONFIG_H must be either defined

by you manually, if you!re writing your own makefiles, or by

Automake-generated makefiles automatically on the compiler

command line. (Are you beginning to get the feeling that

AC_CONFIG_HEADERS([config.h])

AC_CHECK_HEADERS([dlfcn.h])

AC_OUTPUT

#if HAVE_CONFIG_H

include <config.h>

#endif

#if HAVE_DLFCN_H

include <dlfcn.h>

#else

error Sorry, this code requires dlfcn.h.

#endif

...

#if HAVE_DLFCN_H

 handle = dlopen(

 "/usr/lib/libwhatever.so", RTLD_NOW);

#endif

...

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 28 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

command line. (Are you beginning to get the feeling that

Autoconf really shines when used in conjunction with

Automake?)

HAVE_CONFIG_H is part of a string of definitions passed on

the compiler command line in the Autoconf substitution

variable @DEFS@. Before Autoheader and

AC_CONFIG_HEADERS, all of the compiler configuration

macros were added to the @DEFS@ variable. You can still

use this method if you don!t use AC_CONFIG_HEADERS in

configure.ac. but it!s not the recommended method

nowadays.

Back to VPATH builds for a moment

Regarding VPATH builds, we haven!t yet covered how to get

the preprocessor to properly locate our generated config.h

file. This file, being a generated file, will be found in the same

relative position in the build directory structure, as its

counterpart template file, config.h.in. The template is

located in the top-level source directory (unless we choose to

put it somewhere else), so the generated file will be in the top-

level build directory. Well, that!s easy enough—it!s always one

level up from src/Makefile.

Let!s consider where we might have include files in our project.

We might add an internal header file to the current source

directory. We obviously now have a config.h file in our top-

level build directory. We might also create a top-level source

include directory for library interface header files. Which order

should we care about these files?

The order we place include directives (-I<path>) options on

the compiler command line is the order in which they will be

searched. The proper preprocessor include paths should

include the current build directory (.), the source directory

($(srcdir)), and the top-level build directory (..), in that

order:

It appears we need an additional rule for VPATH builds:

1. Add preprocessor commands for the current build,

associated source and top-level build directories, in that

order.

Checks for compilers

The AC_PROG_CC macro ensures that we have a working C

language compiler. This call was added to

configure.scan when autoscan noticed that we had C

source files in our project directory. If we!d had files suffixed

with .cxx or .C (an upper-case .C extension indicates a C++

source file), it would have inserted a call to the

AC_PROG_CXX macro, as well as a call to

...

jupiter: main.c

 gcc -g -O0 -I. -I$(srcdir) -I..\

 -o $@ $(srcdir)/main.c

...

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 29 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

AC_PROG_CXX macro, as well as a call to

AC_LANG([C++]).

This macro looks for gcc and then cc in the system search

path. If neither of these are found, it looks for other C

compilers. When a compatible compiler is found, it sets a well-

known variable, $CC to the full path of the program, with

options for portability, if necessary.

AC_PROG_CC accepts an optional parameter containing an

ordered list of compiler names. For example, if you used

AC_PROG_CC([cc cl gcc]), then the macro would

expand into shell code that searched for cc, cl and gcc, in

that order.

The AC_PROG_CC macro also defines the following Autoconf

substitution variables:

@CC@ (full path of compiler)

@CFLAGS (eg., -g -O2 for gcc)

@CPPFLAGS@ (empty by default)

@EXEEXT@ (eg., .exe)

@OBJEXT@ (eg., .o)

AC_PROG_CC configures these substitution variables, but

unless I used them in my Makefile.in templates, I!m just

wasting time running configure. I!ll add a few of these as

make variables to my src/Makefile.in template, and

then consume them, like this:

Checking for other programs

Now, let!s return to the AC_PROG_INSTALL macro. As with

the AC_PROG_CC macro, the other AC_PROG_* macros set

and AC_SUBST various environment variables that point to

the located utility. To make use of this check, you need to use

these Autoconf substitution variables in your Makefile.in

templates, just as we did with CC, CFLAGS, and CPPFLAGS

above:

Tool-related substitution variables

CC = @CC@

CFLAGS = @CFLAGS@

CPPFLAGS = @CPPFLAGS@

...

jupiter: main.c

 $(CC) $(CFLAGS) $(CPPFLAGS)\

 -I. -I$(srcdir) -I..\

 -o $@ $(srcdir)/main.c

...

Tool-related substitution variables

CC = @CC@

CFLAGS = @CFLAGS@

CPPFLAGS = @CPPFLAGS@

INSTALL = @INSTALL@

INSTALL_DATA = @INSTALL_DATA@

INSTALL_PROG = @INSTALL_PROG@

INSTALL_SCRIPT = @INSTALL_SCRIPT@

...

install:

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 30 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

The value of @INSTALL@ is obviously the path of the located

install script. The value of @INSTALL_DATA@ is

${INSTALL} -m 0644. Now, you!d think that the values of

@INSTALL_PROG@ and @INSTALL_SCRIPT@ would be

${INSTALL} -m 0755, but they!re not. These are just set

to ${INSTALL}. Oversight? I don!t know.

Other important utility programs you might need to check for

are lex, yacc, sed, awk, etc. If so, you can add calls to

AC_PROG_LEX, AC_PROG_YACC, AC_PROG_SED, or

AC_PROG_AWK yourself. There are about a dozen different

programs you can check for using these more specialized

macros. If such a program check fails, then the resulting

configure script will fail with a message indicating that the

required utility could not be found, and that the build may not

continue until it!s been properly installed.

As with the other program and compiler checks, in

Makefile.in templates, you should use the make

variables $(LEXX) and $(YACC) to invoke these tools (note

that Automake does this for you), as these Autoconf macros

will set the values of these variables according to the tools it

finds installed on your system if they are not already set in

your environment.

Now, this is a key aspect of configure scripts generated by

Autoconf—you may always override anything configure

will do to your environment by exporting or setting an

appropriate output variable before you execute configure.

For example, perhaps you would like to build with a very

specific version of bison that you!ve installed in your own

home directory:

This will ensure that YACC is set the way you want for your

makefiles, and that AC_PROG_YACC does essentially

nothing in your configure script.

If you need to check for the existence of a program not

covered by these more specialized macros, you can call the

generic AC_CHECK_PROG macro, or you can write your own

special purpose macro (I!ll cover writing macros in Chapter 9).

Key points to take away:

1. AC_PROG_* macros check for the existence of

programs.

2. If a program is found, a substitution variable is created.

3. Use these variables in your Makefile.in templates

to execute the program.

A common problem with Autoconf

install:

 mkdir -p $(bindir)/jupiter

 $(INSTALL_PROG) -m 0755 $(bindir)/jupiter

$ cd jupiter

$ YACC="$HOME/bin/bison -y" ./configure

$...

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 31 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

Here!s a common problem that developers new to the

Autotools consistently encounter. Take a look at the formal

definition of AC_CHECK_PROG found in the GNU

Autoconf manual. NOTE: In this case, the square brackets

represent optional parameters, not Autoconf quotes.:

AC_CHECK_PROG(variable, prog-to-

check-for, value-if-found,

[value-if-not-found], [path],

[reject])

Check whether program prog-to-check-

for exists in PATH. If it is found, set

variable to value-if-found, otherwise

to value-if-not-found, if given. Always

pass over reject (an absolute file name)

even if it is the first found in the search path; in

that case, set variable using the absolute

file name of the prog-to-check-for found

that is not reject. If variable was already

set, do nothing. Calls AC_SUBST for

variable.

I can extract the following clearly defined functionality from

this description:

1. If prog-to-check-for is found in the system

search path, then variable is set to value-if-

found, otherwise it!s set to value-if-not-

found.

2. If reject is specified (as a full path), then skip it if

it!s found first, and continue to the next matching

program in the system search path.

3. If reject is found first in the path, and then another

match is found besides reject, set variable to

the absolute path name of the second (non-reject)

match.

4. If variable is already set by the user in the

environment, then variable is left untouched

(thereby allowing the user to override the check by

setting variable before running autoconf).

5. AC_SUBST is called on variable to make it an

Autoconf substitution variable.

At first read, there appears to be a terrible conflict of

interest here: We can see in point 1 that variable will be

set to one or the other of two specified values, based on

whether or not prog-to-check-for is found in the

system search path. But then in point 3 it states that

variable will be set to the full path of some program, but

only if reject is found first and skipped. Clearly the

documentation needs a little work.

Discovering the real functionality of AC_CHECK_PROG is

as easy as reading a little shell script. While you could

spend your time looking at the definition of

AC_CHECK_PROG in

/usr/share/autoconf/autoconf/programs.m4

, the problem with this approach is that you!re one level

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 32 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

, the problem with this approach is that you!re one level

removed from the actual shell code performing the check.

Wouldn!t it be better to just look at the resulting shell script

generated by AC_CHECK_PROG? Okay, then modify your

new configure.ac file in this manner:

Now just execute autoconf and then open the resulting

configure script and search for something specific to

the definition of AC_CHECK_PROG. I used the string

“ac_cv_prog_bash_var”, a shell variable generated by the

macro call. You may have to glance at the definition of a

macro to find reasonable search text:

...

AC_PREREQ(2.59)

AC_INIT([jupiter], [1.0],

 [jupiter-devel@lists.example.com])

AC_CONFIG_SRCDIR([src/main.c])

AC_CONFIG_HEADER([config.h])

Checks for programs.

AC_PROG_CC

AC_CHECK_PROG([bash_var], [bash], [yes],

 [no],, [/usr/sbin/bash])

...

$ autoconf

$ vi -c /ac_cv_prog_bash_var configure

...

Extract the first word of "bash", so it can be

a program name with args.

set dummy bash; ac_word=$2

echo "$as_me:$LINENO: checking for $ac_word" >&5

echo $ECHO_N "checking for $ac_word... $ECHO_C"\

 >&6

if test "${ac_cv_prog_bash_var+set}" = set; then

 echo $ECHO_N "(cached) $ECHO_C" >&6

else

 if test -n "$bash_var"; then

 # Let the user override the test.

 ac_cv_prog_bash_var="$bash_var"

else

 ac_prog_rejected=no

as_save_IFS=$IFS; IFS=$PATH_SEPARATOR

for as_dir in $PATH

do

 IFS=$as_save_IFS

 test -z "$as_dir" && as_dir=.

 for ac_exec_ext in ''\

 $ac_executable_extensions;

 do

 if $as_executable_p\

 "$as_dir/$ac_word$ac_exec_ext"; then

 if test "$as_dir/$ac_word$ac_exec_ext" =\

 "/usr/sbin/bash"; then

 ac_prog_rejected=yes

 continue

 fi

 ac_cv_prog_bash_var="yes"

 echo "$as_me:$LINENO: found\

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 33 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

Wow! You can immediately see by the opening comment

that AC_CHECK_PROG has some undocumented

functionality: You can pass in arguments with the program

name if you wish. But why would you want to? Well, look

farther. You can probably fairly accurately deduce that the

reject parameter was added into the mix in order to

allow your configure script to search for a particular

version of a tool. (Could it possibly be that someone might

really rather use the GNU C compiler instead of the Solaris

C compiler?)

In fact, it appears that variable really is set based on a

tri-state condition. If reject is not used, then variable

can only be either value-if-found or value-if-

not-found. But if reject is used, then variable

can also be the full path of the first program found that is

not reject! Well, that is exactly what the documentation

stated, but examining the generated code yields insight into

the authors! intended use of this macro. We probably

should have called AC_CHECK_PROG this way, instead:

 echo "$as_me:$LINENO: found\

 $as_dir/$ac_word$ac_exec_ext" >&5

 break 2

 fi

done

done

if test $ac_prog_rejected = yes; then

 # We found a bogon in the path, so make sure

 # we never use it.

 set dummy $ac_cv_prog_bash_var

 shift

 if test $# != 0; then

 # We chose a different compiler from the

 # bogus one. However, it has the same

 # basename, so the bogon will be chosen

 # first if we set bash_var to just the

 # basename; use the full file name.

 shift

 ac_cv_prog_bash_var=\

 "$as_dir/$ac_word${1+' '}$@"

 fi

fi

 test -z "$ac_cv_prog_bash_var" &&\

 ac_cv_prog_bash_var="no"

fi

fi

bash_var=$ac_cv_prog_bash_var

if test -n "$bash_var"; then

 echo "$as_me:$LINENO: result: $bash_var" >&5

echo "${ECHO_T}$bash_var" >&6

else

 echo "$as_me:$LINENO: result: no" >&5

echo "${ECHO_T}no" >&6

fi

...

AC_CHECK_PROG([bash_shell],[bash -x],[bash -x],,,

 [/usr/sbin/bash])

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 34 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

Now it makes more sense, and you can see by this

example that the manual is in fact accurate, if not clear. If

reject is not specified, and bash is found in the system

path, then bash_shell will be set to bash -x. If it!s not

found in the system path, then bash_shell will be set to

the empty string. If, on the other hand, reject is

specified, and the undesired version of bash is found first in

the path, then bash_shell will be set to the full path of

the next version found in the path, along with the originally

specified arguments (-x). The bash_shell variable may

now be used by the rest of our script to run the desired

bash shell, if it doesn!t test out as empty. Wow! No wonder

it was hard to document in a way that!s easy to understand!

But quite frankly, a good example of the intended use of

this macro, along with a couple of sentences of explanation

would have made all the difference.

Checks for libraries and header files

Does your project rely on external libraries? Most non-trivial

projects do. If you!re lucky, your project relies only on libraries

that are already widely available and ported to most platforms.

The choice to use an external library or not is a tough one. On

the one hand, you!ll want to reuse code that provides

functionality—perhaps significant functionality that you need

and don!t really have the time or expertise to write yourself.

Reuse is one of the hallmarks of the free software world.

On the other hand, you don!t want to depend on functionality

that may not exist on all of the platforms you wish to target, or

that requires significant porting effort on your part to make

these libraries available on all of your target platforms.

Occasionally, library-based functionality can exist in slightly

different forms on different platforms. These different forms

may be functionally compatible, but have different API

signatures. For example, POSIX threads (pthreads) versus a

native threading library. For basic multi-threading functionality,

many threading libraries are similar enough to be almost drop-

in replacements of each other.

To illustrate this concept, We!ll add some trival multi-threading

capabilities to the jupiter project. We want to have jupiter print

its message using a background thread. To do this, We!re

going to need to add the pthreads library to our project build

system. If we weren!t using the Autotools, we!d just add it to

our linker command line in the makefile:

But what if a system doesn!t support pthreads? We might want

to support native threads on a non-pthreads system—say

Solaris native threads, using the libthreads library.

To do this, we!ll first modify our main.c file such that the

printing happens in a secondary thread, like this:

 [/usr/sbin/bash])

jupiter: main.c

 $(CC) ... -lpthreads ...

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 35 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

printing happens in a secondary thread, like this:

Now, this is clearly a ridiculous use of a thread. Nonetheless,

it is the prototypical form of thread usage. Consider the case

where print_it did some long calculation, and main had

other things to do while print_it performed this

calculation. On a multi-processor machine, this could literally

double the throughput of such a program.

What we now need is a way of determining which libraries

should be added to the compiler command line. Enter

Autoconf and the AC_CHECK_* macros. The

AC_SEARCH_LIBS macro allows us to check for key

functionality within a list of libraries. If the function exists within

one of the specified libraries, then an appropriate command

line option is added the @LIBS@ substitution variable. The

@LIBS@ variable should be used in a Makefile.in template on

the compiler (linker) command line. Here is the formal

definition of AC_SEARCH_LIBS, again from the manual:

AC_SEARCH_LIBS(function, search-

libs, [action-if-found], [action-

if-not-found], [other-libraries])

Search for a library defining function if it!s not

already available. This equates to calling

AC_LINK_IFELSE([AC_LANG_CALL([],

[function])]) first with no libraries, then for

each library listed in search-libs. Add -

llibrary to LIBS for the first library found to

contain function, and run action-if-found. If

function is not found, run action-if-not-

found. If linking with the library results in

unresolved symbols that would be resolved by

linking with additional libraries, give those libraries

as the other-libraries argument, separated

by spaces: e.g., -lXt -lX11. Otherwise, this

macro fails to detect that function is present,

because linking the test program always fails with

unresolved symbols.

Wow, that!s a lot of stuff for one macro. Are you beginning to

see why the generated configure script is so large?

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

static void * print_it(void * data)

{

 printf("Hello from %s!\n", (char *)data);

 return 0;

}

int main(int argc, char * argv[])

{

 pthread_t tid;

 pthread_create(&tid, 0, print_it, argv[0]);

 pthread_join(tid, 0);

 return 0;

}

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 36 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

see why the generated configure script is so large?

Essentially, what you get by calling AC_SEARCH_LIBS for a

particular function is that the proper linker command line

arguments (eg., -lpthread), for linking with a library

containing the desired function, are added to a substitution

variable called @LIBS@. Here!s how we!ll use

AC_SEARCH_LIBS in our configure.ac file:

Of course, we!ll have to modify src/Makefile.in again to

make proper use of the now populated LIBS make variable:

Note that we added $(LIBS) after the source file on the

compiler command line. Generally, the linker cares about

object file order, and searches them for required functions in

the order they are specified on the command line. Since we

want main.c to be the primary source of object code for

jupiter, we!ll continue to add additional objects, including

libraries, after this file on the command line.

Right or just good enough?

We could just stop at this point. We!ve done enough to make

this build system properly use pthreads on most systems. If a

library is needed, it!ll be added to the @LIBS@ variable, and

subsequently used on our compiler command line. In fact, this

is the point at which many maintainers would stop. The

problem is that stopping here is just about the build-system

equivalent of not checking the return value of malloc in a C

program (and there are many developers out there who don!t

give this process the credit it deserves either). It usually works

fine. It!s just during those few cases where it fails that you

have a real problem.

Well, we want to provide a good user experience, so we!ll take

jupiter!s build system to the “next level”. However, in order to

do this, we need to make a design decision: In case

configure fails to locate a pthread library on a user!s

system, should we fail the build process, or build a jupiter

program without multi-threading? If we fail the build, it will

generally be obvious to the user, because the build has

stopped with an error message—although, perhaps not a very

user-friendly one. At this point, either the compile process or

...

Checks for libraries.

AC_SEARCH_LIBS([pthread_create], [pthread])

...

...

Tool-related substitution variables

CC = @CC@

LIBS = @LIBS@

CFLAGS = @CFLAGS@

CPPFLAGS = @CPPFLAGS@

...

jupiter: main.c

 $(CC) $(CFLAGS) $(CPPFLAGS)\

 -I. -I$(srcdir) -I..\

 -o $@ $(srcdir)/main.c $(LIBS)

...

