
The Architecture of Parallel I/O

Rob Latham
robl@mcs.anl.gov
Mathematics and Computer Science Division
Argonne National Laboratory

http://www.mcs.anl.gov/~robl/tutorials/csmc/

28 October 2010

mailto:robl@mcs.anl.gov
http://www.mcs.anl.gov/~robl/tutorials/csmc/

Computational Science

 Use of computer simulation as a tool for
greater understanding of the real world

– Complements experimentation and theory
 Problems are increasingly computationally

challenging

– Large parallel machines needed to
perform calculations

– Critical to leverage parallelism in all
phases

 Data access is a huge challenge

– Using parallelism to obtain performance

– Finding usable, efficient, portable
interfaces

– Understanding and tuning I/O

2

Visualization of entropy in Terascale
Supernova Initiative application. Image
from Kwan-Liu Ma’s visualization team at
UC Davis.

IBM Blue Gene/P system at Argonne
National Laboratory.

Large-Scale Data Sets
Application teams are beginning to generate 10s of Tbytes of data in a single
simulation. For example, a recent GTC run on 29K processors on the XT4
generated over 54 Tbytes of data in a 24 hour period [1].

PI Project
On-Line
Data Off-Line Data

Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB
Dean, David Computational Nuclear Structure 4TB 40TB
Baker, David Computational Protein Structure 1TB 2TB
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB
Wolverton, Christopher Kinetics and Thermodynamics of Metal and

Complex Hydride Nanoparticles
5TB 100TB

Washington, Warren Climate Science 10TB 345TB
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB
Tang, William Plasma Microturbulence 2TB 10TB
Sugar, Robert Lattice QCD 1TB 44TB
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB

Data requirements for select 2008 INCITE applications at ALCF

[1] S. Klasky, personal correspondence, June 19, 2008.

3

Disk Access Rates over Time

4

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph.

5

Applications, Data Models, and I/O
 Applications have data models

appropriate to domain
– Multidimensional typed arrays, images

composed of scan lines, variable length
records

– Headers, attributes on data

 I/O systems have very simple
data models
– Tree-based hierarchy of containers
– Some containers have streams of bytes

(files)
– Others hold collections of other containers

(directories or folders)

 Someone has to map from one
to the other!

Graphic from J. Tannahill, LLNL

Graphic from A. Siegel, ANL

Challenges in Application I/O

 Leveraging aggregate communication and I/O
bandwidth of clients
– …but not overwhelming a resource limited I/O system with

uncoordinated accesses!
 Limiting number of files that must be managed

– Also a performance issue
 Avoiding unnecessary post-processing
 Often application teams spend so much time on this

that they never get any further:
– Interacting with storage through convenient abstractions
– Storing in portable formats

Parallel I/O software is available to address all
of these problems, when used appropriately.

6

I/O for Computational Science

Additional I/O software provides improved performance and usability over directly
accessing the parallel file system. Reduces or (ideally) eliminates need for
optimization in application codes.

7

The Present: Oak Ridge Computing Platform

Figure compliments Galen Shipman (ORNL),
Feb. 16, 2010. 8

I/O Hardware and Software on Blue Gene/P

9

High-level Libraries
and MPI-IO Software

10

I/O Forwarding Software

11

Parallel File System
Software

12

Exascale Systems: Potential Architecture
Systems 2009 2018 Differenc

e

System Peak 2 Pflop/sec 1 Eflop/sec O(1000)

Power 6 Mwatt 20 Mwatt

System Memory 0.3 Pbytes 32-64 Pbytes O(100)

Node Compute 125 Gflop/sec 1-15 Tflop/sec O(10-100)

Node Memory BW 25 Gbytes/sec 2-4 Tbytes/sec O(100)

Node Concurrency 12 O(1-10K) O(100-1000)

Total Node Interconnect BW 3.5 Gbytes/sec 200-400 Gbytes/sec O(100)

System Size (Nodes) 18,700 O(100,000-1M) O(10-100)

Total Concurrency 225,000 O(1 billion) O(10,000)

Storage 15 Pbytes 500-1000 Pbytes O(10-100)

I/O 0.2 Tbytes/sec 60 Tbytes/sec O(100)