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 37 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

user-friendly one. At this point, either the compile process or

the link process will fail with a cryptic error message about a

missing header file or an undefined symbol. If we choose to

build a single-threaded version of jupiter, we should probably

display some clear message that we!re moving ahead without

threads, and why.

There!s another potential problem also. Some users! systems

may have a pthread library installed, but not have the

pthread.h header file installed properly. This can happen

for a variety of reasons, but the most common is that the

executable package was installed, but not the developer

package. Executable binaries are often packaged

independently of static libraries and header files. Executables

are installed as part of a dependency chain for a higher level

consuming application, while developer packages are often

only installed directly by a user. For this reason, Autoconf

provides checks for both libraries and header files. The

AC_CHECK_HEADERS macro is used to ensure the

existence of a particular header file.

Autoconf checks are very thorough. They generally not only

ensure the existence of a file, but also that the file is in fact the

one we!re looking for. They do this by allowing us to make

some assertions about the file, which are then verified by the

macro. Additionally, the AC_CHECK_HEADERS macro

doesn!t just scan the file system for the requested header.

Rather, it builds a short test program in the appropriate

language, and then compiles it to ensure that the compiler can

both find the file, and use it. Similarly, AC_SEARCH_LIBS is

built around an attempt to link to the specified libraries, and

import the requested symbols.

Here is the formal definition of AC_CHECK_HEADERS, as

found in the GNU Autoconf manual:

AC_CHECK_HEADERS(header-file...,

[action-if-found], [action-if-not-

found], [includes = !default-

includes !]) For each given system header file

header-file in the blank-separated argument

list that exists, define HAVE_header-file (in

all capitals). If action-if-found is given, it is

additional shell code to execute when one of the

header files is found. You can give it a value of

break to break out of the loop on the first match.

If action-if-not-found is given, it is

executed when one of the header files is not

found.

Normally, this macro is called only with a list of desired header

files in the first argument. Remaining arguments are optional,

and not often used. The reason for this is that the macro is

very functional when used in this manner. We!ll add a check

for the pthread library using AC_CHECK_HEADERS to our

configure.ac file.

If you!re the jump-right-in type, then you!ve noticed by now

that configure.ac already calls AC_CHECK_HEADERS

for stdlib.h. No problem—we!ll just add pthread.h to

the list, using a space to separate the file names, like this:

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 38 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

the list, using a space to separate the file names, like this:

I like to make my packages available to as many people as

possible, so let!s go ahead and use the dual-mode build

approach, where we can at least provide some form of jupiter

to users without pthreads. To accomplish this, we!ll need to

add some conditional compilation to our main.c file:

In this version of main.c, we!ve added a couple of

conditional checks for the existence of the header file. The

HAVE_PTHREAD_H macro will be defined to the value 1 in

the config.h.in template, if the AC_CHECK_HEADERS

macro locates the pthread.h header file, otherwise the

definition will be added as a comment in the template. Thus,

we!ll need to include the config.h file at the top of our

main.c file:

Recall that HAVE_CONFIG_H must be defined on the

compiler command line. Autoconf populates the @DEFS@,

substitution variable with this definition, if config.h is

available. If you choose not to use the

AC_CONFIG_HEADERS macro in your configure.ac,

then @DEFS@ will contain all of the definitions generated by

all of the various check macros you do use. In our example

...

Checks for header files.

AC_HEADER_STDC

AC_CHECK_HEADERS([stdlib.h pthread.h])

...

#include <stdio.h>

#include <stdlib.h>

#if HAVE_PTHREAD_H

include <pthread.h>

#endif

static void * print_it(void * data)

{

 printf("Hello from %s!\n", (char *)data);

 return 0;

}

int main(int argc, char * argv[])

{

#if HAVE_PTHREAD_H

 pthread_t tid;

 pthread_create(&tid, 0, print_it, argv[0]);

 pthread_join(tid, 0);

#else

 print_it(argv[0]);

#endif

 return 0;

}

#if HAVE_CONFIG_H

include <config.h>

#endif

...

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 39 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

all of the various check macros you do use. In our example

here, we!ve used AC_CONFIG_HEADERS, so our

config.h.in template will contain most of these

definitions, and @DEFS@ will only contain

HAVE_CONFIG_H. This is actually a nice way to go because

it significantly shortens the compiler command line. An

additional benefit is that it becomes very simple to take a

snapshot of the template, and modify it by hand for non-

Autotools platforms, such as Microsoft Windows, which doesn!t

require as dynamic a configuration process as does

Unix/Linux. We!ll make the necessary change to our

src/Makefile.in template, like this:

Now, we have everything we need to conditionally build

jupiter. If the end-user!s system has pthread functionality,

she!ll get a version of jupiter that uses multiple threads of

execution, otherwise, she!ll have to settle for serialized

execution. The only thing left is to add some code to the

configure.ac script that displays a message during

configuration, indicating that we!re defaulting to serialized

execution if the library is not found.

Another point to consider here is what it means to have the

header file installed, but no library. This is very unlikely, but it

can happen. However, this is easily remedied by simply

skipping the header file check entirely if the library isn!t found.

We!ll reorganize things a bit to handle this case also:

...

Tool-related substitution variables

CC = @CC@

DEFS = @DEFS@

LIBS = @LIBS@

CFLAGS = @CFLAGS@

CPPFLAGS = @CPPFLAGS@

...

jupiter: main.c

 $(CC) $(CFLAGS) $(DEFS) $(CPPFLAGS)\

 -I. -I$(srcdir) -I..\

 -o $@ $(srcdir)/main.c $(LIBS)

...

...

Checks for libraries.

have_pthreads=no

AC_SEARCH_LIBS([pthread_create], [pthread],

 [have_pthreads=yes])

Checks for header files.

AC_HEADER_STDC

AC_CHECK_HEADERS([stdlib.h])

if test "x${have_pthreads}" = xyes; then

 AC_CHECK_HEADERS([pthread.h], [],

 [have_pthreads=no])

fi

if test "x${have_pthreads}" = xno; then

 echo "--"

 echo " Unable to find pthreads on this system. "

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 40 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

Let!s run autoreconf and configure and see what

additional output we get now:

Of course, if your system doesn!t have pthreads, you!ll get

something a little different. To emulate this, I!ll rename my

pthreads libraries (both shared and static), and then rerun

configure:

Of course, if we had chosen to fail the build if we couldn!t find

the pthread header file or libraries, then our source code

would have been simpler—no need for conditional

compilation. We could change our configure.ac file to

look like this, instead:

 echo " Unable to find pthreads on this system. "

 echo " Building a single-threaded version. "

 echo "--"

fi

...

$ autoreconf

$./configure

checking for gcc... gcc

...

checking for library... pthread_create... -lpthread

...

checking pthread.h usability... yes

checking pthread.h presence... yes

checking for pthread.h... yes

configure: creating ./config.status

config.status: creating Makefile

...

$ su

Password:

mv /usr/lib/libpthread.so ...

mv /usr/lib/libpthread.a ...

exit

exit

$./configure

checking for gcc... gcc

...

checking for library... pthread_create... no

...

checking for stdint.h... yes

checking for unistd.h... yes

checking for stdlib.h... (cached) yes

 Unable to find pthreads on this system.

 Building a single-threaded version.

configure: creating ./config.status

config.status: creating Makefile

config.status: creating src/Makefile

config.status: creating config.h

...

Checks for libraries.

have_pthreads=no

AC_SEARCH_LIBS([pthread_create], [pthread],

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 41 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

I could have used a couple of macros provided by Autoconf for

the purpose of printing messages to the console:

AC_MSG_WARNING and AC_MSG_ERROR, but I don!t

really care for these macros, because they tend to be single-

line-oriented. This is especially a problem in the case of the

warning message, which merely indicates that we!re

continuing, but we!re building a single-threaded version of

jupiter. Such a single-line message could zip right by in a

large configuration process, without even being noticed by the

user.

In the case where we decide to terminate with an error, this is

less of a problem, because—well, we terminated. But, for the

sake of consistency, I like all of my messages to look the

same. There is a note in the GNU Autoconf manual that

indicates that some shells are not able to properly pass the

value of the exit parameter to the shell, and that

AC_MSG_ERROR has a work-around for this problem. Well,

the funny code after the echo statements in this last example

is this very work-around, copied right out of a test

configure script that I created that uses

AC_MSG_ERROR.

This last topic brings to light a general lesson regarding

Autoconf checks. Checks do just that—they check. It!s up to

the maintainer to add code to do something based on the

results of the check. This isn!t strictly true, as

AC_SEARCH_LIBS adds a library to the @LIBS@ variable,

and AC_CHECK_HEADERS adds a preprocessor definition to

the config.h.in template. However, regarding the flow of

control within the configure process, all such decisions are left

to the developer. Keep this in mind while you!re designing

your configure.ac script, and life will be simpler for you.

Supporting optional features and packages

Alright, we!ve covered the cases in jupiter where a pthread

library exists, and where it doesn!t exist. I!m satisfied, at this

AC_SEARCH_LIBS([pthread_create], [pthread],

 [have_pthreads=yes])

Checks for header files.

AC_HEADER_STDC

AC_CHECK_HEADERS([stdlib.h])

if test "x${have_pthreads}" = xyes; then

 AC_CHECK_HEADERS([pthread.h], [],

 [have_pthreads=no])

fi

if test "x${have_pthreads}" = xno; then

 echo "--"

 echo " The pthread library and header file is "

 echo " required to build jupiter. Stopping... "

 echo " Check 'config.log' for more information. "

 echo "--"

 (exit 1); exit 1;

fi

...

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 42 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

library exists, and where it doesn!t exist. I!m satisfied, at this

point, that we!ve done just about all we can to manage both of

these cases very well. But what about the case where the user

wants to deliberately build a single-threaded version of jupiter,

even in the face of an existing pthread library? Do we add a

note to jupiter!s README file, indicating that the user should

rename her pthread libraries in this case? I don!t think so.

Autoconf provides for both optional features, and optional sub-

packages with two new macros: AC_ARG_ENABLE and

AC_ARG_WITH. These macros are designed to do two things:

First, to add help text to the output generated when you enter

“configure --help”, and second, to check for the

specified options, --enable-feature[=yes|no], and -

-with-package[=arg] on the configure script!s

command line, and set appropriate environment variables

within the script. The values of these variables may be used

later in the script to set or clear various preprocessor

definitions or substitution variables.

AC_ARG_WITH is used to control the use of optional sub-

packages which may be consumed by your package.

AC_ARG_ENABLE is used to control the inclusion or

exclusion of optional features in your package. The choice to

use one or the other is often a matter of perspective and

sometimes simply a matter of preference, as they provide

somewhat overlapping sets of functionality. For instance, in

the jupiter package, it could be justifiably argued that jupiter!s

use of pthreads constitutes the use of an external package.

However, it could just as well be said that asynchronous

processing is a feature that might be enabled.

In fact, both of these statements are true, and which type of

option you use should be dictated by a high-level architectural

perspective on the software in question. For example, the

pthread library supplies more than just thread creation

functions. It also provides mutexes and condition variables,

both of which may be used by a library package that doesn!t

create threads. If a project provides a library that needs to act

in a thread-safe manner within a multi-threaded process, then

it will probably use one or more mutex objects. But it may

never create a thread. Thus, a user may choose to disable

asynchronous execution within this library package at

configuration time, but the package may still need to link the

pthread library in order to access the mutex functionality from

an unrelated portion of the code.

From this perspective, it makes more sense to specify --

enable-async-exec than --with-pthreads. Indeed,

from a purist!s perspective, this rationale is always sound,

even in cases where a project only uses pthreads to create

threads. When writing software, you won!t often go wrong by

siding with the purist. While some of their choices may seem

arbitrary—even rediculous, they!re almost always vindicated at

some point in the future.

So, when do we use AC_ARG_WITH? Generally, when a

choice should be made between implementing functionality

one way or another. That is, when there is a choice to use one

package or another, or to use an external package, or an

internal implementation. For instance, if jupiter had some

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 43 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

internal implementation. For instance, if jupiter had some

reason to encrypt a file, it might be written to use either an

internal encryption algorithm, or an external package, such as

openssl. When it comes to encryption, the use of a widely

understood package can be a great boon toward gaining

community adoption of your package. However, it can also be

a hindrance to those who don!t have access to a required

external package. Giving your users a choice can make all the

difference between them having a good or bad experience

with your package.

These two macros have very similar signatures, so I!ll just list

them here together:

AC_ARG_WITH(package, help-string,

[action-if-given], [action-if-not-

given])

AC_ARG_ENABLE(feature, help-

string, [action-if-given],

[action-if-not-given])

As with many Autoconf macros, these may be used in a very

simple form, where the check merely sets environment

variables:

${withval} and ${with_package}

${enableval} and ${enable_feature}

They can also be used in a more complex form, where these

environment variables are used by shell script in the optional

arguments. In either case, as usual, the resulting variable must

be used to act on the results of the check, or performing the

check is pointless.

Coding up the feature

Okay, we!ve decided that we should use AC_ARG_ENABLE.

Do we enable or disable the “async-exec” feature by default?

The difference in how these two cases are encoded is limited

to the help text and to the shell script that we put into the

action-if-not-given argument. The help text

describes the available options and the default value, and the

shell script indicates what we want to do if the option is NOT

specified. Of course, if it is specified, we don!t need to assume

anything.

Say we decide that asynchronous execution is a risky feature.

In this case, we want to disable it by default, so we might add

code like this to our configure.ac script:

On the other hand, if we decide that asynchronous execution

is a fairly fundamental part of jupiter, then we!d like it to be

enabled by default. In this case we!d use code like this:

AC_ARG_ENABLE([async-exec],

 [--enable-async-exec enable async exec],

 [async_exec=${enable_val}],

 [async_exec=yes])

AC_ARG_ENABLE([async-exec],

 [--disable-async-exec disable async exec],

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 44 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

There are a couple of really neat features of this macro that I!d

like to point out:

Regardless of the help text, the user may always use the

syntactical standard formats, --enable-

option[=yes|no] or --disable-

option[=yes|no]. In either case, the [=yes|no]

portion is optional.

Inverse logic is handled transparently—that is, the value

of ${enableval} always represents the user!s

answer to the question, “Should it be enabled?”. For

instance, even if the user enters something like --

disable-option=no, the value of

${enableval} will still be set to yes.

These features of AC_ARG_ENABLE and AC_ARG_WITH

make a maintainer!s life a lot simpler.

Now, the only remaining question is, do we check for the

library and header file, regardless of the user!s desire for this

feature, or do we only check for them if the user indicates that

the “async-exec” feature should be enabled. Well, in this case,

it!s purely a matter of preference, as we!re using the pthread

library only for this feature. Again, if we were also using the

pthread library for non-feature-specific reasons, then this

question would be answered for us.

In cases where we need the library even if the feature is

disabled, we add the AC_ARG_ENABLE macro, as in the

example above, and then an additional AC_DEFINE macro to

define a config.h definition specifically for this feature. Since

we don!t really want to enable the feature if the library or

header file is missing—even if the user specifically requested it

—we also need to add some shell code to turn the feature off

if either of these are missing:

 [--disable-async-exec disable async exec],

 [async_exec=${enable_val}],

 [async_exec=no])

...

Checks for headers.

AC_HEADER_STDC

Checks for command line options

AC_ARG_ENABLE([async-exec],

 [--disable-async-exec disable async exec],

 [async_exec=${enableval}],

 [async_exec=yes])

have_pthreads=no

AC_SEARCH_LIBS([pthread_create], [pthread],

 [have_pthreads=yes])

if test "x${have_pthreads}" = xyes; then

 AC_CHECK_HEADERS([pthread.h], [],

 [have_pthreads=no])

fi

if test "x${have_pthreads}" = xno; then

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 45 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

I!ve also added an additional test for a yes value in

async_exec around the echo statements within the last

test for have_pthreads. The reason for this is that this text

really belongs to the feature, not the pthreads library test.

Remember, we!re trying to create a logical separation between

testing for pthreads, and testing for the requirements of the

feature.

Of course, now we also have to modify main.c such that it

uses this new definition, as follows:

Notice that I left the HAVE_PTHREAD_H check around the

inclusion of the header file. This is so as to facilitate the use of

pthread.h in other ways besides for this feature.

In order to check for the library and header file only if the

feature is enabled, we merely have to wrap the original check

code in a test of async_exec, like this:

if test "x${have_pthreads}" = xno; then

 if test "x${async_exec}" = xyes; then

 echo "---------------------------------------"

 echo "Unable to find pthreads on this system."

 echo "Building a single-threaded version. "

 echo "---------------------------------------"

 fi

 async_exec=no

fi

if test "x${async_exec}" = xyes; then

 AC_DEFINE([ASYNC_EXEC], 1, [async exec enabled])

fi

Checks for headers.

AC_CHECK_HEADERS([stdlib.h])

...

...

#if HAVE_PTHREAD_H

include <pthread.h>

#endif

static void * print_it(void * data)

{

 printf("Hello from %s!\n", (char *)data);

 return 0;

}

int main(int argc, char * argv[])

{

#if ASYNC_EXEC

 pthread_t tid;

 pthread_create(&tid, 0, print_it, argv[0]);

 pthread_join(tid, 0);

#else

 print_it(argv[0]);

#endif

 return 0;

}

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 46 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

This time, I!ve removed the test for async_exec from the

echo statements, or more appropriately, I!ve moved the

original check from around the echo statements, to around

the entire set of checks.

Checks for typedefs and structures

I!ve spent a fair amount of time during my career writing cross-

platform networking software. One key aspect of networking

software is that the data sent in network packets from one

machine to another needs to be formatted in an architecture-

independent manner. If you!re trying to use C-language

structures to format network messages, one of the first road

blocks you generally come to is the complete lack of basic C-

language types that have the same size from one platform to

another. The C language was purposely designed such that

the sizes of its basic integer types are implementation-defined.

The designers did this to allow an implementation to use sizes

for char, short, int and long that are optimal for the platform.

Well, this is great for optimizing software for one platform, but

it entirely discounts the need for sized types when moving

data between platforms.

In an attempt to remedy this shortcoming in the language, the

C99 standard provides just such sized types, in the form of the

intX_t and uintX_t types, where X may be one of 8, 16, 32

or 64. While many compilers provide these types today, some

are still lagging behind. GNU C, of course, has been at the

fore front for some time now, providing the C99 sized types

along with the stdint.h header file in which these types are

supposed to be defined. As time goes by, more and more

compilers will support C99 types completely. But for now, it!s

still rather painful to write portable code that uses these and

other more recently defined integer-based types.

To alleviate the pain somewhat, Autoconf provides macros for

determining whether such integer-based types exist on a

user!s platform, defining them appropriately if they don!t exist.