MTTI Days O(1 day)

From J. Dongarra, “Impact of Architecture and Technology for Extreme Scale on Software
and Algorithm Design,” Cross-cutting Technologies for Computing at the Exascale, February
2-5, 2010. 13

The MPI-IO Interface

14

15

MPI-IO

 I/O interface specification for use in MPI apps
 Data model is same as POSIX

– Stream of bytes in a file

 Features:
– Collective I/O
– Noncontiguous I/O with MPI datatypes and file views
– Nonblocking I/O
– Fortran bindings (and additional languages)
– System for encoding files in a portable format (external32)

• Not self-describing - just a well-defined encoding of types

 Implementations available on most platforms (more later)

16

Independent and Collective I/O

 Independent I/O operations specify only what a single process will do
– Independent I/O calls do not pass on relationships between I/O on other processes

 Many applications have phases of computation and I/O
– During I/O phases, all processes read/write data

– We can say they are collectively accessing storage

 Collective I/O is coordinated access to storage by a group of processes
– Collective I/O functions are called by all processes participating in I/O
– Allows I/O layers to know more about access as a whole, more opportunities for

optimization in lower software layers, better performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

17

Process 0 Process 0 Process 0Process 0

Contiguous Noncontiguous
in File

Noncontiguous
in Memory

Noncontiguous
in Both

Contiguous and Noncontiguous I/O

 Contiguous I/O moves data from a single memory block into a single file region

 Noncontiguous I/O has three forms:

– Noncontiguous in memory, noncontiguous in file, or noncontiguous in both

 Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)

 Describing noncontiguous accesses with a single operation passes more knowledge to I/O system

18

Nonblocking and Asynchronous I/O

 Blocking, or Synchronous, I/O operations return when buffer may
be reused
– Data in system buffers or on disk

 Some applications like to overlap I/O and computation
– Hiding writes, prefetching, pipelining

 A nonblocking interface allows for submitting I/O operations and
testing for completion later

 If the system also supports asynchronous I/O, progress on
operations can occur in the background
– Depends on implementation

 Otherwise progress is made at start, test, wait calls

Noncontiguous I/O: Data Sieving

 Data sieving is used to combine
lots of small accesses into a
single larger one
– Remote file systems (parallel or

not) tend to have high latencies

– Reducing # of operations important

 Similar to how a block-based file
system interacts with storage

 Generally very effective, but not
as good as having a PFS that
supports noncontiguous access

Buffer

Memor
y

File

Data Sieving Read Transfers

19

Data Sieving Write Operations

Buffer

Memor
y

File

Data Sieving Write Transfers

 Data sieving for writes is more
complicated
– Must read the entire region first
– Then make changes in buffer
– Then write the block back

 Requires locking in the file
system
– Can result in false sharing

(interleaved access)

 PFS supporting noncontiguous
writes is preferred

20

21

Collective I/O and Two-Phase I/O

 Problems with independent, noncontiguous access
– Lots of small accesses
– Independent data sieving reads lots of extra data, can exhibit false sharing

 Idea: Reorganize access to match layout on disks
– Single processes use data sieving to get data for many
– Often reduces total I/O through sharing of common blocks

 Second “phase” redistributes data to final destinations
 Two-phase writes operate in reverse (redistribute then I/O)

– Typically read/modify/write (like data sieving)

– Overhead is lower than independent access because there is little or no false sharing

 Note that two-phase is usually applied to file regions, not to actual blocks

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/OInitial State Phase 2: Redistribution

Two-Phase I/O Algorithms

22

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based
on Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

Impact of Two-Phase I/O Algorithms

 This graph shows the
performance for the S3D
combustion code, writing to a
single file.

 Aligning with lock boundaries
doubles performance over
default “even” algorithm.

 “Group” algorithm similar to
server-aligned algorithm on
last slide.

 Testing on Mercury, an IBM
IA64 system at NCSA, with 54
servers and 512KB stripe size.

23

W.K. Liao and A. Choudhary, “Dynamically
Adapting File Domain Partitioning Methods for
Collective
I/O Based on Underlying Parallel File System
Locking Protocols,” SC2008, November, 2008.