...

if test "x${async_exec}" = xyes; then

 have_pthreads=no

 AC_SEARCH_LIBS([pthread_create], [pthread],

 [have_pthreads=yes])

 if test "x${have_pthreads}" = xyes; then

 AC_CHECK_HEADERS([pthread.h], [],

 [have_pthreads=no])

 fi

 if test "x${have_pthreads}" = xno; then

 echo "---------------------------------------"

 echo "Unable to find pthreads on this system."

 echo "Building a single-threaded version. "

 echo "---------------------------------------"

 async_exec=no

 fi

fi

...

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 47 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

user!s platform, defining them appropriately if they don!t exist.

To ensure, for example, that uint16_t exists on your target

platforms, you may use the following macro expansion in your

configure.ac file:

AC_TYPE_UINT16_T

This macro will ensure that either uint16_t is defined in the

appropriate header files (stdint.h, or inttypes.h), or that

uint16_t is defined in config.h to an appropriate basic

integer type that actually is 16 bits in size and unsigned in

nature.

The compiler tests for such integer-based types is done almost

universally by a generated configure script using a bit of C

code that looks like this:

Now, if you study this code carefully, you!ll notice that the

important line is the one on which test_array is declared

(Note that I!ve wrapped this line for publication purposes).

Autoconf is relying on the fact that all C compilers will

generate an error if you attempt to define an array with a

negative size. An even more thorough examination of the

bracketed expression will prove to you that this expression

really is a compile-time expression. I don!t know if this could

have been done with simpler syntax or not, but it!s a fact

proven over the last several years, that this code does the trick

on all compilers currently supported by Autoconf—which is

most of them. The array is defined with a non-negative size if

(and only if) the following two conditions are met:

1. uint16_t is in fact defined in one of the included

header files.

2. the actual size of uint16_t really is 16 bits; no more,

no less.

Code that relies on the use of this macro might contain the

following construct:

...

int main()

{

 static int test_array

 [1 - 2 * !((uint16_t) -1 >> (16 - 1) == 1)];

 test_array[0] = 1;

 return 0;

}

#if HAVE_CONFIG_H

include <config.h>

#endif

#if HAVE_STDINT_H

include <stdint.h>

#endif

...

#if defined UINT16_MAX || defined uint16_t

// code using uint16_t

#else

// complicated alternative using >16-bit unsigned

#endif

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 48 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

There are a few dozen such type checks available in Autoconf.

You should familiarize yourself with Section 5.9 of the GNU

Autoconf manual, so that you have a working knowledge of

what!s available. I recommend you don!t commit such checks

to memory, but rather just know about them, so that they!ll

come to mind when you need to use them. Then go look them

up for the exact syntax, when you do need them.

In addition to these type-specific checks, there is also a

generic type check macro, AC_CHECK_TYPES, which allows

you to specify a comma-separated list of questionable types

that your project needs. Note that this list is comma-

separated, not space separated, as in the case of most of

these sorts of check lists. This is because type definitions (like

struct fooble) may have embedded spaces. Since they

are comma-delimited, you will need to always use the square

bracket quotes around this parameter (if, that is, you list more

than one type in the parameter).

AC_CHECK_TYPES(types, [action-if-

found], [action-if-not-found],

[includes = 'default-includes'])

If you don!t specify a list of include files in the last parameter,

then the default includes are used in the compiler test. The

default includes are used via the macro

AC_INCLUDES_DEFAULT, which is defined as follows (in

version 2.62 of Autoconf):

#include <stdio.h>

#ifdef HAVE_SYS_TYPES_H

include <sys/types.h>

#endif

#ifdef HAVE_SYS_STAT_H

include <sys/stat.h>

#endif

#ifdef STDC_HEADERS

include <stdlib.h>

include <stddef.h>

#else

ifdef HAVE_STDLIB_H

include <stdlib.h>

endif

#endif

#ifdef HAVE_STRING_H

if !defined STDC_HEADERS && defined HAVE_MEMORY_H

include <memory.h>

endif

include <string.h>

#endif

#ifdef HAVE_STRINGS_H

include <strings.h>

#endif

#ifdef HAVE_INTTYPES_H

include <inttypes.h>

#endif

#ifdef HAVE_STDINT_H

include <stdint.h>

#endif

#ifdef HAVE_UNISTD_H

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 49 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

If you know that your type is not defined in one of these

header files, then you should specify one or more include files

to be included in the test, like this:

The interesting thing to note here is the way I wrapped the last

parameter of the macro over three lines in configure.ac, with

no indentation. This time I didn!t do it for publication reasons.

This text is included verbatim in the test source file. Since

some compilers have a problem with placing the POUND sign

anywhere but the first column it!s a good idea to tell Autoconf

to start each include line in column one, in this manner.

Admittedly, these are the sorts of things that developers

complain about regarding Autoconf. When you do have

problems with such syntax, your best friend is the config.log

file, which contains the exact source code for all failed tests.

You can simply look a this log file to see how Autoconf

formatted the test, possibly incorrectly, and then fix your check

in configure.ac accordingly.

The AC_OUTPUT macro

The AC_OUTPUT macro expands into the shell code that

generates the configure script, based on all the data

specified in all previous macro expansions. The important

thing to note here is that all other macros must be used before

AC_OUTPUT is expanded, or they will be of little value to your

configure script.

Additional shell script may be placed in configure.ac after

AC_OUTPUT is expanded, but this additional code will not

affect the configuration or the file generation performed by

config.status.

I like to add some echo statements after AC_OUTPUT to

indicate to the user how the system is configured, based on

their specified command line options, and perhaps additional

useful targets for make. For example, one of my projects has

the following text after AC_OUTPUT in configure.ac:

include <unistd.h>

#endif

AC_CHECK_TYPES([struct doodah], [], [], [

#include<doodah.h>

#include<doodahday.h>])

echo \

"---

 ${PACKAGE_NAME} Version ${PACKAGE_VERSION}

 Prefix: '${prefix}'.

 Compiler: '${CC} ${CFLAGS} ${CPPFLAGS}'

 Package features:

 Async Execution: ${async_exec}

 Now type 'make @<:@<target>@:>@'

 where the optional <target> is:

 all - build all binaries

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 50 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

This is a really handy configure script feature, as it tells the

user at a glance just what happened during configuration.

since variables such as debug are set on or off based on

configuration, the user can see if the configuration he asked

for actually took place.

By the way, in case you!re wondering what those funny

character sequences are around the word <target>, they!re

called quadrigraph sequences or simply quadrigraphs, and

serve the same purpose as escape sequences. Quadrigraphs

are a little more reliable than escaped characters, or escape

sequences because they!re never subject to ambiguity.

They!re converted to proper characters at a very late stage by

M4, and so are not subject to mis-interpretation.

The sequence, @<:@ is the quadrigraph sequence for the

open square bracket ([) character, while @:>@ is the

quadrigraph for the close square bracket (]) character. These

quadrigraphs will always be output by Autoconf (M4) as literal

bracket characters.

There are a few other quadrigraphs. We!ll see some of them in

Chapter 9 when we begin to examine the process of writing

our own Autoconf macros. If you!re interested, check out

section 8.1.5 of the GNU Autoconf manual.

NOTE: Version 2.62 of Autoconf does a much better job of

deciphering the user!s intent with respect to the use of square

brackets than previous versions of Autoconf. Where you might

have needed to use a quadrigraph in the past to force

Autoconf to display a square bracket, you may now use the

character itself. Most of the problems the occur are a result of

not properly quoting arguments.

Does (project) size matter?

An issue that might have occurred to you by now is the size of

my toy project. I mean, c!mon! One source file?! But, I!ve used

autoscan to autoconfiscate projects with several hundred

C++ source files, and some pretty complex build steps. It

takes a few seconds longer to run autoscan on a project of

this size, but it works just as well. For a basic build, the

generated configure script only needed to be touched up a

bit—project name, version, etc.

To add in compiler optimization options for multiple target tool

sets, it took a bit more work. I!ll cover these sorts of issues in

Chapter 6 where I!ll show you how to autoconfiscate a real

project.

Summary

In this chapter, I!ve covered about a tenth of the information in

the GNU Autoconf manual, but in much greater analytical

detail than the manual. For the developer hoping to quickly

 all - build all binaries

 install - install everything

--"

19/05/2008 11:04Chapter 3: Configuring your project with autoconf

Page 51 of 51http://www.freesoftwaremagazine.com/books/agaal/configuring_a_project_with_autoconf

‹ Chapter 2: Project

management and the

GNU coding standards

u

p

Chapter 4:

Automatically writing

makefiles with

Automake ›

detail than the manual. For the developer hoping to quickly

bootstrap into Autoconf, I believe I!ve covered one of the more

important tenths. But this statement in no way alleviates a

responsible software engineer from studying the other nine

tenths, as time permits, of course.

For example, I didn!t go into detail about the differences

between searching for a function and searching for a library.

In general, AC_SEARCH_LIBS should be used to check for a

function you need, but expect in one or more libraries. The

AC_FUNC_* macros are available to check for very specfic

portability-related functionality, such as AC_FUNC_ALLOCA,

which exists on some platforms, but not others. The

AC_CHECK_FUNC macro is used for determining if a function

not supported by one of the more specific AC_FUNC_*

macros is available in the C (or C++) standard libraries. I

recommend reading through Section 5.5 of the GNU Autoconf

manual to familiarize yourself with what!s available within

these special function checks.

Another topic on which I didn!t spend much time was that of

checking for compiler charactaristics. Section 5.10 covers

these issues completely. Given what you!ve learned after

reading this chapter, reading these sections of the manual

should be pretty straight-forward.

In fact, once you!re comfortable with the material in this and

the preceding chapters of this book, I!d highly recommend

spending a fair amount of time in Chapter 5 of the GNU

Autoconf manual. Doing so will make you the Autoconf expert

you never thought you could be, by filling in all of the missing

details.

The next chapter takes us aways from Autoconf for a while, as

we get into Automake, an Autotools tool chain add-on

enhancement for the make utility.

Login or register to post comments 1647 reads

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 1 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

©

COLUMNS COMMUNITY POSTS ISSUES BOOKS FORUM FS NEWS

REVIEWS NEWSLETTERS ADVERTISE SPONSORS HELP FSM WRITE FOR US CONTACTS ABOUT

Home » Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Chapter 4: Automatically writing
makefiles with Automake
by John Calcote

Most of the general complaints I!ve ever seen aimed at the

Autotools are ultimately associated with Automake, in the final

analysis. The reason for this is simple: Automake provides the

highest level of abstraction over the build system. This high

level of abstraction is both apparent, and actual. And yet a

solid understanding of the inner workings of Automake can

provide us with the one of the most satisfying auto-generated

build system experiences, because we can feel comfortable

using the features of Automake to their maximum potential,

and extending it where our projects require.

Shortly after Autoconf was well on its way to success in the

GNU world, David MacKenzie began work on a new tool—a

tool for automatically generating makefiles for a GNU project.

MacKenzie!s work on Automake lasted about a year during

1994, ending around November of that year. A year later,

during November of 1995, Tom Tromey (of RedHat and

Cygnus fame) took over development of the Automake project.

Tromey really had very much a defining role in Automake. In

fact, although MacKenzie wrote the initial version of Automake

in Bourne shell script, Tromey completely rewrote the tool in

Perl over the following year. Tromey continued to maintain and

enhance Automake during the next 5 years.

NOTE: Do not confuse the requirements of Automake on the

project maintainer with the requirements of a generated build

system on the end user. Perl is required by Automake, not by

the generated build system.

Around February of 2000, Alexandre Duret-Lutz began to take

a more active role in the development of the Automake

project, and by the end of that year, had pretty much taken

over project maintenance. Duret-Lutz!s role as project lead

lasted until about mid-2007. Since then, the project has been

maintained by Eric Blake of the Free Software Foundation

(FSF), with strong leadership (and most of the repository

check-in!s, for that matter) from automake mailing list

contemporaries such as Ralf Wildenhues and Akim Demaille.

(Many heartfelt thanks to Ralf for kindly answering so many

seemingly trival questions while I worked on this book.)

Sometime early during development of the GNU Coding

Standards (GCS), it became clear to MacKenzie that much of

a GNU project makefile was fairly boilerplate in nature. This is

because the GCS guidelines are fairly specific about how and

where a project!s products should be built, tested, and

installed. These conditions have allowed Automake syntax to

be concise—in fact, it!s terse, almost to a fault. One Automake

statement represents a lot of functionality. The nice thing,

however, is that once you understand it, you can get a fairly

complete, complex and funtionally correct build system up and

running in short order—I mean on the order of minutes, not

IT Support London & SE
Local, cost effective IT

support for your 2003 or

SBS network
www.1st-solution.co.uk

Get NetOp Software
Free Trials | Gold Partner

for full range of NetOp

Products
www.bluebeamsecurity.com

Free Windows Server
2003
89 Page Reference

Guide. Download Now.
www.PrepLogic.com

Pump Software
Streamline your pump

sales. Select, configure,

quote, and order online.
www.bigmachines.com

Product Configurator
Configure, Calculate,

Visualize Generate Sales

Documents
www.sofon.com

Microsoft May Seek New

Yahoo ...

Building Semantics is

Different ...

Lux: multi-touch for OS X

Best voted
contents

The Bizarre Cathedral -

3

Ryan Cartwright, 2008-05-05

The Bizarre Cathedral -

2

Ryan Cartwright, 2008-04-27

Indexing offline CD-

ROM archives

Terry Hancock, 2008-05-03

Microsoft and free

software? I don't think

so...

Terry Hancock, 2008-04-26

Buzz authors

Marco Marongiu

Pieter Hintjens

drascus321

dogboi

From the FSM staff...

The Top 10 Everything

(Dave). The good, the bad

and the ugly.

Free Software news (Dave

& Bridget). A site about

short stories and writing.

Book Reviews: Illiterarty

(Bridget). Book reviews,

blogs, and short stories.

Hot topics - last 60
days

Installing an all-in-one

printer device in Debian

Ryan Cartwright, 2008-05-05

What is the free software

community?

Tony Mobily, 2008-03-29

Things you miss with

GNU/Linux

Ryan Cartwright, 2008-05-01

How do you replace

Microsoft Outlook?

Groupware applications

Ryan Cartwright, 2008-03-20

Drigg (the pligg

alternative) vs. Pligg: why

Free Windows Server 2003

89 Page Reference Guide. Download Now.
www.PrepLogic.com

Cisco NetFlow Challenge

Immediate results with NetFlow. Take our analysis

challenge.
Plixer.com/NetFlowChallenge

Cisco

Expert design, installation, and support for your Cisco

network
www.L3n.co.uk

Compiler consulting

Custom-built compilers and tools, support and maintenance

services.
www.excelsior-usa.com

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 2 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

running in short order—I mean on the order of minutes, not

hours or days.

Getting down to business

Let!s face it, writing a makefile is hard. Oh, the initial writing is

fairly simple, but getting it right is often very difficult—the devil,

as they say, is in the details. Like any high-level programming

language, make syntax is often conducive to formulaic

composition. That!s just a fancy way of saying that once

you!ve solved a “make problem”, you!re inclined to memorize

the solution and apply the same formula the next time that

problem crops up—which happens quite often when writing

build systems.

So what advantages does Automake give us over our hand-

coded Makefile.in templates, anyway? Well, that!s pretty easy

to answer with a short example. Consider the following

changes to the files in our project directory structure (these

commands are executed from jupiter!s top-level directory):

The “rm” command deletes our hand-coded Makefile.in

templates and the autogen.sh script we wrote to ensure that

all the support scripts and files were copied into the root of our

project directory. We won!t be needing this script anymore

because we!re upgrading jupiter to Automake proper.

For the sake of brevity in the text, I used “echo” statements to

write the new Makefile.am files, but you may, of course, use

an editor if you wish. NOTE: There is a hard carriage-return

after “bin_PROGRAMS = jupiter” in the third line. The

shell will continue to accept input after the carriage return until

the quotation is closed on the following line.

The “touch” command is used to create new empty versions

of the NEWS, README, AUTHORS and ChangeLog files in

the project root directory. These files are required by the GCS

for all GNU projects. While they!re NOT required for non-GNU

programs, they!ve become something of an institution in the

FOSS world—you!d do well to have these files, properly

formatted, in your project, as users have come to expect them.

The GCS document covers the format and contents of these

files. Section 6 covers the NEWS and ChangeLog files, and

Section 7 covers the README and INSTALL files. The

AUTHORS file is a list of people (names and optional email

addresses) to whom attribution should be given.

Enabling Automake in configure.ac

Finally, I!ve added a single line to the configure.ac file,

“AM_INIT_AUTOMAKE” between the AC_INIT and

AC_CONFIG_SRCDIR statements. Besides the normal

$ rm autogen.sh Makefile.in src/Makefile.in

$ echo "SUBDIRS = src" > Makefile.am

$ echo "bin_PROGRAMS = jupiter

> jupiter_SOURCES = main.c" > src/Makefile.am

$ touch NEWS README AUTHORS ChangeLog

$ vi configure.ac

...

AC_INIT([Jupiter], 1.0, [bugs@jupiter.org])

AM_INIT_AUTOMAKE

AC_CONFIG_SRCDIR([src/main.c])

...

$ autoreconf -i

$

dogboi

Richard Rothwell

All news

John Crawford: Arizona

LoCo Hardy Release Party

John Crawford: Ubuntu

Weekly Newsletter #91

Matthew Helmke: Morocco

blocks Google Maps

Andy Price: Synchronicity

and Sharing

Jono Bacon: Beware False

Prophets

more

15

15

17

15

17

25

23

16

How Microsoft Uses

Novell to Fight

GNU/Linux, Xen to

Fight VMWare and

GNU/Linux

Why You Should Reject

Novell’s Moonlight

University of Havana

Finally Switches to

Free Software

Please Welcome

Digistan

Content Protection

madness on Vista

Asus to embed Linux

into all motherboards

Make Your Distro Free

of Miguel de Icaza's

junk code

Firefox 3 Release

Candidate now

available for download

Get this widget »

alternative) vs. Pligg: why

should people switch?

Tony Mobily, 2008-04-13

Hot topics - last 21
days

Installing an all-in-one

printer device in Debian

Ryan Cartwright, 2008-05-05

Things you miss with

GNU/Linux

Ryan Cartwright, 2008-05-01

Digital Rights

Management (DRM): is it

in its death throes?

Gary Richmond, 2008-05-07

Open letter to standards

professionals,

developers, and activists

Pieter Hintjens, 2008-05-13

DEDICATED SERVER

Odiogo

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 3 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

AC_CONFIG_SRCDIR statements. Besides the normal

requirements of an Autoconf input file, this is the only line

that!s required to enable Automake in a project that!s already

configured with Autoconf. The AM_INIT_AUTOMAKE macro

accepts an optional argument—a white-space separated list of

option tags, which can be passed into this macro to modify the

general behavior of Automake. The following is a

comprehensive list of options for Automake version 1.10:

gnits

gnu

foreign

cygnus

ansi2knr

path/ansi2knr

check-news

dejagnu

dist-bzip2

dist-lzma

dist-shar

dist-zip

dist-tarZ

filename-length-max=99

no-define

no-dependencies

no-dist

no-dist-gzip

no-exeext

no-installinfo

no-installman

nostdinc

no-texinfo.tex

readme-alpha

std-options

subdir-objects

tar-v7

tar-ustar

tar-pax

<version>

-W<category>

--warnings=<category>

I won!t spend a lot of time on the option tag list at this point.

For a detailed description of each option, check out Chapter

17 of the GNU Automake manual. I will, however, point out a

few of the most useful options.

The check-news option will cause “make dist” to fail if the

current version doesn!t show up in the first few lines of the

NEWS file. The dist-* tags can be used to change the

default distribution package type. Now, these are handy

because often developers want to distribute tar.bz2 files, rather

than tar.gz files. By default, “make dist” builds a tar.gz file. You

can override this by using “make dist-bzip2”, but this is more

painful than it needs to be for projects that like to use bzip2 by

default. The readme-alpha option can be used to

temporarily alter the behavior of the build and distribution

process during alpha releases of a project. First, a file named

README-alpha, found in the project root directory, will be

distributed automatically while using this option. This option

will also alter the expected versioning scheme of the project.

The <version> option is actually a placeholder for a

numeric version number. This value represents the lowest

version number of Automake that is acceptible for this project.

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 4 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

version number of Automake that is acceptible for this project.

For instance, if 1.10 is passed as a tag, then Automake will

fail if it!s version is less than 1.10. The -W<category> and

--warnings=<category> options indicate that the

project would like to use Automake with various warning

categories enabled.

What we get from Automake

The last line of the example executes the “autoreconf -i”

command, which, as we!ve already discussed in prior

chapters, regenerates all Autotools-generated files according

to the configure.ac file. This time, with the inclusion of the

AM_INIT_AUTOMAKE statement, the “-i” option properly

tells Automake to add any missing files. The “-i” option need

only be used once in a newly checked out work area. Once the

missing utility files have been added, the “-i” option may be

dropped.

These few commands create for us an Automake-based build

system containing everything that we wrote into our original

Makefile.in templates, except that this one is more correct and

functionally complete. A quick glance at the resulting

generated Makefile.in template shows us that, from just a

couple of input lines, Automake has done a significant amount

of work for us. The resulting top-level Makefile.in template

(remember, the configure script turns these templates into

Makefiles), is nearly 18K in size. Our original files were only a

few hundred bytes long.

A generated Automake build system supports the following

important make targets—and this list is not comprehensive:

all

distdir

install

install-strip

install-data

install-exec

uninstall

install-dvi

install-html

install-info

install-ps

install-pdf

installdirs

check

installcheck

mostlyclean

clean

distclean

maintainer-clean

dvi

pdf

ps

info

html

tags

ctags

dist

dist-bzip2

dist-gzip

dist-lzma

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 5 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

dist-shar

dist-zip

dist-tarZ

uninstall

As you can see, this goes a bit beyond what we provided in

our hand-coded Makefile.in templates. And Automake writes

all of this functionality automatically, correctly and quickly for

each project that you instrument in the manner outlined above.

So, what!s in a Makefile.am file?

You!ll no doubt recall from Chapter 3 that Autoconf accepts

shell script, sprinkled with M4 macros, and generates the

same shell script with those macros fully expanded into

additional shell script. Likewise, Automake accepts as input a

makefile, sprinkled with Automake commands. As with

Autoconf, the significance of this statement is that Automake

input files are nothing more or less than makefiles with

additional syntax.

One very significant difference between Autoconf and

Automake is that Autoconf generates NO output text except

for the existing shell script in the input file, plus any additional

shell script resulting from the expansion of embedded M4

macros. Automake, on the other hand, assumes that all

makefiles should contain a minimal infrastructure designed to

support the GCS, in addition to any targets and variables that

you specify.

To illustrate this point, I!ll create a temp directory in the root of

the jupiter project, and add an empty Makefile.am file to that

directory. Then I!ll add this new Makefile.am to my project, like

this:

Thus we can see that Automake considers a certain amount

of support code to be indispensible in every makefile. Even

with an empty Makefile.am file, we end up with about 12K of

code in the resulting Makefile, which is generated by configure

(config.status) from an 8K Makefile.in template. Incidentally,

it!s fairly instructive to examine the contents of this Makefile.in

template to see the Autoconf substitution variables that are

passed in, as well as the framework code that Automake

generates.

Since the make utility uses a fairly rigid set of rules for

processing makefiles, Automake takes some minor “literary

license” with your additional make code. Specifically, two basic

$ mkdir temp

$ touch temp/Makefile.am

$ echo "SUBDIRS = src temp" > Makefile.am

$ vi configure.ac

...

AC_CONFIG_FILES([Makefile

 src/Makefile

 temp/Makefile])

...

$ autoreconf

$./configure

...

$ ls -1sh temp

total 20K

 12K Makefile

 0 Makefile.am

8.0K Makefile.in

$

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 6 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

license” with your additional make code. Specifically, two basic

rules are followed by Automake when generating Makefile.in

templates from Makefile.am files that contain additional non-

Automake-specific syntax (rules, variables, etc):

1. Make variables that you define in your Makefile.am files

are placed at the top of the resulting Makefile.in

template, immediately following any Automake-

generated variable definitions.

2. Make rules that you specify in your Makefile.am files are

placed at the end of the resulting Makefile.in template,

immediately following any Automake-generated rules.

Make doesn!t care where rules are located relative to one

another, because it reads all of the rules and stores them in an

internal database before processing any of them. Variables

are treated in a similar manner. To prove this to yourself, try

referencing a variable in a makefile before its definition. Make

binds values to variable references at the last possible

moment, right before command lines containing these

references are passed to the shell for execution.

Often, you won!t need to specify anything besides a few

Automake commands within a given Makefile.am, but there

are frequent occasions when you will want to add your own

make targets. This is because, while Automake does a lot for

you, it can!t anticipate everything you might wish to do in your

build system. It!s in this “grey” area where most developers

begin to complain about Automake.

We!ll spend the rest of this chapter examining the functionality

provided by Automake. Later, we!ll get into some tricks you

can use to significantly enhance existing Automake

functionality.

Analyzing our new build system

Now let!s spend some time looking at what we put into those

two simple Makefile.am files. We!ll start with the top-level file,

with its single line of Automake code:

Makefile.am

It!s pretty easy to divine the primary purpose of this line of text

just by looking at the text itself. It appears to be indicating that

we have a sub-directory in our project called src. In fact, this

line tells Automake several things about our project:

1. There are one or more immediate sub-directories

containing Makefile.am files to be processed, in addition

to this file.

2. Directories in this space-delimited list are to be

processed in the order specified.

3. Directories in this list are to be recursively processed for

all primary make targets.

4. Directories in this list are to be treated as part of the

project distribution.

SUBDIRS is clearly a make variable, but it!s more than just a

make variable. The SUBDIRS variable is recognized by

Automake to have special meaning, besides the intrinsic

meaning associated with make variables. As we continue to

study Automake constructs, this theme will come up over and

over again. Most Automake statements are, in fact, just make

variables with special meaning to Automake.

SUBDIRS = src

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 7 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

variables with special meaning to Automake.

Another point about the SUBDIRS variable is that it may be

used in an arbitrarily complex directory structure, to process

Makefile.am files within a project. You might say that

SUBDIRS is the “glue” that links Makefile.am files together in

a project!s directory hierarchy.

One final point about SUBDIRS is that the current directory is

implicitly listed last in the SUBDIRS list, meaning that the

current directory will be built after all of the directories listed in

the SUBDIRS variable. You may change this implied ordering

if you wish, by using “.” (meaning the current directory)

anywhere in the list. This is important because it!s sometimes

necessary to build the current directory before one or more

subdirectories.

Let!s move down a level now into the src directory. The

src/Makefile.am file contains slightly more code for us to

examine; two lines rather than one:

src/Makefile.am

Primaries

The first line, “bin_PROGRAMS = jupiter” lists the

products generated by this Makefile.am file. Multiple files may

be listed in this variable definition, separated by white space.

The variable name itself is made up of two parts, the

installation location, bin, and the product type, PROGRAMS.

GNU Automake documentation calls the product type portion

of these variables a “primary”. The following is a list of valid

primaries for version 1.10 of Automake:

PROGRAMS

LIBRARIES

LISP

PYTHON

JAVA

SCRIPTS

DATA

HEADERS

MANS

TEXINFOS

NOTE: Libtool adds LTLIBRARIES to the primaries list

supported by Automake. We!ll examine this and other

Automake extensions provided by Libtool in Chapter 5.

You could consider primaries to be “product classes”, or types

of products that might be generated by a build system. This

being the case, it!s pretty clear that not all product classes are

handled by Automake. What differentiates one class of

product from another? Basically differences in handling

semantics during build and installation. PROGRAMS, for

example are built using different compiler and linker

commands than are LIBRARIES. Certainly LISP, JAVA and

PYTHON products are handled differently—the build system

uses entirely different tool chains to build these types of

products. And SCRIPTS, DATA and HEADERS aren!t

generally even built (although they might be), but rather simply

copied into appropriate installation directories.

bin_PROGRAMS = jupiter

jupiter_SOURCES = main.c

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 8 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

PROGRAMS also have different execution, and thus

installation, semantics from LISP, PYTHON and JAVA

programs. Products that fit into the PROGRAMS category are

generally executable by themselves, while LISP, JAVA and

PYTHON programs require virtual machines and interpreters.

What makes this set of primaries important? The fact that they

cover 99 percent of the products created in official GNU

projects. If your project generates a set of products that define

their own product class, or use a product class not listed in

this set of primaries, then you might do well to simply stick with

Autoconf until support is added to Automake for your product

class. Another option is to add support yourself to Autoconf for

your product class, but doing so requires a deep knowledge of

both the product class and the Automake perl script. I believe

it!s fair to say, however, that this set of primaries covers a

wide range of currently popular product classes.

Prefixes

Supported installation locations are provided by the GCS

document. This is the same list that I provided to you in

Chapter 2. I!ll relist them here for convenience:

bindir

sbindir

libexecdir

datarootdir

datadir

sysconfdir

sharedstatedir

localstatedir

includedir

oldincludedir

docdir

infodir

htmldir

dvidir

pdfdir

psdir

libdir

lispdir

localedir

mandir

manNdir

You may have noticed that I left a few entries out of this

version of the list. Essentially, all entries ending in dir are

viable prefixes for Automake primaries. Besides these

standard GCS installation locations, three other installation

locations are defined by Automake to have enhanced

meaning:

pkglibdir

pkgincludedir

pkgdatadir

The pkg versions of the libdir, includedir and

datadir prefixes are designed to install products into

subdirectories of these installation locations that are named

after the package. For example, for the jupiter project, the

pkglibdir installation location would be found in $(exec-

prefix)/lib/jupiter, rather than the usual $(exec-

prefix)/lib directory.

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 9 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

If this list of installation locations isn!t comprehensive enough,

don!t worry—Automake provides a mechanism for you to

define your own installation directory prefixes. Any make

variable you define in your Makefile.am file that ends in “dir”

can be used as a valid primary prefix. To reuse the example

found in the GNU Automake manual, let!s say you wish to

install a set of XML files into an “xml” directory within the

system data directory. You might use this code to do so:

Note that the same naming conventions are used with custom

installation locations as with the standard locations. Namely,

that the variable ends with dir, but the dir portion of the

variable name is left off when using it as a primary prefix.

There are also several prefixes with special meanings not

related to installation locations:

check

noinst

EXTRA

The check prefix indicates products that are built only for

testing purposes, and thus will not be installed at all. Products

listed in primary variables that are prefixed with “check”

aren!t even built if the user never types “make check”.

The “noinst” prefix indicates that the listed products should

be built, but not installed. For example, a static so-called

“convenience” library might be built as an intermediate

product, and used in other stages of the build process to build

final products. Such libraries are not designed to be installed,

so the prefix shouldn!t be an installation location. The

“noinst” prefix serves this purpose.

The “EXTRA” prefix is used to list programs that are

conditionally built. This is a difficult concept to explain in a

tutorial paragraph, but I!ll give it a try: All product files must be

listed statically (as opposed to being calculated at build-time)

in order for Automake to generate a Makefile.in template that

will work for any set of input commands. However, a project

maintainer may elect to allow some products to be built

conditionally, based on configuration options given to the

configure script. If some products are listed in variables

generated by the configure script, then these products should

also be listed in a primary prefixed with “EXTRA”, like this:

Here, it is assumed that the “optional_programs”

variable is defined in the configure script, and listed in an

AC_SUBST macro. This way, Automake can know in advance

that “myoptionalprog” may be built, and so generate

rules to build it. Any program that may or may not be built,

based on configuration options should be specified in

“EXTRA_PROGRAMS”, so that Automake can generate a

makefile that could build it if requested to do so.

“Super” prefixes

Some primaries allow a sort of “super” prefix to be prepended

to a prefix/PRIMARY variable specification. Such modifiers

may be used together on the same variable where it makes

sense. Thus, these “super” prefixes modify the normal

xmldir = $(datadir)/xml

xml_DATA = file1.xml file2.xml file3.xml ...

EXTRA_PROGRAMS = myoptionalprog

bin_PROGRAMS myprog $(optional_programs)

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 10 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

sense. Thus, these “super” prefixes modify the normal

behaviour of a prefix/PRIMARY specification. The existing

modifiers include:

dist

nodist

nobase

The dist modifier indicates a set of files that should be

distributed (that is, included in the distribution package when

“make dist” is executed). The dist modifier is used with files

that are normally not distributed, but may be used explicitly

anywhere for clarity. For instance, assuming that some source

files for a product should be distributed, and some should not

(perhaps they!re generated), the following rules might be used:

While the dist prefix is redundant in this example, it is

nonetheless useful to the casual reader.

The nobase modifier is used to suppress the removal of path

information from installed header files that are obtained from

subdirectories by a Makefile.am file. For instance, assume that

installable jupiter project header files exist in a subdirectory of

the src directory “jupiter”:

Normally, such a header file would be installed into the

/usr(/local)/include directory as simply

jupiter_interface.h. However, if the nobase

modifier is used, then the extra path information would not be

removed, so the final resting place of the installed header

would instead be,

/usr(/local)/include/jupiter/jupiter_inter

face.h.

Notice also in this example that I combined the use of the

nobase modifier with that of the dist modifier—just to show

the concept.

Product sources

The second line in src/Makefile.am is

“jupiter_SOURCES = main.c”. This variable lists the

source files used to build the jupiter program. Like product

variables made from prefixes and primaries, this type of

variable is derived from two parts, the product name,

jupiter in this case, and the dependent type. I call it the

“dependent type” because this variable lists source files on

which the product depends. Ultimately, Automake adds these

files to make rule dependency lists.

The EXTRA prefix may also be used sometimes as a super

prefix modifier. When used with a product SOURCES variable

(eg., jupiter_SOURCES), EXTRA can be used to specify

extra source files that may or may not be used, which are

directly associated with the jupiter product:

In this case, possibly.c may or may not be compiled—

perhaps based on an AC_SUBST variable.

dist_jupiter_SOURCES = file1.c file2.c

nodist_jupiter_SOURCES = file3.c file4.c

nobase_dist_include_HEADERS = \

 jupiter/jupiter_interface.h

EXTRA_jupiter_SOURCES = possibly.c

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 11 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

Unit tests - supporting “make check”

I mentioned earlier that this Automake-generated build system

provided the same functionality as our hand-coded build

system. Well, I wasn!t completely truthful when I said that. For

the most part, that was an accurate statement, but what!s still

missing is our simple-minded “make check” functionality.

The “check” target is indeed supported by our new Automake

build system, but it!s just not hooked up to any real

functionality. Let!s do that now.

You!ll recall in Chapter 2 that we added code to our

src/Makefile to run the jupiter program and check for the

proper output string when the user entered “make check”. We

did this with a fairly simple addition to our src/Makefile:

As it turns out, Automake has some solid support for unit

tests. Unfortunately, the documentation consists of Chapter 15

of the GNU Automake manual—a single page of text—half of

which is focused on the obscure DejaGNU test suite syntax.

Nevertheless, adding unit tests to a Makefile.am file is fairly

trivial. To add our simple “grep test” back into our new

Automake-generated build system, I!ve added a few more

lines to the bottom of the src/Makefile.am file:

src/Makefile.am

The “check_SCRIPTS” line is clearly a prefixed primary.

The “SCRIPT” primary indicates a “built” script, or a script that

is somehow generated at build time. Since the prefix is

“check”, we know that scripts listed in this line will only be built

when the user enters “make check” (or “make distcheck”).

However, this is as far as Automake goes in supporting such

built scripts with Automake-specific syntax. You must supply a

make rule for building the script yourself.

Furthermore, since you supplied the rule to generate the

script, you must also supply a rule for cleaning the file.

Automake provides an extension to the generated “clean”

rule, wherein all files listed in a special “CLEANFILES”

variable are added to the list of automatically cleaned files.

The “TESTS” line is the important line here, in that it indicates

which targets are built and executed when a user enters

“make check”. Since the “check_SCRIPTS” variable

...

check: all

 ./jupiter | grep "Hello from .*jupiter!"

 @echo "*** ALL TESTS PASSED ***"

...

bin_PROGRAMS = jupiter

jupiter_SOURCES = main.c

jupiter_CPPFLAGS = -I$(top_srcdir)/common

jupiter_LDADD = ../common/libjupcommon.a

check_SCRIPTS = greptest.sh

TESTS = $(check_SCRIPTS)

greptest.sh:

 echo './jupiter | grep \

 "Hello from .*jupiter!"' > greptest.sh

 chmod +x greptest.sh

CLEANFILES = greptest.sh

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 12 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

“make check”. Since the “check_SCRIPTS” variable

contains a complete list of these targets, I simply reused its

value here.

Generating scripts or data files in this manner is a very useful

technique. I!ll present some more interesting ways of doing

this sort of thing in Chapter 8.

Adding complexity with convenience libraries

Well, jupiter is fairly trivial, as free software projects go. In

order to highlight some more of the key features of Automake,

we!re going to have to expand jupiter into something a little bit

more complex (if not functional).