S3D Turbulent Combustion Code

 S3D is a turbulent combustion
application using a direct
numerical simulation solver from
Sandia National Laboratory

 Checkpoints consist of four
global arrays
– 2 3-dimensional
– 2 4-dimensional
– 50x50x50 fixed

subarrays

24

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and Wei-Keng Liao (NWU) for providing the S3D I/O benchmark,
Wei-Keng Liao for providing this diagram.

Impact of Optimizations on S3D I/O
 Testing with PnetCDF output to single file, three configurations,

16 processes
– All MPI-IO optimizations (collective buffering and data sieving)

disabled
– Independent I/O optimization (data sieving) enabled
– Collective I/O optimization (collective buffering, a.k.a. two-phase

I/O) enabled

25

Coll. Buffering
and Data
Sieving
Disabled

Data Sieving
Enabled

Coll. Buffering
Enabled (incl.
Aggregation)

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-IO writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time
per proc (sec)

1426.47 4.82 0.60

26

Common Functionality
ADIO Interface

UFS

MPI-IO Interface

NFS XFSPVFS
ROMIO’s layered architecture.

MPI-IO Implementations

 Different MPI-IO implementations exist
 Three better-known ones are:

– ROMIO from Argonne National Laboratory
• Leverages MPI-1 communication
• Supports local file systems, network file systems,

parallel file systems
– UFS module works GPFS, Lustre, and others

• Includes data sieving and two-phase optimizations
– MPI-IO/GPFS from IBM (for AIX only)

• Includes two special optimizations
– Data shipping -- mechanism for coordinating access to a file to alleviate

lock contention (type of aggregation)
– Controlled prefetching -- using MPI file views and access patterns to

predict regions to be accessed in future

– MPI from NEC
• For NEC SX platform and PC clusters with Myrinet, Quadrics,

IB, or TCP/IP
• Includes listless I/O optimization -- fast handling of

noncontiguous I/O accesses in MPI layer

The Parallel netCDF
Interface and File Format

27

Thanks to Wei-Keng Liao, Alok
Choudhary, and Kui Gao (NWU)
for their help in the
development of PnetCDF.

Higher Level I/O Interfaces

 Provide structure to files
– Well-defined, portable formats
– Self-describing
– Organization of data in file
– Interfaces for discovering contents

 Present APIs more appropriate for computational science
– Typed data
– Noncontiguous regions in memory and file
– Multidimensional arrays and I/O on subsets of these arrays

 Both of our example interfaces are implemented on top of MPI-IO

28

Parallel netCDF (PnetCDF)

 Based on original “Network Common Data Format” (netCDF) work from
Unidata

– Derived from their source code

 Data Model:

– Collection of variables in single file

– Typed, multidimensional array variables

– Attributes on file and variables

 Features:

– C and Fortran interfaces

– Portable data format (identical to netCDF)

– Noncontiguous I/O in memory using MPI datatypes

– Noncontiguous I/O in file using sub-arrays

– Collective I/O

– Non-blocking I/O

 Unrelated to netCDF-4 work

29

Data Layout in netCDF Files

30

Record Variables in netCDF

 Record variables are defined to have a
single “unlimited” dimension
– Convenient when a dimension size is

unknown at time of variable creation

 Record variables are stored after all the
other variables in an interleaved format
– Using more than one in a file is likely to

result in poor performance due to number
of noncontiguous accesses

31

Storing Data in PnetCDF

 Create a dataset (file)
– Puts dataset in define mode
– Allows us to describe the contents

• Define dimensions for variables
• Define variables using dimensions
• Store attributes if desired (for variable or dataset)

 Switch from define mode to data mode to write variables
 Store variable data
 Close the dataset

32

Example: FLASH Astrophysics

 FLASH is an astrophysics code for
studying events such as
supernovae
– Adaptive-mesh hydrodynamics

– Scales to 1000s of processors

– MPI for communication

 Frequently checkpoints:
– Large blocks of typed variables

from all processes

– Portable format

– Canonical ordering (different than
in memory)

– Skipping ghost cells

33

Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

Example: FLASH with PnetCDF

 FLASH AMR structures do not map directly to netCDF
multidimensional arrays

 Must create mapping of the in-memory FLASH data structures into
a representation in netCDF multidimensional arrays

 Chose to
– Place all checkpoint data in a single file
– Impose a linear ordering on the AMR blocks

• Use 4D variables

– Store each FLASH variable in its own netCDF variable
• Skip ghost cells

– Record attributes describing run time, total blocks, etc.

34

Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;
/* create dataset (file) */
status = ncmpi_create(MPI_COMM_WORLD, filename,

NC_CLOBBER, hints, &file_id);
/* define dimensions */
status = ncmpi_def_dim(ncid, "dim_tot_blks",

tot_blks, &dim_tot_blks);
status = ncmpi_def_dim(ncid, "dim_nxb",

nzones_block[0], &dim_nxb);
status = ncmpi_def_dim(ncid, "dim_nyb",

nzones_block[1], &dim_nyb);
status = ncmpi_def_dim(ncid, "dim_nzb",

nzones_block[2], &dim_nzb);

35

Each dimension gets
a unique reference

Creating Variables

int dims = 4, dimids[4];
int varids[NVARS];
/* define variables (X changes most quickly) */
dimids[0] = dim_tot_blks;
dimids[1] = dim_nzb;
dimids[2] = dim_nyb;
dimids[3] = dim_nxb;
for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_label[i],
NC_DOUBLE, dims, dimids, &varids[i]);

}

36

Same dimensions used
for all variables

Storing Attributes

/* store attributes of checkpoint */
status = ncmpi_put_att_text(ncid, NC_GLOBAL,

"file_creation_time", string_size, file_creation_time);
status = ncmpi_put_att_int(ncid, NC_GLOBAL, "total_blocks",

NC_INT, 1, tot_blks);
status = ncmpi_enddef(file_id);

/* now in data mode … */

37

Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */
size_t start_4d[4], count_4d[4];
start_4d[0] = global_offset; /* different for each process */
start_4d[1] = start_4d[2] = start_4d[3] = 0;
count_4d[0] = local_blocks;
count_4d[1] = nzb; count_4d[2] = nyb; count_4d[3] = nxb;
for (i=0; i < NVARS; i++) {

/* ... build datatype “mpi_type” describing values of a
single variable ... */

/* collectively write out all values of a single variable */
ncmpi_put_vara_all(ncid, varids[i], start_4d, count_4d,

unknowns, 1, mpi_type);
}
status = ncmpi_close(file_id);

38

Typical MPI buffer-count-
type tuple

Inside PnetCDF Define Mode

 In define mode (collective)
– Use MPI_File_open to create file at create time
– Set hints as appropriate (more later)
– Locally cache header information in memory

• All changes are made to local copies at each process

 At ncmpi_enddef
– Process 0 writes header with MPI_File_write_at
– MPI_Bcast result to others
– Everyone has header data in memory, understands placement of all

variables
• No need for any additional header I/O during data mode!

39

Inside PnetCDF Data Mode

 Inside ncmpi_put_vara_all (once per variable)
– Each process performs data conversion into internal buffer
– Uses MPI_File_set_view to define file region

• Contiguous region for each process in FLASH case

– MPI_File_write_all collectively writes data

 At ncmpi_close
– MPI_File_close ensures data is written to storage

 MPI-IO performs optimizations
– Two-phase possibly applied when writing variables

 MPI-IO makes PFS calls
– PFS client code communicates with servers and stores data

40

Inside Parallel netCDF: Jumpshot view

41

1: Rank 0 write header
(independent I/O)

2: Collectively write
app grid, AMR data

3: Collectively
 write 4 variables

4: Close file

I/O
Aggregator

PnetCDF Wrap-Up

 PnetCDF gives us
– Simple, portable, self-describing container for data
– Collective I/O
– Data structures closely mapping to the variables described

 If PnetCDF meets application needs, it is likely to give good
performance
– Type conversion to portable format does add overhead

 Some limits on (old, common CDF-2) file format:
– Fixed-size variable: < 4 GiB
– Per-record size of record variable: < 4 GiB
– 232 -1 records
– New extended file format to relax these limits (CDF-5, released in

pnetcdf-1.1.0)

42

The HDF5 Interface and
File Format

43

HDF5

 Hierarchical Data Format, from the HDF Group (formerly of NCSA)
 Data Model:

– Hierarchical data organization in single file
– Typed, multidimensional array storage
– Attributes on dataset, data

 Features:
– C, C++, and Fortran interfaces
– Portable data format
– Optional compression (not in parallel I/O mode)
– Data reordering (chunking)
– Noncontiguous I/O (memory and file) with hyperslabs

44

HDF5 Files

 HDF5 files consist of groups, datasets, and attributes
– Groups are like directories, holding other groups and datasets
– Datasets hold an array of typed data

• A datatype describes the type (not an MPI datatype)
• A dataspace gives the dimensions of the array

– Attributes are small datasets associated with the file, a group,
or another dataset

• Also have a datatype and dataspace
• May only be accessed as a unit

45

Dataset “temp”

HDF5 File “chkpt007.h5”

Group “/”

Group “viz”
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)

attributes = …

10 (data)

20

HDF5 Data Chunking

 Apps often read subsets of arrays (subarrays)
 Performance of subarray access depends in part

on how data is laid out in the file
– e.g. column vs. row major

 Apps also sometimes store sparse data sets
 Chunking describes a reordering of array data

– Subarray placement in file determined lazily
– Can reduce worst-case performance for subarray

access
– Can lead to efficient storage of sparse data

 Dynamic placement of chunks in file requires
coordination
– Coordination imposes overhead and can impact

performance

46

Dataset data

A B C D

A DC Bheader
Chunk
index

File data

Example: FLASH Particle I/O with HDF5

 FLASH “Lagrangian particles” record
location, characteristics of reaction

– Passive particles don’t exert forces;
pushed along but do not interact

 Particle data included in checkpoints,
but not in plotfiles; dump particle data
to separate file

 One particle dump file per time step

– i.e., all processes write to single particle
file

 Output includes application info,
runtime info in addition to particle data

47

Block=30;
Pos_x=0.65;
Pos_y=0.35;
Pos_z=0.125;
Tag=65;
Vel_x=0.0;
Vel_y=0.0;
vel_z=0.0;

Typical particle data

Opening file

hid_t acc_template;
ierr = H5Pset_alignment(acc_template, 524288, 262144);
ierr = MPI_Info_set(info, "IBM_largeblock_io", "true");

/* set the file access template for parallel IO */
ac_template = H5Pcreate(H5P_FILE_ACCESS);
/* tell HDF5 to use MPI-IO interface */
ierr = H5Pset_fapl_mpio(acc_template, *io_comm, info);

/* create the file collectively */
file_identifier = H5Fcreate(filename, H5F_ACC_TRUNC,
 H5P_DEFAULT, acc_template);
/* release the file access template */
ierr = H5Pclose(acc_template);

48

“P”: property list
“F”: file operations
“S”: dataspace,
“T”: datatype,
“D”: dataset!

Storing Labels for Particles

int string_size = OUTPUT_PROP_LENGTH;
hsize_t dims_2d[2] = {npart_props, 1};
hid_t dataspace, dataset, file_id, string_type;

/* store string creation time attribute */
string_type = H5Tcopy(H5T_C_S1);
H5Tset_size(string_type, string_size);
dataspace = H5Screate_simple(2, dims_2d, NULL);
dataset = H5Dcreate(file_id, “particle names", string_type,

dataspace, H5P_DEFAULT);
if (myrank == 0) {

status = H5Dwrite(dataset, string_type, H5S_ALL,
H5S_ALL, H5P_DEFAULT, particle_labels);

}

49

get a copy of the
string type and

resize it

Write out
all 8
labels in
one call

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

Storing Particle Data with Hyperslabs (1 of 2)

hsize_t dims_2d[2];

/* Step 1: set up dataspace –
 describe global layout */

dims_2d[0] = total_particles;
dims_2d[1] = npart_props;

dspace = H5Screate_simple(2, dims_2d, NULL);
dset = H5Dcreate(file_id, “tracer particles”,

H5T_NATIVE_DOUBLE, dspace, H5P_DEFAULT);

50

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

local_np = 2,
part_offset = 3,
total_particles = 10,
Npart_props = 8

Storing Particle Data with Hyperslabs (2 of 2)

hsize_t start_2d[2] = {0, 0},
 stride_2d[1] = {1, 1};
hsize_t count_2d[2] = {local_np,
 npart_props};