We!ll start by adding a convenience library, and having jupiter

consume this library. Essentially, we!ll move the code in

main.c to a library source file, and then call the function in the

library from jupiter!s main routine. Start with the following

commands, executed from the top-level project directory:

Add the following text to the .h and .c files:

common/jupcommon.h

common/print.c

$ mkdir common

$ touch common/jupcommon.h

$ touch common/print.c

$ touch common/Makefile.am

int print_routine(char * name);

#include <jupcommon.h>

#if HAVE_CONFIG_H

include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#if HAVE_PTHREAD_H

include <pthread.h>

#endif

static void * print_it(void * data)

{

 printf("Hello from %s!\n", (char *)data);

 return 0;

}

int print_routine(char * name)

{

#if ASYNC_EXEC

 pthread_t tid;

 pthread_create(&tid, 0, print_it, name);

 pthread_join(tid, 0);

#else

 print_it(name);

#endif

 return 0;

}

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 13 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

As promised, print.c is merely a copy of main.c, with a couple

of small modifications. First, I renamed main to

print_routine, and second, I added the inclusion of the

jupcommon.h header file at the top. This header file (as you

can see) merely provides print_routine!s prototype to

the new src/main.c, where it!s called from main. Modify

src/main.c to look like this:

src/main.c

And now for the new common/Makefile.am file; add the

following text to this file:

common/Makefile.am

Let!s take a look at this file for a minute. You!ll recall from our

discussion of Automake primaries and prefixes that the first

line indicates the products to be built and installed by this

Makefile.am file. In this case, the “noinst” prefix indicates

that this library should not be installed at all. This is because

we!re creating a “convenience” library, or a library designed

soley to make using the source code in the common directory

more convenient for two or more consumers. (Granted, we

only have one consumer at this point—the jupiter program—

but later on we!ll add another consumer of this library, and

then it will make more sense.)

The library we!re creating will be called “libjupcommon.a”—this

is a static library, also known as an “object archive”. Object

archives are merely packages containing one or more object

(.o) files. They can!t be executed, or loaded into a process

address space, as can shared libraries. They can only be

added to a linker command line. The linker is smart enough to

realize that such archives are merely groups of object files.

The linker extracts the object files it needs to complete the

linkage process when building a program or shared library.

The second line represents the list of source files associated

with this library. I chose to place both the header and the C

source file in this list. I could have chosen to use a

“noinst_HEADERS” line for the header file, but it was

unnecessary because the “libjupcommon_a_SOURCES”

list works just as well. The appropriate time to use

“noinst_HEADERS” is when you have a directory that

contains no source (.c) files—such as an internal include

directory. Personally, I don!t care for this style of project

directory structure organization. I prefer to place private

header files right along side of the source code they represent.

As a result, I never seem to need “noinst_HEADERS” in my

projects.

Notice the format of the “libjupcommon_a_SOURCES”

variable. Automake transforms library and program names in

the product list into derived variable names by converting all

characters except for letters, numbers and at-signs (@) into

#include <jupcommon.h>

int main(int argc, char * argv[])

{

 print_routine(argv[0]);

 return 0;

}

noinst_LIBRARIES = libjupcommon.a

libjupcommon_a_SOURCES = jupcommon.h print.c

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 14 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

characters except for letters, numbers and at-signs (@) into

underscore characters. Thus, a library named libc++.a

generates a SOURCES variables called

“libc___a_SOURCES” (there are three consecutive

underscores in that variable name).

Clean up your top-level project directory, removing all files and

directories except those that we!ve written by hand so far. Also

remove all Makefile.in files in the top-level directory and in

sub-directories. The top-level directory should look like this

when you!re done:

Edit the “SUBDIRS” variable in the top-level Makefile.am file to

include the new common directory that we just added:

Makefile.am

Now we have to add some additional information to the

src/Makefile.am file so that the generated Makefile can find the

new library and header file we created in the common

directory. Add two more lines to the end of the existing file, in

this manner:

src/Makefile.am

Like the “jupiter_SOURCES” variable, these two new

variables are obviously derived from the program name. The

“jupiter_CPPFLAGS” variable is used to add product-

specific C preprocessor flags to the compiler command line for

all source files that are built for the jupiter program. The

“jupiter_LDADD” variable is used to add libraries to the

linker command line for the jupiter program.

These product-specific option variables are used to pass

options to the compiler and linker command lines. The option

variables currently supported by Automake for programs

include:

program_CCASFLAGS

program_CFLAGS

program_CPPFLAGS

program_CXXFLAGS

program_FFLAGS

program_GCJFLAGS

program_LFLAGS

program_OBJCFLAGS

program_RFLAGS

$ ls -1F

AUTHORS

ChangeLog

common/

configure.ac

COPYING

INSTALL

src/

Makefile.am

NEWS

README

SUBDIRS = common src

bin_PROGRAMS = jupiter

jupiter_SOURCES = main.c

jupiter_CPPFLAGS = -I$(top_srcdir)/common

jupiter_LDADD = ../common/libjupcommon.a

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 15 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

program_UPCFLAGS

program_YFLAGS

For static library products use library_LIBADD, instead of

program_LDADD. The _LIBADD variable for libraries allows

us to specify additional object files and static libraries that

should be added to the static archive we!re currently building.

This can be handy for combining multiple convenience

libraries. Consider the difference between these cases: The

library_LIBADD variable is merely allowing us to specify

already built objects—either libraries or actual object modules

—to the library we!re currently building. This can!t be

accomplished with the library_SOURCES variable,

because library_SOURCES members are compiled,

whereas library_LIBADD members are already built.

Additionally, the program_LDADD variable generally expects

linker command line options such as -lz (to add the libz

library to the linker!s library specification for this program),

while the library_LIBADD variable is formatted as a list of

fully specified objects (eg., libabc.a file1.o). This rule isn!t

particularly strict however as we!ll see shortly here. Quite

frankly, it doesn!t really matter, as long as the final command

line composed by Automake from all of these variables makes

sense to the linker.

File-level option variables

Often you!ll see unprefixed variables like AM_CPPFLAGS or

AM_LDFLAGS used in a Makefile.am. This is the per-file form

of these flags, rather than the per-product form. The per-file

forms are used when the developer wants the same set of

flags to be used for all products within a given Makefile.am file.

Sometimes you need to set a group of preprocessor flags for

all products in a Makefile.am file, but add additional flags for

one particular target. When you use a per-product flag

variable, you need to include the per-file variable explicitly, like

this:

User variables, such as “CFLAGS” should never be modified

by configuration scripts or makefiles. These are reserved for

the end-user, and will be always be appended to the per-file or

per-product versions of these variables.

Regarding the “jupiter_LDADD” variable,

“../common/libjupcommon.a” merely adds an object to

the linker command line, so that code in this library may

become part of the final program. Note that this sort of syntax

is really only necessary for libraries built as part of your own

package. If you!re linking your program with a library that!s

installed on the user!s system, then the configure script should

have found it, and automatically added an appropriate

reference to the linker!s command line.

In the “jupiter_CPPFLAGS” variable, the “-

I$(top_srcdir)/common” directive tells the C

preprocessor to add a search directory to its list of locations in

which to look for header file references. Specifically, it

indicates that header files referenced in C source files with

angle brackets (< and >) should be searched for in this include

search path. Header files referenced with double-quotes are

not searched for, but merely expected to exist in the specified

AM_CFLAGS = ... some flags ...

program_CFLAGS = ... more flags ... $(AM_CFLAGS)

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 16 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

not searched for, but merely expected to exist in the specified

directory, relative to the directory containing the referencing

source file.

Getting back to our example—edit the configure.ac file; add a

reference to the AC_CONFIG_FILES macro for the new

generated common/Makefile, in this manner:

configure.ac

Okay, now let!s give our updated build system a try. I!m adding

the “-i” option to the autoreconf command so that it will

install any additional missing files that might be required after

our enhancements:

Well, it appears that we!re still not done yet. Since we!ve

added a new type of entity to our build system—static libraries

—Automake (via autoreconf) tells us that we need to add a

new macro to the configure.ac file. The AC_PROG_RANLIB

macro is a standard program check macro, just like

AC_PROG_YACC or AC_PROG_LEX. There!s a lot of history

behind the use of the ranlib utility on archive libraries. I won!t

get into whether it!s still useful with respect to modern

development tools. It seems however, that wherever you see it

used in modern Makefiles, there!s always a comment about

running ranlib in order to “add karma” to the archive. You be

the judge…

Additionally, we need to add the Automake macro,

AM_PROG_CC_C_O, because this macro defines constructs

in the resulting configure script that support the use of per-

product flags, such as jupiter_CPPFLAGS. Let!s add

these two macros to our configure.ac script:

configure.ac

Alright, once more then, but this time I!m adding the “--

force” option, as well as the “-i” option to the autoreconf

command line to keep it quiet about adding files that already

exist. (This seems like a pointless option to me, because the

...

AC_CONFIG_FILES([Makefile

 common/Makefile

 src/Makefile])

...

$ autoreconf -i

configure.ac:6: installing `./missing'

configure.ac:6: installing `./install-sh'

common/Makefile.am:1: library used but `RANLIB'

 is undefined. The usual way to define

 `RANLIB' is to add `AC_PROG_RANLIB' to

 `configure.ac' and run `autoconf' again.

common/Makefile.am: installing `./depcomp'

src/Makefile.am:3: compiling `main.c' with

 per-target flags requires `AM_PROG_CC_C_O' in

 `configure.ac'

autoreconf: automake failed with exit status: 1

...

Checks for programs.

AC_PROG_CC

AC_PROG_INSTALL

AC_PROG_RANLIB

AM_PROG_CC_C_O

...

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 17 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

exist. (This seems like a pointless option to me, because the

entire purpose of the “-i” option is to add-missing files, not to

add _all files that are required, regardless of whether they

already exist, or not, and then complain if they do exist.):

Blessed day! It works. And it really wasn!t too bad, was it?

Automake told us exactly what we needed to do. (I always find

it ironic when a piece of software tells you how to fix your input

file—why didn!t it just do what it knew you wanted it to do, if it

understood your intent without the correct syntax?! Okay, I

understand the “purist” point of view, but why not just do “the

right thing”, with a side-line comment about your ill-formatted

input text? Eventually, you!d be annoyed enough to fix the

problem anyway, wouldn!t you? Of course you would!)

A word about the utility scripts

It seems that Automake has added yet another missing file—

the “compile” script is a wrapper around some older compilers

that do not understand the use of both “-c” and “-o” on the

command line to name the object file differently than the

source file. When you use product-specific flags, Automake

has to generate code that may compile source files multiple

times with different flags for each file. Thus it has to name the

files differently for each set of flags it uses. The requirement

for the compile script actually comes from the inclusion of the

AM_PROG_CC_C_O macro.

At this point, we have the following Autotools-added files in the

root of our project directory structure:

compile

depcomp

install-sh

missing

These are all scripts that are executed by the configure script,

and by the generated Makefiles at various points during the

end-user build process. Thus, the end-user will need these

files. We can only get these files from Autotools. Since the

user shouldn!t be required to have Autotools installed on the

final target host, we need to make these files available to the

user somehow.

These scripts are automatically added (by “make dist”) to the

distribution tarball. So, do we check them in to the repository,

or not? The answer to this question is debatable, but generally

I recommend against doing this. Anyone who will be creating a

distribution tarball should also have the Autotools installed,

and should be working from a repository work area. As a

result, this maintainer will also be running “autoreconf -i

(--force)” to ensure that she has the latest updated

Autotools-provided utility scripts. Checking them in will only

make it more probable that they become out of date as time

goes by.

As mentioned in Chapter 2, this sentiment goes for the

configure script as well. Some people argue that checking the

utility and configure scripts into the project repository is

beneficial, because it ensures that someone checking out a

work area can build the project from the work area without

having the Autotools installed. But is this really important?

Shouldn!t developers and maintainers be expected to have

more advanced tools? My personal philosophy is that they

$ autoreconf -i --force

configure.ac:15: installing `./compile'

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 18 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

more advanced tools? My personal philosophy is that they

should. Your!s may differ. Occasionally, an end user will need

to build a project from a work area, but this should be the

exceptional case, not the typical case. If it is the typical case,

then there are bigger problems with the project than can be

solved in this discussion.

What goes in a distribution?

In general, Automake determines automatically what should

go into a distribution created with “make dist”. This is because

Automake is vary aware of every single file in the build

process, and what it!s used for. Thus, it need not be told

explicitly which files should be in the package, and which

should be left behind.

An important concept to remember is that Automake wants to

know statically about every source file used to build a product,

and about every file that!s installed. This means, of course,

that all of these files must somehow be specified at some

point in a Makefile.am primary variable. This bothers some

developers—and with good reason. There are cases where

dozens of installable files are generated by tools using long,

apparently random and generally unimportant naming

conventions. Listing such generated files statically in a primary

variable is problematic, to say the least.

We!ll cover techniques that can be used to work around such

problem cases later in this book. At this point, however, I!d like

to introduce the EXTRA_DIST variable for those cases where

file system entities are not part of the Automake build process,

but should be distributed with a distribution tarball. The

EXTRA_DIST variable contains a space-delimited list of files

and directories which should be added to the distribution

package when “make dist” is executed.

This might be used to add, for example, a windows build

directory to the distribution package. Such a directory would

be otherwise ignored by Automake, and then your windows

users would be upset when they unpacked your latest tarball.

Note in this example that “windows” is a directory, not a file.

Automake will automatically and recursively add every file in

this directory to the distribution package.

Summary

In this chapter, we!ve covered a fair number of details about

how to instrument a project for Automake. The project we

chose to instrument happened to already be instrumented for

Autoconf, which is the most likely scenario, as you!ll probably

be adding Autoconf functionality to your bare projects first in

most cases.

What I!ve explicitly not covered are situations where you need

to extend Automake to handle your special cases, although

I!ve hinted at this sort of thing from time to time.

In the next chapter, we!ll examine adding Libtool to the jupiter

project, and then in Chapter 6, we!ll Autotool-ize a real-world

project, consisting of several hundred source files and a

custom build system that takes the form of a GNU makefile

designed to use native compilers on multiple platforms

including Solaris, AIX, Linux, Mac OS and Windows, among

others. I!ll warn you up front that we!ll be remaining true to the

EXTRA_DIST = windows

19/05/2008 11:05Chapter 4: Automatically writing makefiles with Automake

Page 19 of 19http://www.freesoftwaremagazine.com/books/agaal/automatically_writing_makefiles_with_autotools

‹ Chapter 3:

Configuring your

project with autoconf

u

p

Chapter 5: Building

shared libraries once

using autotools ›

others. I!ll warn you up front that we!ll be remaining true to the

original mission statement of this book in that we!ll not be

trying to get Autotools to build Windows products.

Login or register to post comments 1162 reads

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 1 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

©

COLUMNS COMMUNITY POSTS ISSUES BOOKS FORUM FS NEWS

REVIEWS NEWSLETTERS ADVERTISE SPONSORS HELP FSM WRITE FOR US CONTACTS ABOUT

Home » Autotools: a practitioner's guide to Autoconf, Automake and Libtool

Chapter 5: Building shared
libraries with Libtool
by John Calcote

The person who invented the concept of shared libraries

should be given a raise…and a bonus. The person who

decided that shared library management and naming

conventions should be left to the implementation should be

flogged. Sorry—that opinion is the result of too much negative

experience on my part with building shared libraries for

multiple platforms without the aid of Libtool. The very

existence of Libtool stands as a witness to the truth of this

sentiment. Libtool exists for one purpose only—to provide a

standardized, abstract interface for developers desiring to

create portable shared libraries. It abstracts both the shared

library build process, and the programming interfaces used to

dynamically load and access shared libraries at run time.

Before we get into a discussion of the proper use of Libtool,

we should probably spend a few minutes on the features and

functionality provided by shared libraries, so that you will

understand the scope of the material I!m covering here.

The benefits of shared libraries

Shared libraries provide a way to ship reusable chunks of

functionality in a convenient package that can be loaded into a

process address space, either automatically at program load

time by the operating system loader, or by code in the

application itself, when it decides to load and access the

library!s functionality. The point at which an application binds

functionality from a shared library is very flexible, and

determined by the developer, based on the design of the

program and the needs of the end-user.

The interfaces between the program executable and modules

defined as shared libraries must be well-designed by virtue of

the fact that shared library interfaces must be well-specified.

This rigorous specification promotes good design practices.

When you use shared libraries, you!re essentially forced to be

a better programmer.

Shared libraries may be (as the name implies) shared among

processes. This sharing is very literal. The code segments for

a shared library can be loaded once into physical memory

pages. That same memory pages can then be mapped into

the process address spaces for multiple programs. The data

pages must, of course, be unique per process, but global data

segments are often small compared to the code segments of a

Configuration Software
Product & Service

Configurator. Configure

manufacturing & more.
www.Configur8or.com/manufacturing

Pump Software
Streamline your pump

sales. Select, configure,

quote, and order online.
www.bigmachines.com

Free ALM Starter
Integrated bug tracking,

VCS, code to rev links,

easy future mobility
www.polarion.com

Network Config tool
Free Configuration

Management tool for

Routers Switches

Firewalls etc
deviceexpert.com/network-config

Download Remote
Access
Network Management

Software & IT Tools for

Free. Download Now!
Spiceworks.com

Tracking Worms,Spam and

Malware ...

Google Adsense for RSS

Feeds Coming ...

Hotmail, The E-Mail You

Never ...

Best voted
contents

Open letter to

standards

professionals,

developers, and

activists

Pieter Hintjens, 2008-05-13

The 2008 Google

Summer of Code: 21

Projects I'm Excited

About

Andrew Min, 2008-05-13

The Bizarre Cathedral -

6

From the FSM staff...

The Top 10 Everything

(Dave). The good, the bad

and the ugly.

Free Software news (Dave

& Bridget). All about free

software -- free as in

freedom!

Book Reviews: Illiterarty

(Bridget). Book reviews,

blogs, and short stories.

Hot topics - last 60
days

Installing an all-in-one

printer device in Debian

Ryan Cartwright, 2008-05-05

Things you miss with

GNU/Linux

Ryan Cartwright, 2008-05-01

Why Microsoft should not

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 2 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

segments are often small compared to the code segments of a

shared library. This is true efficiency.

Shared libraries are easily updated during program upgrades.

The base program may not have changed at all between two

revisions of a software package. A new version of a shared

library may be laid down on top of the old version, as long as

its interfaces have not been changed. When interfaces are

changed, two shared libraries may co-exist side-by-side,

because the versioning scheme used by shared libraries (and

supported by Libtool) allows the shared library files to be

named differently, but treated as the same library. Older

programs may continue to use older versions of the library,

while newer programs may use the newer versions.

If a software package specifies a well-defined “plug-in”

interface, then shared libraries can be used to implement user-

configurable loadable functionality. This means that additional

functionality can become available to a program after it!s been

released, and third-parties can even add functionality to your

program, if you publish a document describing your plug-in

interface specification.

How shared libraries work

As I mentioned above, the way a POSIX-based operating

system implements shared libraries varies from platform to

platform, but the general idea is the same for all platforms. The

following discussion applies to shared library references that

are resolved by the linker while the program is being built, and

by the operating system loader at program load time.

Dynamic linking at load time

As a program executable image is being built, the linker

maintains a table of unresolved function entry points and

global data references. If the linker can!t find a function that is

called by, or a global data item that is referenced by code

within the program, it adds the missing symbol name to this

table of undefined references. The linker will exit with an error

message if there are any outstanding undefined references in

this table after all of the object code has been analyzed. The

linker then combines all of the object code containing all

located references into an executable program binary image.

This image may then be loaded and executed by a user. It is

entirely self-contained and depends only upon itself.

Assuming that all undefined references are resolved during the

linking process, if the list of objects to be linked contains one

or more shared libraries, the linker will build the executable

image from all non-shared objects specified on the linker

command line. This includes all individual .o files and all

static library archives. However it will add two tables to the

binary image header; the first is the table of outstanding

external references—those found in shared libraries, and the

second is a table of shared library names and versions in

which the outstanding undefined references were found during

the linking process.

6

Ryan Cartwright, 2008-05-25

Book Review: Practical

Guide to Ubuntu Linux

by <i>Mark G.

Sobell</i>

Alan Berg, 2008-05-10

Buzz authors

Marco Marongiu

Pieter Hintjens

drascus321

dogboi

Richard Rothwell

All news

! "# $%!&%": Party time

with Ubuntu…

Sridhar Dhanapalan: Open

CeBIT

Martin Meredith: Welcome

to the Family, Synergy

Stephen Stalcup: Next

Membershp meeting for the

Americas

Andres Rodriguez: Hello

Planet Ubuntu!!

more

14

14

16

17

18

17

20

19

20 Essential KDE

Applications - Review

10 Reasons to Love

Debian

Burn Your CDs and

DVDs! K3b Review

Novell’s Moonlight:

Crippled and Defective

by Design™

India Appeals Against

OOXML, Joining Brazil,

South Africa, Maybe

More

Wiping your disk drive

clean

Dear Google: Is AGPL

Evil?

Slashdot: World’s

Third-Largest

Population Appeals

ISO’s Decision

Get this widget »

Why Microsoft should not

lose (and free software

will still win)

Ryan Cartwright, 2008-04-21

Drigg (the pligg

alternative) vs. Pligg: why

should people switch?

Tony Mobily, 2008-04-13

Beyond Synaptic - using

apt for better package

management

Ryan Cartwright, 2008-04-03

Hot topics - last 21
days

Dubious ads in Free

Software Magazine

Tony Mobily, 2008-05-25

The Bizarre Cathedral - 6

Ryan Cartwright, 2008-05-25

Open letter to standards

professionals,

developers, and activists

Pieter Hintjens, 2008-05-13

The Bizarre Cathedral - 4

Ryan Cartwright, 2008-05-11

DEDICATED SERVER

Odiogo

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 3 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

When the operating system loader attempts to load this

executable image, it must resolve the remaining outstanding

references to symbols imported from the shared libraries

named in the executable header. If the loader can!t resolve all

of the references, then a load error occurs, and the entire

process is terminated with an operating system error.

Note here that these external symbols are not tied to a

specific shared library. The operating system will stop loading

shared libraries as soon as it is able to resolve all of the

outstanding symbol references. Usually, this happens after the

last indicated shared library is loaded into the process address

space, but there are exceptions.

NOTE: This process differs a bit from the way a Windows

operating system resolves symbols in Dynamic Link Libraries

(DLLs). On Windows, a particular symbol is tied by the linker

at program build time to a specifically named DLL.

This system has both pros and cons. For example, on some

systems, such unbound symbols can be satisfied by a library

specified by the user. That is, a user can entirely replace a

library at runtime by simply preloading one that contains the

same symbols. Unfortunately, free-floating symbols can also

lead to problems. For instance, two libraries can provide the

same symbol name, and the dynamic loader can inadvertently

bind an executable to the symbol from the wrong library. At

best, this will cause a program crash when the wrong

arguments are passed to the mis-matched function. At worst,

this can lead to security risks, because the mis-matched

function might be used to capture passwords and security

credentials passed by the unsuspecting program.

C-language symbols do not include parameter information, so

it!s rather likely that symbols will clash in this manner. C++

symbols are a bit safer, in that the entire function signature

(minus the return type) is encoded into the symbol name.

However, even C++ is not immune to hackers replacing a

security function with their own version of that function.

Automatic dynamic linking at run time

The operating system loader can also use a very late form of

binding, often referred to as “lazy binding”. In this situation, the

entries in the jump table in the program header for external

references are initialized to code in the dynamic loader itself.

At the point the program first calls such a lazy entry, the call

will be routed to the loader, which will then determine the

actual address of the function, reset the entry in the jump

table, and redirect to the proper function entry point. The next

time this happens, the jump table entry will be correctly

initialized, and the program will jump directly to the called

function.

This lazy binding mechanism makes for very fast program

startup, because shared libraries whose symbols are not

bound until they!re needed aren!t even loaded until they!re first

referenced by the application program. Now, consider this—

they may never be referenced. Which means they may never

be loaded, saving both time and space.

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 4 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

be loaded, saving both time and space.

The problems with this method should be obvious, at this

point. While using automatic run-time dynamic linking can give

you faster load times, and better performance and space

efficiency, it can also cause abrupt terminations of your

application without warning. If the loader can!t find the

requested symbol—perhaps the required library is missing—

then it has no recourse except to abort the process. Why not

ensure that all symbols exist when the program is loaded? If

the loader resolved all symbols at load time, then it might as

well populate the jump table entries at that point, as well. After

all, it had to load all the libraries any way to ensure that the

symbols acutally exist. This then defeats the purpose of this

binding method.

The moral of this story is that you get what you pay for. If you

don!t want to pay the insurance premium for longer up-front

load times, and more space consumed (even if you may never

really need it), then you may have to take the hit of a missing

symbol at run time—a program crash, essentially.

Manual dynamic linking at run time

Manual run-time dynamic linking is done a bit differently. In

this case, the linker finds no external symbols in shared

libraries, because the program doesn!t call any shared library

functions directly. Rather, shared library functions are

referenced though a function pointer that is populated by the

application program itself at run time.

The way this works is that a program calls an operating

system function to manually load a shared library into its own

process address space. This system function returns a

“handle”, or an opaque value representing the loaded library,

to the calling program. The program then calls another

function to import a symbol from the library referred to by that

handle. If all goes well, the operating system returns the

address of the requested function or data item in the desired

library. The program may then call the function, or access the

global data item through this pointer.

If something goes wrong in one of these two steps—say the

library could not be found, or the symbol was not found within

the library, then it becomes the responsibility of the program to

define the results—perhaps display an error message,

indicating that the program was not configured correctly.

This is a little nicer than the way automatic dynamic run-time

linking works because, while the loader has no option but to

abort, the application, having a higher-level viewpoint, can

handle the problem much more gracefully. The drawback, of

course, is that you as the programmer have to manage the

process of loading libraries and importing symbols within your

application code.

Using Libtool

An entire book could be written on the details of shared

libraries and their implementations on various systems. This

short primer will suffice for our needs, so let!s move on to how

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 5 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

short primer will suffice for our needs, so let!s move on to how

Libtool can be used to make a package maintainer!s life

easier.

The Libtool project was started in 1996 by Gordon Matzigkeit.

Libtool was designed to extend Automake, but can be used

independently as well in hand-coded makefiles. The Libtool

projects is currently maintained by Bob Friesenhahn, Peter

O!Gorman, Gary V. Vaughan and Ralf Wildenhues.

Abstracting the build process

First, let!s look at how Libtool helps during the build process.

Libtool provides a script (ltmain.sh) that

config.status executes in a Libtool-enabled project. The

ltmain.sh script builds a custom version of the libtool

script, specifically for your package. This libtool script is

then used by your project!s makefiles to build shared libraries

specified with the LTLIBRARIES primary. The libtool

script is really just a fancy wrapper around the compiler, linker

and other tools. The ltmain.sh script should be shipped in

a distribution tarball, as part of your end-user build system.

Automake-generated rules ensure that this happens as it

should.

The libtool script insulates the build system author from

the nuances of building shared libraries on multiple platforms.

This script accepts a well-defined set of options, converting

them to appropriate platform- and linker-specific options on the

host platform and tool set. Thus, the maintainer need not

worry about the specifics of building shared libraries on each

platform. She need only understand the available libtool

script options. These are well specified in the GNU Libtool

manual.

On systems that don!t support shared libraries at all, the

libtool script uses appropriate commands and options to

build and link static libraries. This is all done in such a way

that the maintainer is isolated from the difference between

building shared libraries and static libraries.

You can emulate building your package on a static-only

system by using the “--disable-shared” option on the

configure command line for your project. This will cause

Libtool to assume that shared libraries cannot be built on the

target system.

Abstraction at run-time

Libtool can also be used to abstract the programming

interfaces supplied by the operating system for loading

libraries and importing symbols. Programmers who!ve ever

dynamically loaded a library on a Linux system are familiar

with the standard Linux shared library API, including the

functions, dlopen, dlsym and dlclose. These functions

are provided by a shared library usually named “dl”.

Unfortunately, not all POSIX systems that support shared

libraries provide the dl library, or functions using these

names.

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 6 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

To address these differences, Libtool provides a shared library

called “ltdl”, which provides a clean, portable library

management interface, very similar to the dlopen interface

provided by the Linux loader. The use of this library is optional,

of course, but highly recommended, because it provides more

than just a common API across shared library platforms. It

also provides an abstraction for manual run-time dynamic

linking between shared library and non-shared library

platforms.

What!? How can that work? On systems that don!t provide

shared libraries, Libtool actually creates internal symbol tables

within the executable containing all of the code that would

otherwise be found in shared libraries, on systems that

support shared libraries. By using these symbol tables on

these platforms, the ltdlopen and ltdlsym functions can

make your code appear to be loading and importing symbols,

when in fact, the “load” function does nothing, and the “import”

function hands you back the address of some code that!s been

linked right into your program.

The ltdl library is, of course, not really necessary for

packages that don!t use manual run-time dynamic linking. But

if your package does—perhaps by providing a plug-in interface

of some sort, then you!d be well-advised to use the API

provided by ltdl to managed loading and linking to your

plug-in modules—even if you only target systems that provide

good shared library services. Otherwise, your source code will

have to consider the differences in shared library management

between your many target platforms. At the very least, some of

your users will have to put on their “developer” hats, and

attempt to modify your code so that it works on their odd-ball

platforms.

A word about the latest Libtool

The most current version of Libtool is version 2.2. However,

many popular Linux distributions are still shipping packages

containing Libtool version 1.5, so many developers don!t know

about the changes between these two versions. The reason

for this is that certain backward-compability issues were

introduced after version 1.5 that make it difficult for Linux

distros to support the latest version of Libtool. This probably

won!t happen until all (or almost all) of the packages they

provide have updated their configure.ac files to properly

use the latest version of Libtool.

This is somewhat of a “chicken-and-egg” scenario—if distros

don!t ship it, how will developers ever start using it on their

own packages? So it!s not likely to happen any time soon. If

you want to make use of the latest Libtool version while

developing your packages (and I highly recommend that you

do so), you!ll probably have to download, build and install it

manually, or look for an updated Libtool package from your

distribution provider.

Downloading, building and installing Libtool manually is trival:

$ wget ftp.gnu.org/gnu/libtool/libtool-2.2.tar.gz

...

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 7 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

Be aware that the default installation location (as with most of

the GNU packages) is /usr/local. If you wish to install it

into the /usr hierarchy, then you!ll need to use the “--

prefix=/usr” option on the configure command line.

You might also wish to use the “--enable-ltdl-

install” option on the configure command line to install the

ltdl library and header files into your lib and include

directories.

Adding shared libraries to Jupiter

Okay, now that we have that background behind us, let!s take

a look at how we can add a Libtool shared library to the

Jupiter project. First, let!s consider what we might do with a

shared library. As mentioned above, we might wish to provide

our users with some library functionality that their own

applications could use. We might also have several

applications in our package that need to share the same

functionality. A shared library is a great tool for both of these

scenarios, because we get the benefits of code reuse and

memory savings, as shared code is amortized across multiple

applications—both internal and external to our project.

We!ll add a shared library to Jupiter that provides the print

functionality we use in the jupiter application. We!ll do this

by having the new shared library call into the

libjupcommon.a static library. Remember that calling a

routine in a static library has the same effect as linking the

object code for the called routine right into the calling

application (or shared library, as the case may be). The called

routine ultimately becomes an integral part of the calling binary

image (program or shared library).

Additionally, we!ll provide a public header file from the Jupiter

project that will allow external applications to call this same

functionality. By doing this, we can allow other applications to

“display stuff” in the same way that the jupiter program

“displays stuff”. (This would be significantly cooler if we were

actually doing anything useful in jupiter!).

Using the LTLIBRARIES primary

Automake has built-in support for Libtool. The LTLIBRARIES

primary is provided by code in the Automake package, not the

Libtool package. This really doesn!t qualify as a pure

extension, but rather more of an add-on package for

Automake, where Automake provides the necessary

infrastructure for that specific add-on package. You can!t

access the LTLIBRARIES primary functionality provided by

Automake without Libtool, because the use of this primary

obviously generates make rules that call the libtool build

...

$ tar xzf libtool-2.2.tar.gz

$ cd libtool-2.2

$./configure && make

...

$ sudo make install

...

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 8 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

obviously generates make rules that call the libtool build

script.

I state all of this here because it bothers me that you can!t

really extend the list of primaries supported by Automake

without modifying the actual Automake source code. The fact

that Automake is written in perl is somewhat of a boon,

because it means that it!s possible to do it. But you!ve really

got to understand Automake source code in order to do it

properly. I envision a future version of Automake whereby

code may be added to an Automake extension file that will

allow the dynamic definition of new primaries.

It!s a bit like the old FOSS addage, generally offered to

someone complaining about a particular package: “It!s open

source. Change it yourself!” This is very often easier said than

done. Furthermore, what these people are really telling you is

to change your copy of the source code for your own

purposes, not to change the master copy of the source code.

Getting your changes accepted into the master source base

often depends more on the quality of your relationship with the

current project maintainers than it does on the quality of your

coding skills. I!m not complaining, mind you. I!m merely stating

a fact that should not be overlooked when one is considering

making changes to an existing free open source software

project.

So why not ship Libtool as part of Automake, rather than as a

separate package? Because Libtool can quite effectively be

used independently of Automake. If you wish to try Libtool by

itself, then please refer to the GNU Libtool manual for more

information. The opening chapters in that manual describe the

use of the libtool script as a stand-alone product.

Public include directories

Earlier in this book, I made the statement that a directory in a

project named “include” should only contain public header

files—those that expose a public interface in your project.

Well, now we!re going to add just such a header file to the

Jupiter project, so, we!ll create an include directory. I!ll add

this directory at the top-level of the project directory structure.

If we had multiple shared libraries, we!d have a choice to

make: Do we create separate include directories for each

library in the library source directory, or do we add a single

top-level include directory? I usually use the following rule

of thumb to determine the answer to this question: If the

libraries are designed to work together as a group, and if

consuming applications generally use the libraries as a group,

then I use a single top-level include directory. If, on the

other hand, the libraries can be used independently, and if

they offer fairly autonomous sets of functionality, then I

provide individual include directories in my project!s library

subdirectories.

In the end, it really doesn!t matter much because the header

files for these libraries will be installed in entirely different

directory structures than those in which they exist within your

project. In fact, make sure you don!t inadvertently use the

same file name for headers in two different libraries in your

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 9 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

same file name for headers in two different libraries in your

project, or you!ll probably have problems installing these files.

They generally end up all together in the

“$(prefix)/include” directory.

I!ll also add a directory for the new Jupiter shared library,

called “libjup”. These changes require adding references to

these new directories to the top-level Makefile.am file!s

SUBDIRS variable, and then adding corresponding makefile

references to the AC_CONFIG_FILES macro in the

configure.ac file. Let!s do that now:

The include directory!s Makefile.am file is trivial,

containing only a single line wherein the public header file,

“libjupiter.h” is referred to in an Automake HEADERS

primary. Note that we!re using the include prefix on this

primary. You!ll recall that the include prefix indicates that

files specified in this primary are destined to be installed in the

$(includedir) directory (eg.,

/usr/local/include). The HEADERS primary is much

like the DATA primary, in that it specifies a set of files that are

to be treated simply as data to be installed without

modification or pre-processing.

The libjup/Makefile.am file is a bit more complex,

containing four lines, as opposed to the usual one or two lines:

Let!s analyze this file, line by line. The first line is the primary

line, and contains the usual prefix for libraries. The “lib”

prefix indicates that the referenced products are to be installed

in the $(libdir) directory. We might also have used the

pkglib prefix to indicate that we wanted our libraries

installed into the $(prefix)/lib/jupiter directory.

Here, we!re using the LTLIBRARIES primary, rather than the

older LIBRARIES primary. The use of this primary tells

Automake to generate rules that use the libtool script,

rather than calling the compiler, linker and ar utilities to

generate the products.

$ mkdir include

$ mkdir libjup

$ echo "SUBDIRS = common include libjup src" \

 > Makefile.am

$ echo "include_HEADERS = libjupiter.h" \

 > include/Makefile.am

$ vi configure.ac

...

AC_CONFIG_FILES([Makefile

 common/Makefile

 include/Makefile

 libjup/Makefile

 src/Makefile])

...

lib_LTLIBRARIES = libjupiter.la

libjupiter_la_SOURCES = jup_print.c

libjupiter_la_LDFLAGS = ../common/libjupcommon.a

libjupiter_la_CPPFLAGS = -I$(top_srcdir)/include \

 -I$(top_srcdir)/common

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 10 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

The second line lists the sources that are to be used for the

first (and only) product. The third line indicates a set of linker

options for this product. In this case, we!re specifying that the

libjupcommon.a static library should be linked into

(become part of) the libjupiter.so shared library.

There!s an important concept regarding the *_LDFLAGS

variable that you should strive to understand completely:

Libraries that are consumed within, and yet built as part of the

same project, should be referenced internally, using relative

paths within the build directory hierarchy. Libraries that are

external to a project generally need not be referenced explicitly

at all, as the $(LIBS) variable should already contain the

appropriate “-L” and “-l” options for those libraries. These

options come from an attempt to find these libraries in the

configure script, using the appropriate AC_CHECK_LIBS,

or AC_SEARCH_LIBS macros.