/* Step 2: setup hyperslab for
 dataset in file */

start_2d[0] = part_offset;
/* MPI_Allgather earlier determined particles */
status = H5Sselect_hyperslab(dspace,
 H5S_SELECT_SET,
 start_2d, stride_2d, count_2d, NULL);

51

dataspace from
last slide

local_np = 2,
part_offset = 3,
total_particles = 10,
Npart_props = 8

- Hyperslab selection similar to MPI-IO file view
- Selections don’t overlap in this example (would be bad if writing!)
- H5SSelect_none() if no work for this process

Collectively Writing Particle Data

/* Step 1: specify collective I/O */
dxfer_plist = H5Pcreate(H5P_DATASET_XFER);
Ierr = H5Pset_dxpl_mpio(dxfer_plist,

H5FD_MPIO_COLLECTIVE);

/* Step 2: perform collective write */
status = H5Dwrite(dataset,

 H5T_NATIVE_DOUBLE,
 memspace,
 dspace,
 dxfer_plist ,
 particles);

52

“P” is for property list;
tuning parameters

dataspace
describing
memory,

 could also use a
hyperslab

dataspace describing
region in file, with

hyperslab from previous
two slides

Remember:
“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

Inside HDF5

 MPI_File_open used to open file
 Because there is no “define” mode, file layout is

determined at write time
 In H5Dwrite:

– Processes communicate to determine file layout
• Process 0 performs metadata updates after write

– Call MPI_File_set_view
– Call MPI_File_write_all to collectively write

• Only if enabled via property list
 Memory hyperslab could have been used to define

noncontiguous region in memory
 In FLASH application, data is kept in native format

and converted at read time (defers overhead)
– Could store in some other format if desired

 At the MPI-IO layer:
– Metadata updates at every write are a bit of a bottleneck

• MPI-IO from process 0 introduces some skew

53

Inside HDF5: Jumpshot view

54

1: Rank 0 write initial structure
(multiple independent I/O)

3: Determine location
For variable (orange)

5: Rank 0 writes
final md

6: Close file2: Collectively write
grid, provenance data

4: Collectively write
variable (blue)

HDF5 Wrap-up

 Tremendous flexibility: 300+ routines
 H5Lite high level routines for common cases
 Tuning via property lists

– “use MPI-IO to access this file”
– “read this data collectively”

 Extensive on-line documentation, tutorials (see “On Line
Resources” slide)

 New efforts:
– Journaling: make datasets more robust in face of crashes (Sandia)
– Fast appends (finance motivated)
– Single-writer, Multiple-reader semantics
– Aligning data structures to underlying file system

55

Other High-Level I/O libraries

 NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
– netCDF API with HDF5 back-end

 ADIOS: http://adiosapi.org
– Configurable (xml) I/O approaches

 SILO: https://wci.llnl.gov/codes/silo/
– A mesh and field library on top of HDF5 (and others)

 H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/
– simplified HDF5 API for particle simulations

 GIO: https://svn.pnl.gov/gcrm
– Targeting geodesic grids as part of GCRM

 PIO:
– climate-oriented I/O library; supports raw binary, parallel-netcdf, or

serial-netcdf (from master)

 … Many more: my point: it's ok to make your own.

http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm

I/O in Parallel Volume
Rendering

Thanks to Tom Peterka (ANL)
and Hongfeng Yu and Kwan-Liu
Ma (UC Davis) for providing the
code on which this material is
based.

57

58

Parallel Volume Rendering

 Supernova model with focus
on core collapse

 Parallel rendering techniques
scale to 16k cores on Argonne
Blue Gene/P

 Produce a series of time steps
 11203 elements (~1.4 billion)
 Structured grid
 Simulated and rendered on

multiple platforms, sites
 I/O time now largest

component of runtime

of Cores

59

The I/O Code (essentially):
 MPI_Init(&argc, &argv);
 ncmpi_open(MPI_COMM_WORLD, argv[1], NC_NOWRITE,
 info, &ncid));
 ncmpi_inq_varid(ncid, argv[2], &varid);
 buffer =calloc(sizes[0]*sizes[1]*sizes[2],sizeof(float));
 for (i=0; i<blocks; i++) {
 decompose(rank, nprocs, ndims, dims, starts, sizes);
 ncmpi_get_vara_float_all(ncid, varid,
 starts, sizes, buffer);
 }
 ncmpi_close(ncid));
 MPI_Finalize();