The fourth line indicates a set of C preprocessor flags that are

to be used on the compiler command line for locating our

shared library header files. These options indicate, of course,

that the top-level include and common directories should

be searched by the pre-processor for header file references in

the source code.

Here!s the new source file, jup_print.c:

libjup/jup_print.c

We need to include the new shared library header file for

access to the jupiter_print function!s public prototype. This

leads us to another general software engineering principle. I!ve

heard it called many names, but the one I tend to use the

most is “The DRY Principle”, which is an acronym that stands

for Don!t Repeat Yourself. C function prototypes are very

useful, because when used correctly, they enforce the fact that

the public!s view of a function is the same as the package

maintainer!s view. So often, I!ve seen source code for a

function where the source file doesn!t include the public

prototype for the function. It!s easy to make a small change in

the function or prototype, and then not duplicate it in the other

location—unless you!ve included the public header file in the

source file containing the function.

We need the static library header file, because we call its

function from within our public library function. Note also that I

placed the public header file first—there!s a good reason for

this—another general principle: By placing the public header

file first in the source file, I can allow the compiler to check

that the use of this header file doesn!t depend on any other

files in the project.

#include <libjupiter.h>

#include <jupcommon.h>

int jupiter_print(char * name)

{

 print_routine(name);

}

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 11 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

If the public header file has a hidden dependency on some

construct (a typedef, structure or pre-processor definition)

defined in jupcommon.h, and if I include it after

jupcommon.h, then the dependency would be hidden by the

fact that the required construct is already available in the

translation unit when the compiler begins to process the public

header file, by virtue of the order in which they were included.

Next, I!ll modify the jupiter application!s main function so

that it calls into the shared library instead of calling into the

common static library:

src/main.c

Here, I!ve changed the print function from print_routine,

found in the static library, to jupiter_print, as provided

by our new shared library. I!ve also changed the header file

included at the top from libjupcommon.h to

libjupiter.h.

My choices of names for the public function and header file

were arbitrary, but based on a desire to provide a clean,

rational and informational public interface. The name

libjupiter.h very clearly indicates that this header file

provides the public interface for the libjupiter.so shared

library. I try to name library interface functions in such a way

that they are clearly part of an interface. How you choose to

name your public interface members—files, functions,

structures, typedefs, pre-processor definitions, global data, etc

—is up to you, but you should consider using a similiar

philosophy. Remember, the goal is to provide a great end-user

experience.

Finally, the src/Makefile.am file must also be modified to

use our new shared library, rather than the

libjupcommon.a static library.

src/Makefile.am

In this file, I!ve changed the jupiter_CPPFLAGS variable

so that it now refers to the new include directory, rather

than the common directory. I!ve also changed the

jupiter_LDADD variable so that it refers to the new Libtool

shared library object, rather than the libjupcommon.a

static library. All else remains the same. Note that these

changes are both obvious and simple. The syntax for referring

#include <libjupiter.h>

int main(int argc, char * argv[])

{

 jupiter_print(argv[0]);

 return 0;

}

bin_PROGRAMS = jupiter

jupiter_SOURCES = main.c

jupiter_CPPFLAGS = -I$(top_srcdir)/include

jupiter_LDADD = ../libjup/libjupiter.la

...

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 12 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

changes are both obvious and simple. The syntax for referring

to a Libtool library is identical to that referring to an older static

library. Only the library extension is different. The Libtool

library extension, “.la” refers to “Libtool Archive”.

Taking a step back for a moment: Do we actually need to

make this change? No, of course not. The jupiter

application will continue to work just fine the way it was

originally set up—linking the code for the static library!s

print_routine directly into the application works equally

well to calling the new shared library routine (which ultimately

contains the same code). In a real project, we might actually

leave it the way it was. Why? Because both public entry

points, main and jupiter_print call the exactly same

function (print_routine) in libjupcommon.a, so the

functionality is identical. Why add the overhead of a call

through the public interface? Here, the reason is purely

educational.

In this situation, you might now consider simply moving the

code from the static library into the shared library, thereby

removing the need for the static library entirely. Again, I!m

going to beg your indulgence with my contrived example. In a

more complex project, we could very well have a need for this

sort of configuration, so I!m going to leave it the way it is for

the sake of its educational value to us.

Reconfigure and build

Well, let!s give it a try and see where we stand at this point.

Since we added a major new component to our project build

system (Libtool), I!ll add the “-i” option to the autoreconf

command, just in case new files need to be installed:

$ autoreconf -i

$./configure

...

checking for ld used by gcc...

checking if the linker ... is GNU ld... yes

checking for BSD- or MS-compatible name lister...

checking the name lister ... interface...

checking whether ln -s works... yes

checking the maximum length of command line...

checking whether the shell understands some XSI...

checking whether the shell understands "+="...

checking for ...ld option to reload object files...

checking how to recognize dependent libraries...

checking for ar... ar

checking for strip... strip

checking for ranlib... ranlib

checking command to parse ...nm -B output...

...

checking for dlfcn.h... yes

checking for objdir... .libs

checking if gcc supports -fno-rtti...

checking for gcc option to produce PIC... -fPIC

checking if gcc PIC flag -fPIC -DPIC works...

checking if gcc static flag -static works...

checking if gcc supports -c -o file.o... yes

checking if gcc supports -c -o file.o... yes

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 13 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

The first noteworthy item here is that Libtool adds significant

overhead to the configuration process. I!ve only shown the

output lines here that are new since we added Libtool. All I!ve

added to the configure.ac script is the reference to the

LT_INIT macro. I!ve nearly doubled my configure script

output. This should give you some idea of the number of

system characteristics that must be examined to create

portable shared libraries. Libtool does a lot of the work for us.

Let!s continue.

NOTE: In the following output examples, I!ve wrapped long

output lines to fit publication formatting, and I!ve added blank

lines between output lines for readability. I!ve also removed

some unnecessary text, such as long directory names—again

to increase readability.

checking if gcc supports -c -o file.o... yes

checking whether ... linker ... supports shared...

checking whether -lc should be explicitly linked...

checking dynamic linker characteristics...

checking how to hardcode library paths...

checking whether stripping libraries is possible...

checking if libtool supports shared libraries...

checking whether to build shared libraries...

checking whether to build static libraries...

...

$

$ make

...

Making all in libjup

make[2]: Entering directory `.../libjup'

/bin/sh ../libtool --tag=CC --mode=compile gcc

 -DHAVE_CONFIG_H -I. -I../../libjup -I..

 -I../../include -I../../common -g -O2

 -MT libjupiter_la-jup_print.lo -MD -MP -MF

 .deps/libjupiter_la-jup_print.Tpo -c

 -o libjupiter_la-jup_print.lo

 `test -f 'jup_print.c'

 || echo '../../libjup/'`jup_print.c

libtool: compile: gcc -DHAVE_CONFIG_H -I.

 -I../../libjup -I.. -I../../include

 -I../../common -g -O2 -MT

 libjupiter_la-jup_print.lo -MD -MP -MF

 .deps/libjupiter_la-jup_print.Tpo -c

 ../../libjup/jup_print.c -fPIC -DPIC

 -o .libs/libjupiter_la-jup_print.o

libtool: compile: gcc -DHAVE_CONFIG_H -I.

 -I../../libjup -I.. -I../../include

 -I../../common -g -O2 -MT

 libjupiter_la-jup_print.lo -MD -MP -MF

 .deps/libjupiter_la-jup_print.Tpo -c

 ../../libjup/jup_print.c

 -o libjupiter_la-jup_print.o >/dev/null 2>&1

mv -f .deps/libjupiter_la-jup_print.Tpo

 .deps/libjupiter_la-jup_print.Plo

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 14 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

Well, that wasn!t a very pleasant experience! It appears that

we have some errors to fix. Let!s take them one at a time,

from top to bottom.

The first point of interest is that the libtool script is being

called with a “--mode=compile” option, which causes

libtool to act as a wrapper script around a somewhat

modified version of our standard gcc command line. You can

see the effects of this statement in the next two compiler

command lines. Two lines? That!s right. It appears that

libtool is causing the compile operation to occur twice.

A careful examination of the differences between these two

command lines shows us that the first compiler command is

using two additional flags: “-fPIC” and “-DPIC”. The first

line also appears to be directing the output file to a “.libs”

subdirectory, whereas, the second line is saving it in the

current directory. Finally, both the STDOUT and STDERR

output is redirected to /dev/null in the second line.

This double-compile “feature” has caused a fair amount of

anxiety on the Libtool mailing list over the years. Mostly, this is

due to a lack of understanding of what it is that Libtool is trying

to do, and why it!s necessary. Using various configure

script command line options provided by Libtool, you can force

a single compilation, but doing so brings with it a certain loss

of functionality, which I!ll explain here shortly.

The next line renames the dependency file from “*.Tpo” to

“*.Plo”. Dependency files contain make rules that declare

dependencies between source files and header files. These

are generated by the C preprocessor when the “-MT” compiler

 .deps/libjupiter_la-jup_print.Plo

/bin/sh ../libtool --tag=CC --mode=link gcc -g

 -O2 ../common/libjupcommon.a -o libjupiter.la

 -rpath /usr/local/lib libjupiter_la-jup_print.lo

 -lpthread

*** Warning: Linking ... libjupiter.la against the

*** static library libjupcommon.a is not portable!

libtool: link: gcc -shared

 .libs/libjupiter_la-jup_print.o

 ../common/libjupcommon.a -lpthread

 -Wl,-soname -Wl,libjupiter.so.0

 -o .libs/libjupiter.so.0.0.0

.../ld: ../common/libjupcommon.a(print.o):

 relocation R_X86_64_32 against `a local symbol'

 can not be used when making a shared object;

 recompile with -fPIC

../common/libjupcommon.a: could not read symbols:

 Bad value

collect2: ld returned 1 exit status

make[2]: *** [libjupiter.la] Error 1

...

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 15 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

are generated by the C preprocessor when the “-MT” compiler

option is used. They are then included in makefiles so that the

make utility can properly recompile a source file if one or

more of its include dependencies have been modified since

the last build. This is not really germane to our Libtool

discussion, so I!ll not go into any more detail here, but check

the GNU Make manual for more information. The point is that

one Libtool command may (and often does) execute a string

of shell commands.

The next line is another call to the libtool script, this time

using the “--mode=link” option. This option generates a

call to execute the compiler in “link” mode, passing all of the

libraries and linker options specified in the Makefile.am

file.

And finally, we come to our first problem—a portablity warning

about linking a shared library against a static library.

Specifically, this warning is about linking against a non-Libtool

static library. Shortly, we!ll begin to see why this might be a

problem. Notice that this is not an error. Were it not for

additional errors we!ll encounter later, the library would be built

for us in spite of this warning.

After the portability warning, libtool attempts to link the

requested objects together into a shared library named

“libjupiter.so.0.0.0”. But here we run into the real

problem—a linker error indicating that somewhere from within

libjupcommon.a—and more specifically within

print.o—an Intel object relocation cannot be performed

because the original source file (print.c) was apparently

not compiled correctly. Libtool (actually, the linker) is kind

enough to tell us what we need to do to fix the problem. It

indicates that we need to compile the source code using a “-

fPIC” compiler option.

Now, if you don!t know anything about the “-fPIC” option,

then you!d be wise at this point to open the man page for gcc

and study it, before willy-nilly inserting compiler or linker

options until the warning or error disappears, as many new

programmers are wont to do. Software engineers should

understand the meaning and nuances of every command line

option used by the tools in their projects! build systems. Why?

Because, otherwise, they don!t really know what they have

when their build completes. It may work the way it should—but

if it does, it!s simply by luck, rather than by design. Good

engineers know their tools, and the best way to learn is to

study error messages and their fixes until the problem is well-

understood, before moving on.

So what is “PIC” code?

When operating systems create new process address spaces,

they always load the executable images at the same memory

address. This magic address is system-specific. Compilers

and linkers know this, and they know what that address is on

a given system. Therefore, when they generate internal

references to, say function calls, for example, they can

generate those references as absolute addresses. If you were

able somehow to load the executable at a different location in

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 16 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

able somehow to load the executable at a different location in

memory it would simply not work properly, because the

absolute addresses within the code would be incorrect. At the

very least, the program will crash when the it jumps to the

wrong location during a function call.

Consider Figure 1 below for a moment. Given a system whose

magic executable load address is 0x10000000, this diagram

depicts two process address spaces on such a system. In the

process on the left, an executable image is loaded correctly at

address 0x10000000. At some point in the code a “jmp”

instruction tells the processor to transfer control to the absolute

address 0x10001000, where it continues executing instructions

in another area of the program. In the process on the right, the

program is (somehow) loaded incorrectly at address

0x20000000. When that same absolute branch instruction is

encountered, the processor jumps to address 0x10001000,

because the address is hard-coded into the program. This, of

course, fails—often spectacularly.

Figure 1: Absolute addressing in executable images

When a shared library is built for certain types of hardware

(Intel x86 and x86_64 included), the address at which the

library will be loaded within a process address space cannot

be known by the compiler or the linker beforehand. This is

because many libraries may be loaded into any given process,

and the order in which they are loaded depends on how the

executable is built, not the library. Furthermore, who!s to say

which library owns location “A”, and which one owns location

“B”? The fact is, libraries may be loaded anywhere into a

process where there is space for it at the time it!s loaded. Only

the operating system loader knows where it will finally reside—

and then only just before it!s actually loaded.

As a result, shared libraries can only be built from a special

class of object file called “PIC” objects. PIC stands for

“Position-Independent Code”, and implies that absolute

references in the object code are not really absolute. When the

“-fPIC” option is used on the compiler command line, the

compiler will use somewhat less efficient relative addresses in

code branches, rather than the usual absolute addresses.

Such position-independent code may be loaded anywhere,

because no where within the code will you find a reference to

an absolute address.

There are various nuances to generating and using position-

independent code, and you should become familiar with them

all before using them, so that you can choose the option that

is most appropriate for your situation. For example, the GNU C

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 17 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

is most appropriate for your situation. For example, the GNU C

compiler also supports a “-fpic” option, which uses a slightly

quicker system supported, but more limited mechanism to

accomplish relocatable object code. Wikipedia has a very

informative page on position-independent code (although I find

its treatment of Windows DLLs to be somewhat less than

accurate).

Fixing the jupiter “PIC” problem

From what we now understand, one way to fix our linker error

is to add the “-fPIC” option to the compiler command line for

the source files that comprise the libjupcommon.a static

library. Let!s try that:

common/Makefile.am

And now we!ll try the build again:

noinst_LIBRARIES = libjupcommon.a

libjupcommon_a_SOURCES = jupcommon.h print.c

libjupcommon_a_CFLAGS = -fPIC

$ autoreconf

$ make

...

gcc -DHAVE_CONFIG_H -I. -I../../common -I.. -fPIC

 -g -O2 -MT libjupcommon_a-print.o -MD -MP -MF

 .deps/libjupcommon_a-print.Tpo -c

 -o libjupcommon_a-print.o `test -f 'print.c' ||

 echo '../../common/'`print.c

...

/bin/sh ../libtool --tag=CC --mode=link gcc -g

 -O2 ../common/libjupcommon.a -o libjupiter.la

 -rpath /usr/local/lib libjupiter_la-jup_print.lo

 -lpthread

*** Warning: Linking ... libjupiter.la against the

*** static library libjupcommon.a is not portable!

libtool: link: gcc -shared

 .libs/libjupiter_la-jup_print.o

 ../common/libjupcommon.a -lpthread -Wl,-soname

 -Wl,libjupiter.so.0 -o .libs/libjupiter.so.0.0.0

libtool: link: (cd .libs && rm -f libjupiter.so.0

 && ln -s libjupiter.so.0.0.0 libjupiter.so.0)

libtool: link: (cd .libs && rm -f libjupiter.so

 && ln -s libjupiter.so.0.0.0 libjupiter.so)

libtool: link: ar cru .libs/libjupiter.a

 ../common/libjupcommon.a

 libjupiter_la-jup_print.o

libtool: link: ranlib .libs/libjupiter.a

libtool: link: (cd .libs && rm -f libjupiter.la

 && ln -s ../libjupiter.la libjupiter.la)

...

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 18 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

Well, now we have a shared library, built properly with

position-independent code, as per system requirements.

However, we still have that strange warning about the

portability of linking a Libtool library against a static library.

The problem here is not in what we!re doing, but rather in the

way we!re doing it. You see, the PIC concept does not apply to

all hardware architectures. Some CPUs don!t support any

form of absolute addressing in their instruction sets. As a

result, native compilers for those platforms don!t support a “-

fPIC” option—it has no meaning for them.

If we tried (for example) to compile our code on an IBM

RS/6000 system using the native IBM compiler, it would

“hiccup” when it came to the “-fPIC” option because it

doesn!t make sense to support such an option on a system

where all code is automatically generated as position-

independent code. One way we could get around this problem

would be to make the “-fPIC” option conditional in our

Makefile.am file, based on the type of the target system,

and the tools we!re using. But that!s exactly the sort of

problem that Libtool was designed to address! We!d have to

account for all of the different Libtool target system types and

tool sets in order to handle the entire set of conditions that

Libtool handles.

The way around this portability problem then is to let Libtool

generate our static library also. Libtool makes a distinction

between static libraries that are installed as part of a

developer!s kit, and static libraries used only internally in a

project. It calls such internal static libraries “convenience”

libraries, and whether or not such a convenience library is

generated depends on the prefix used with the

LTLIBRARIES primary. If the noinst prefix is used, then

Libtool assumes that we want a convenience library because

there!s no point in generating a shared library that will never

be installed. Thus, convenience libraries are always generated

as static archives.

The reason for distinguishing between internal convenience

static libraries and other forms of static library is that

convenience libraries are always built, whereas non-

convenience static libraries are only built if the “--enable-

static” option is specified on the configure command

line (or conversely, if the “--disable-static” option is

NOT specified).

Customizing Libtool with LT_INIT options

Default values for enabling or disabling static and shared

libraries can be specified in the argument list passed into the

LT_INIT macro in the configure.ac file. Let!s take a

quick look at the LT_INIT macro. This macro may be used

with or without arguments. When used with arguments, it

accept a single argument, which is a white-space separated

list of key words. The following key words are valid:

dlopen — Enable checking for “dlopen” support.

This option should be used if the package makes use of

...