 Read-only workload: no switch between define/data mode
 Omits error checking, full use of inquire (ncmpi_inq_*) routines
 Collective I/O of noncontiguous (in file) data
 “black box” decompose function:

– divide 1120^3 elements into roughly equal mini-cubes
– “face-wise” decomposition ideal for I/O access, but poor fit for

volume rendering algorithms

60

Volume Rendering and pNetCDF

 Original data: netCDF formatted
 Two approaches for I/O

– Pre-processing: extract each variable to separate file
• Lengthy, duplicates data

– Native: read data in parallel, on-demand from dataset
• Skip preprocessing step but slower than raw

 Why so slow?
– 5 large “record” variables in

a single netcdf file
• Interleaved on per-record basis

– Bad interaction with default
MPI-IO parameters

Record variable interleaving is
performed in N-1 dimension slices,
where N is the number of dimensions
in the variable.

61

Access Method Comparison

 MPI-IO hints matter
 HDF5: many small

metadata
reads

 Interleaved record
format: bad news

API time (s) accesses read data (MB) efficency

MPI (raw data) 11.388 960 7126 75.20%

PnetCDF (no hints) 36.030 1863 24200 22.15%

PnetCDF (hints) 18.946 2178 7848 68.29%

HDF5 16.862 23450 7270 73.72%

PnetCDF (beta) 13.128 923 7262 73.79%

62

Analysis: Parallel netCDF, no hints

 Block depiction of 28 GB file
 Record variable scattered
 Reading in way too much

data!

 Default “cb_buffer_size” hint
not good for interleaved
netCDF record variables

o
ffse

t
time

63

 With tuning, much less
reading

 Better efficiency, but still
short of MPI-IO

 Still some overlap
 “cb_buffer_size” now size of

one netCDF record
 Better efficiency, at slight

perf cost

o
ffse

t
time

Analysis: Parallel netCDF, hints

64

Analysis: Parallel HDF5

 Different file format,
different characteristics

 Data exhibits spatial locality

 Thousands of metadata reads

– All clients read MD from file

 Reads could be batched. Not sure why not
(implementation detail: HDF5 folks on the
case).

o
ffse

t
time

65

Analysis: new Parallel netCDF

 Development effort to relax
netCDF file format limits

 No need for record variables
 Data nice and compact like

MPI-IO and HDF5

 Rank 0 reads header, broadcasts to others

– Much more scalable approach

 Approaching MPI-IO efficiency

 Maintains netCDF benefits

– Portable, self-describing, etc.

o
ffse

t
time

Data Staging in Exascale Systems

 Memory will be extremely limited in exascale systems, so it is unrealistic to consider
using it for I/O buffering.

 More likely, solid state storage will be used to provide this staging area.

66

Data Analysis Options

 In situ – process the data (to some degree) in the context of the
running application

 Co-processing – process the data around the same time as the
simulation is run, but not on the simulation nodes

 Post-processing – store the data and process it later

Image compliments V.
Vishwanath (ANL).

Current system
architectures integrate
a separate analysis
cluster that shares
access to storage over a
large switch complex.
Most data analysis is
performed after
simulations are
complete (post-
processed) on these
nodes, or processed
remotely.

67

In Situ Analysis and Data Reduction
In situ analysis incorporates analysis routines into the simulation code. This
technique allows analysis routines to operate on data while it is still in memory,
potentially significantly reducing the I/O demands.

One way to take advantage of in situ techniques is to perform initial analysis for the
purposes of data reduction. With help from the application scientist to identify
features of interest, we can compress data of less interest to the scientist, reducing
I/O demands during simulation and further analysis steps.

The feature of interest in this case is
the mixture fraction with an iso value
of 0.2 (white surface). Colored regions
are a volume rendering of the HO2
variable (data courtesy J. Chen (SNL)).

By compressing data more
aggressively the further it is from this
surface, we can attain a compression
ratio of 20-30x while still retaining full
fidelity in the vicinity of the surface.

C. Wang, H. Yu, and K.-L. Ma, “Application-driven compression for visualizing large-scale time-
varying volume data”,
IEEE Computer Graphics and Applications, 2009. 68

Merging Analysis and Storage Resources

One way to reduce costs, and to potentially improve post-
processing rates, is to merge analysis resources with storage
resources. Need to move to using commodity storage (if
possible) at the same time.

69

70

Printed References

 John May, Parallel I/O for High Performance
Computing, Morgan Kaufmann, October 9, 2000.
– Good coverage of basic concepts, some MPI-IO, HDF5, and

serial netCDF
– Out of print?

 William Gropp, Ewing Lusk, and Rajeev Thakur,
Using MPI-2: Advanced Features of the Message
Passing Interface, MIT Press, November 26, 1999.
– In-depth coverage of MPI-IO API, including a very detailed

description of the MPI-IO consistency semantics

71

On-Line References

 netCDF and netCDF-4
– http://www.unidata.ucar.edu/packages/netcdf/

 PnetCDF
– http://www.mcs.anl.gov/parallel-netcdf/

 ROMIO MPI-IO
– http://www.mcs.anl.gov/romio/

 HDF5 and HDF5 Tutorial
– http://www.hdfgroup.org/

– http://hdf.ncsa.uiuc.edu/HDF5/

– http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html

 POSIX I/O Extensions
– http://www.opengroup.org/platform/hecewg/

 Darshan I/O Characterization Tool
– http://www.mcs.anl.gov/research/projects/darshan

	The Architecture of Parallel I/O
	Computational Science
	Large-Scale Data Sets
	Disk Access Rates over Time
	Applications, Data Models, and I/O
	Challenges in Application I/O
	I/O for Computational Science
	The Present: Oak Ridge Computing Platform
	I/O Hardware and Software on Blue Gene/P
	High-level Libraries and MPI-IO Software
	I/O Forwarding Software
	Parallel File System Software
	Exascale Systems: Potential Architecture
	The MPI-IO Interface
	MPI-IO
	Independent and Collective I/O
	Contiguous and Noncontiguous I/O
	Nonblocking and Asynchronous I/O
	Noncontiguous I/O: Data Sieving
	Data Sieving Write Operations
	Collective I/O and Two-Phase I/O
	Two-Phase I/O Algorithms
	Impact of Two-Phase I/O Algorithms
	S3D Turbulent Combustion Code
	Impact of Optimizations on S3D I/O
	MPI-IO Implementations
	The Parallel netCDF Interface and File Format
	Higher Level I/O Interfaces
	Parallel netCDF (PnetCDF)
	Data Layout in netCDF Files
	Record Variables in netCDF
	Storing Data in PnetCDF
	Example: FLASH Astrophysics
	Example: FLASH with PnetCDF
	Defining Dimensions
	Creating Variables
	Storing Attributes
	Writing Variables
	Inside PnetCDF Define Mode
	Inside PnetCDF Data Mode
	Inside Parallel netCDF: Jumpshot view
	PnetCDF Wrap-Up
	The HDF5 Interface and File Format
	HDF5
	HDF5 Files
	HDF5 Data Chunking
	Example: FLASH Particle I/O with HDF5
	Opening file
	Storing Labels for Particles
	Storing Particle Data with Hyperslabs (1 of 2)
	Storing Particle Data with Hyperslabs (2 of 2)
	Collectively Writing Particle Data
	Inside HDF5
	Inside HDF5: Jumpshot view
	HDF5 Wrap-up
	Other High-Level I/O libraries
	I/O in Parallel Volume Rendering
	Parallel Volume Rendering
	The I/O Code (essentially):
	Volume Rendering and pNetCDF
	Access Method Comparison
	Analysis: Parallel netCDF, no hints
	Analysis: Parallel netCDF, hints
	Analysis: Parallel HDF5
	Analysis: new Parallel netCDF
	Data Staging in Exascale Systems
	Data Analysis Options
	In Situ Analysis and Data Reduction
	Merging Analysis and Storage Resources
	Printed References
	On-Line References