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 19 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

This option should be used if the package makes use of

the “-dlopen” and “-dlpreopen” libtool flags,

otherwise libtool will assume that the system does

not support dlopening.

disable-fast-install — Change the default

behavior for LT_INIT to disable optimization for fast

installation. The user may still override this default,

depending on platform support, by specifying “--

enable-fast-install” to configure.

shared — Change the default behavior for LT_INIT

to enable shared libraries. This is the default on all

systems where Libtool knows how to create shared

libraries. The user may still override this default by

specifying “--disable-shared” to configure.

disable-shared — Change the default behavior for

LT_INIT to disable shared libraries. The user may still

override this default by specifying “--enable-

shared” to configure.

static — Change the default behavior for LT_INIT

to enable static libraries. This is the default on all

systems where shared libraries have been disabled for

some reason, and on most systems where shared

libraries have been enabled. If shared libraries are

enabled, the user may still override this default by

specifying “--disable-static” to configure.

disable-static — Change the default behavior for

LT_INIT to disable static libraries. The user may still

override this default by specifying “--enable-

static” to configure.

pic-only — Change the default behavior for

libtool to try to use only PIC objects. The user may

still override this default by specifying “--without-

pic” to configure.

no-pic — Change the default behavior of libtool

to try to use only non-PIC objects. The user may still

override this default by specifying “--with-pic” to

configure.

NOTE: I!ve omitted the description for the win32-dll

option, because it doesn!t apply to this book.

Now, let!s return to our project. The conversion from an older

static library to a new Libtool convenience library is simple

enough—all we have to do is add “LT” to the primary name

and remove the “-fPIC” option, and the associated variable,

as there were no other options being used in that variable:

common/Makefile.am

Now when we try to build, here!s what we get:

noinst_LTLIBRARIES = libjupcommon.la

libjupcommon_la_SOURCES = jupcommon.h print.c

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 20 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

We can see that the common library is now built as a static

convenience library because the ar utility is used to build

libjupcommon.a. Libtool also seems to be building files

with new and different extensions. A closer look will discover

extensions such as “.lo” and “.la”. If you take a closer look

at these files, you!ll find that they!re actually descriptive text

files containing object and library meta data. Let!s look at the

common/libjupcommon.la file:

common/libjupcommon.la

$ autoreconf

$./configure

...

$ make

...

/bin/sh ../libtool --tag=CC --mode=compile gcc

 -DHAVE_CONFIG_H -I. -I../../common -I..

 -g -O2 -MT print.lo -MD -MP -MF .deps/print.Tpo

 -c -o print.lo ../../common/print.c

libtool: compile: gcc -DHAVE_CONFIG_H -I.

 -I../../common -I.. -g -O2 -MT print.lo -MD -MP

 -MF .deps/print.Tpo -c ../../common/print.c

 -fPIC -DPIC -o .libs/print.o

...

/bin/sh ../libtool --tag=CC --mode=link gcc -g -O2

 -o libjupcommon.la print.lo -lpthread

libtool: link: ar cru .libs/libjupcommon.a

 .libs/print.o

...

/bin/sh ../libtool --tag=CC --mode=link gcc -g -O2

 ../common/libjupcommon.la -o libjupiter.la

 -rpath /usr/local/lib libjupiter_la-jup_print.lo

 -lpthread

libtool: link: gcc -shared

 .libs/libjupiter_la-jup_print.o

 -Wl,--whole-archive

 ../common/.libs/libjupcommon.a

 -Wl,--no-whole-archive -lpthread -Wl,-soname

 -Wl,libjupiter.so.0 -o .libs/libjupiter.so.0.0.0

...

libjupcommon.la - a libtool library file

Generated by ltmain.sh (GNU libtool) 2.2

#

Please DO NOT delete this file!

It is necessary for linking the library.

The name that we can dlopen(3).

dlname=''

Names of this library.

library_names=''

The name of the static archive.

old_library='libjupcommon.a'

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 21 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

The various fields in these files help the linker—or rather the

libtool wrapper script—to determine certain options that

would otherwise have to be remembered by the developer and

passed on the command line to the linker. For instance, the

library!s shared name and static name are remembered here,

as well as any required libraries. The list of library

dependencies is remembered here as well. In this library, for

example, we can see that libjupcommon.a depends on

the pthread library. But, using Libtool, we don!t have to pass

a “-lpthread” option on the libtool command line because

libtool can see in this meta data file that the linker will

need this, so it passes the option for us.

Making these files human-readable was a minor stroke of

genius, as they can tell us a lot about our Libtool libraries, at a

glance. These files are designed to be installed with their

associated binaries, and in fact, the make install rules

generated by Automake for Libtool libraries do just this.

The Libtool library versioning scheme

If you!ve spent any time at all working at the Linux command

prompt, then you!ll certainly recognize this series of

executable and link names. NOTE: There!s nothing special

about libz—I am merely using this library as a common

example:

If you!ve ever wondered what this means, then read on.

Libtool provides a versioning scheme for shared libraries that

has become prevalent in the Linux world. Other operating

systems use different versioning schemes for shared libraries,

but the one defined by Libtool has become so popular that

people often associate it with Linux, rather than with Libtool.

This is not entirely an unfair assessment because the Linux

loader honors this scheme to a certain degree. But to be

completely fair, it!s Libtool that should be given the credit for

this versioning scheme.

One interesting aspect of this scheme is that, if not understood

properly, people can easily mis-use or abuse the system

without intending to. People who don!t understand this system

tend to think of the numeric values as major, minor and

revision, when in fact, these values have very specific

meaning to the operating system loader, and must be updated

appropriately for each new library version in order to keep from

confusing the loader.

old_library='libjupcommon.a'

Linker flags that can not go in dependency_libs.

inherited_linker_flags=''

Libraries that this one depends upon.

dependency_libs=' -lpthread'

...

$ ls -dal /lib/libz*

... /lib/libz.so.1 -> libz.so.1.2.3

... /lib/libz.so.1.2 -> libz.so.1.2.3

... /lib/libz.so.1.2.3

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 22 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

confusing the loader.

I remember a meeting I had at work one day several years

ago with my company!s corporate versioning committee. This

committee!s job was to come up with software versioning

policy for the company as a whole (a grandiose vision, in and

of itself). They wanted us to ensure that the version numbers

incorporated into our shared library names were in alignment

with the corporate software versioning standard. It took me the

better part of a day to convince them that a shared library

version was not related to a product version in any way, nor

should such a relationship be established, or enforced by them

or anyone else.

Here!s why. The version number on a shared library is not

really a library version, but rather an interface version. The

interface I!m referring to here is the application programming

interface (API) presented by a library to the potential user—a

programmer wishing to call functions in the interface. As the

GNU Libtool manual points out, a program has a single well-

defined entry point (usually called “main”, in the C language).

But a shared library has multiple entry points that are generally

not standardized in a widely understood manner. This makes it

much more difficult to determine if a particular version of a

library is “interface-compatible” with another version of the

same library.

Microsoft DLL versioning

Consider Microsoft Windows Dynamic Link Libraries

(DLLs). These are shared libraries in every sense of the

word. They provide a proper application programming

interface. But unfortunately, Microsoft has in the past

provided no integrated DLL interface versioning scheme. As

a result, Windows developers often refer to DLL versioning

issues (tongue-in-cheek, I!m sure) as “DLL hell”.

As a partial fix to this problem, on Windows systems, DLLs

can be installed into the same directory as the program that

uses them, and the Windows operating system loader will

always attempt to use the local copy first before searching

for a copy in the system path. This alleviates part of the

problem because a specific version of the library can be

installed with the package that requires it.

This is not a good long-term solution, however, because

one of the major benefits of shared libraries is that they can

be shared—both on disk, and in memory. If every

application has its own copy of a different version of the

library, then this benefit of shared libraries is lost—both on

disk and in memory.

Recently, Microsoft invented the concept of the “Side-by-

Side Cache” (sometimes referred to as “SxS”), which allows

developers to associate a unique identification value (a

GUID, in fact) with a particular version of a DLL installed in

a system location. This location is named by the dll name

and version identifier. Applications built against SxS-

versioned libraries have meta data stored in their

executable headers that indicate the particularly versioned

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 23 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

executable headers that indicate the particularly versioned

DLLs that they require. If the right version is found (by

newer OS loaders) in the SxS cache, then they load and

use it. Based on policy in the executable header meta data,

they can then revert to the older scheme of looking for a

local and then a global copy of the DLL. This is a vast

improvement over earlier solutions—providing a very

flexible versioning system.

Linux and other Unix-like systems that support shared libraries

manage interface versions using the Libtool versioning

scheme. In this scheme, shared libraries are said to support a

range of interface versions, each identified by a unique integer

value. If any aspect of an interface changes in any way

between public releases, then it can no longer be considered

the same interface. It becomes a new interface, identified by a

new integer interface value. To make the interface versioning

process comprehensible to the human mind, each public

release of a library wherein the interface has changed simply

acquires the next consecutive interface version number. Thus,

a given shared library may support versions 2-5 of an

interface.

Libtool shared libraries follow a naming convention that

encodes the interface range supported by a particular shared

library. A shared library named “libname.so.1.2.3”

contains the library interface version number, “1.2.3”. these

three values are respectively called the library interface

“current”, “revision” and “age” values.

The “current” value represents the current interface version

number. This is the value that changes each time a new

interface version must be declared because the interface has

changed in any way since the last interface. Consider a

shared library wherein the developer has added a new function

to the set of functions exposed by this library since the last

release. The interface can!t be considered the same in this

new version as it was in the previous version because there!s

one additional function. Thus, it!s “current” number must be

increased from “0” to “1”.

The “age” value represents the number of back-versions

supported by the shared library. In mathematical terms, the

library is said to support the interface range, “current” - “age”

through “current”. In the example I just gave, a new function

was added to the library, so the interface presented in this

version of the library is not the same as that presented in the

previous version. However, the previous version of the

interface is still fully supported because the previous interface

is a proper subset of the current interface. Thus, this library

could conceivably be named “libname.so.1.0.1”, where

the range of supported interfaces is 1 - 1 (or 0) through 1,

inclusive.

The “revision” value merely represents a serial revision of

the current interface. That is, if no changes are made to a

shared library!s interface between releases, then the library

name should change in some manner, but both the

“current” and “age” values would be the same, as the

interface has not changed. The “revision” value is

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 24 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

interface has not changed. The “revision” value is

incremented to reflect the fact that this is a new release of the

same interface. If two libraries exist on a system with the same

name, “current” and “age” values, then the operating

system loader will always select the library with the higher

“revision” value.

To simplify the release process for shared libraries, the GNU

Libtool manual provides an algorithm that should be followed

step-by-step for each new version of a library that is about to

be publically released. I!ll reproduce the algorithm verbatim

here for your information:

1. Start with version information of “0:0:0” for each libtool

library. [This is done automatically by simply omitting the

“-version” option from the list of linker flags passed to the

libtool script.]

2. Update the version information only immediately before

a public release of your software. More frequent updates

are unnecessary, and only guarantee that the

“current” interface number gets larger faster.

3. If the library source code has changed at all since the

last update, then increment “revision” (“c:r:a”

becomes “c:r+1:a”).

4. If any interfaces [exported functions or data] have been

added, removed, or changed since the last update,

increment “current”, and set “revision” to 0.

5. If any interfaces have been added since the last public

release, then increment “age”.

6. If any interfaces have been removed since the last

public release, then set “age” to 0.

Let!s analyze this process a bit. This is an algorithm, and as

such it is designed to be followed step by step, as opposed to

jumping directly to the steps that appear to apply to your case.

For example, if you removed any API functions from your

library since the last release, you would not simply jump to the

last step and set “age” to zero. Rather, you would follow all of

the steps properly until you reached the last step, and then set

“age” to zero.

In greater detail: Let!s assume that this is the second release

of a library, and that the first release was named

“libexample.so.0.0.0”, and that one new function was

added to the API during this development cycle, and one old

function was deleted. The effect on this release of the library

would be as follows:

1. (n/a)

2. (n/a)

3. libexample.so.0.0.0 ->

libexample.so.0.1.0 (library source was

changed)

4. libexample.so.0.1.0 ->

libexample.so.1.0.0 (library interface was

modified)

5. libexample.so.1.0.0 ->

libexample.so.1.0.1 (one new function was

added)

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 25 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

6. libexample.so.1.0.1 ->

libexample.so.1.0.0 (one old function was

removed)

Why all the “hoop jumping”? Well, because, as I alluded to

earlier, the versioning scheme is honored by the linker and the

operating system loader. When the linker creates the library

name table in an executable image header, it writes the list of

supported library versions along side of each entry in this

table. When the loader searches for a matching library, it looks

for the latest version of the library required by the executable.

Thus, libname.so.0.0.0 can coexist in the same

directory as libname.so.1.0.0 without any problem.

Programs that need the earlier version (which supports only

the later interface because of the deleted function) will properly

and automatically have it loaded into their process address

space, just as will programs that require the later version

properly have the “1.0.0” version loaded.

One more point regarding interface versioning. Once you fully

understand Libtool versioning, you!ll find that even the above

algorithm does not cover all possible interface modification

scenarios. Consider, for example, version “0.0.0” of a

shared library that you maintain. Now, assume you add a new

function to the interface for the next public release. This

second release is properly named version “1.0.1”, because

the library supports both interfaces 0 and 1. Just before the

third release of the library, you realize that you didn!t really

need that new function after all, and so you remove it.

Assume also that this is the only change made to the library

interface in this release. The above algorithm would have this

release named version “2.0.0”. But in fact, you!ve merely

removed the second interface, and are now presenting the

original interface once again. Technically, this library should be

properly named version “0.1.0”, as it presents a second

release of version 0 of the shared library interface.

Using libltdl to “dlopen” a shared library

Summary

Chapter Notes

As with the last three chapters, the notes in this chapter are

comprised of the complete source files for the Jupiter project.

These files include all of the additional code and changes

made while adding Libtool shared libraries to the project, as

well as the conversion of the common static library over to a

Libtool convenience library.

Again, as usual, no formatting has been performed on these

files, so you may cut and paste to your heart!s delight, but do

beware of spaces in front of makefile command lines.

configure.ac

-*- Autoconf -*-

Process this file with autoconf to produce a configure script.

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 26 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

AC_PREREQ([2.61])

AC_INIT([Jupiter], [1.0], [bugs@jupiter.org])

AM_INIT_AUTOMAKE

LT_PREREQ([2.2])

LT_INIT

AC_CONFIG_SRCDIR([src/main.c])

AC_CONFIG_HEADERS([config.h])

Checks for programs.

AC_PROG_CC

AC_PROG_RANLIB

AC_PROG_INSTALL

AM_PROG_CC_C_O

Checks for header files (1).

AC_HEADER_STDC

Checks for command line options

AC_ARG_ENABLE([async-exec],

 [AS_HELP_STRING([--disable-async-exec],

 [disable asynchronous execution @<:@default: no@:>@])],

 [async_exec=${enableval}],

 [async_exec=yes])

if test "x${async_exec}" = xyes; then

 have_pthreads=no

 AC_SEARCH_LIBS([pthread_create], [pthread],

 [have_pthreads=yes])

 if test "x${have_pthreads}" = xyes; then

 AC_CHECK_HEADERS([pthread.h], [],

 [have_pthreads=no])

 fi

 if test "x${have_pthreads}" = xno; then

 echo "---------------------------------------"

 echo "Unable to find pthreads on this system."

 echo "Building a single-threaded version. "

 echo "---------------------------------------"

 async_exec=no

 fi

fi

if test "x${async_exec}" = xyes; then

 AC_DEFINE([ASYNC_EXEC], 1, [async exec enabled])

fi

Checks for header files (2).

AC_CHECK_HEADERS([stdlib.h])

Checks for libraries.

Checks for typedefs, structures, and compiler characteristics.

Checks for library functions.

AC_CONFIG_FILES([Makefile

 common/Makefile

 include/Makefile

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 27 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

Makefile.am

common/Makefile.am

common/print.c

 include/Makefile

 libjup/Makefile

 src/Makefile])

AC_OUTPUT

echo \

"---

 ${PACKAGE_NAME} Version ${PACKAGE_VERSION}

 Prefix: '${prefix}'.

 Compiler: '${CC} ${CFLAGS} ${CPPFLAGS}'

 Package features:

 Async Execution: ${async_exec}

 Now type 'make @<:@<target>@:>@'

 where the optional <target> is:

 all - build all binaries

 install - install everything

--"

SUBDIRS = common include libjup src

noinst_LTLIBRARIES = libjupcommon.la

libjupcommon_la_SOURCES = jupcommon.h print.c

#include <jupcommon.h>

#if HAVE_CONFIG_H

include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#if HAVE_PTHREAD_H

include <pthread.h>

#endif

static void * print_it(void * data)

{

 printf("Hello from %s!\n", (char *)data);

 return 0;

}

int print_routine(char * name)

{

#if ASYNC_EXEC

 pthread_t tid;

 pthread_create(&tid, 0, print_it, name);

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 28 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

common/jupcommon.h

include/Makefile.am

include/libjupiter.h

libjup/Makefile.am

libjup/jup_print.c

src/Makefile.am

 pthread_create(&tid, 0, print_it, name);

 pthread_join(tid, 0);

#else

 print_it(name);

#endif

 return 0;

}

#ifndef JUPCOMMON_H_INCLUDED

#define JUPCOMMON_H_INCLUDED

int print_routine(char * name);

#endif /* JUPCOMMON_H_INCLUDED */

include_HEADERS = libjupiter.h

#ifndef LIBJUPITER_H_INCLUDED

#define LIBJUPITER_H_INCLUDED

int jupiter_print(char * name);

#endif /* LIBJUPITER_H_INCLUDED */

lib_LTLIBRARIES = libjupiter.la

libjupiter_la_SOURCES = jup_print.c

libjupiter_la_LDFLAGS = ../common/libjupcommon.la

libjupiter_la_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/common

#include <libjupiter.h>

#include <jupcommon.h>

int jupiter_print(char * name)

{

 print_routine(name);

}

bin_PROGRAMS = jupiter

jupiter_SOURCES = main.c

jupiter_CPPFLAGS = -I$(top_srcdir)/include

jupiter_LDADD = ../libjup/libjupiter.la

check_SCRIPTS = greptest.sh

TESTS = $(check_SCRIPTS)

greptest.sh:

01/06/2008 18:43Chapter 5: Building shared libraries with Libtool

Page 29 of 29http://www.freesoftwaremagazine.com/books/agaal/building_shared_libraries_once_using_autotools

‹ Chapter 4:

Automatically writing

makefiles with

Automake

u

p

Chapter 6: An

autotools example ›

src/main.c

Login or register to post comments 1138 reads

greptest.sh:

 echo './jupiter | grep "Hello from .*jupiter!"' > greptest.sh

 chmod +x greptest.sh

CLEANFILES = greptest.sh

#include <libjupiter.h>

int main(int argc, char * argv[])

{

 jupiter_print(argv[0]);

 return 0;

}

