Argonneo

NATIONAL LABORATORY

The Architecture of Parallel 1/0

Rob Latham

robl@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

http://www.mcs.anl.gov/~robl/tutorials/csmc/

28 October 2010

[m;}) U.S. DEPARTMENT OF
{2 ENERGY

mailto:robl@mcs.anl.gov
http://www.mcs.anl.gov/~robl/tutorials/csmc/

Computational Science

Use of computer simulation as a tool for
greater understanding of the real world

- Complements experimentation and theory
Problems are increasingly computationally

challenging
. IBM Blue Gene/P system at Argonne
- Large para”el maChlneS needed tO National Laboratory.

perform calculations

- Critical to leverage parallelism in all
phases

Data access is a huge challenge
- Using parallelism to obtain performance

- Finding usable, efficient, portable
interfaces

- Understanding and tuning 1/O

Visualization of entropy in Terascale
Supernova Initiative application. Image
from Kwan-Liu Ma’s visualization team at
UC Davis.

Large-Scale Data Sets

Application teams are beginning to generate |10s of Tbytes of data in a single
simulation. For example, a recent GTC run on 29K processors on the XT4
generated over 54 Tbytes of data in a 24 hour period [I].

Data requirements for select 2008 INCITE applications at ALCF

On-Line

Pl Project Data Off-Line Data
Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB
Dean, David Computational Nuclear Structure 4TB 40TB
Baker, David Computational Protein Structure 1TB 2TB
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB
Wolverton, Christopher Kinetics and Thermodynamics of Metal and 5TB 100TB

Complex Hydride Nanoparticles
Washington, Warren Climate Science 10TB 345TB
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB
Tang, William Plasma Microturbulence 2TB 10TB
Sugar, Robert Lattice QCD 1TB 44TB
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB

1] S. Klasky, personal correspondence, June 19, 2008.

s 3

Disk Access Rates over Time

1000 4
e i 'I..Ir-r
@ ! Cheetah 15K.6/
(] . A
"%i 100 SEWIGM
a - Ultrastar 73LZX Adgk™ /
= i Ultrastar 182X !
¥ 0L Ulerastar |18 U|tr5,siar ATI 1000
g Spiire
P 3380 A— 3390 /
] - 337",(1A’Ar /
g b 335047
= 33304 y
.E .r'I
{1 i
s : /
g Ol
o - The r'::lte of performance
RAMALC
E’ 001 | In 1956 IBM produced the improvement in supercomputing
E - first computer to include a systems, as measured by
i disk drive. Linpack, since 1993.
0.001 | | | | | |
1950 1960 1970 | 980 1990 2000 2010

Thanks to R. Freitas of IBM Almaden Research Center for providing much of the data for this graph.

Applications, Data Models, and I/0

" Applications have data models
appropriate to domain

- Multidimensional typed arrays, images
composed of scan lines, variable length
records

- Headers, attributes on data

" |/O systems have very simple

data models Graphic from J. Tannahill, LLNL
- Tree-based hierarchy of containers
- Some containers have streams of bytes T e M I s s .
(files) o ;
- Others hold collections of other containers .]
(directories or folders) geow bl] E
" Someone has to map from one .. o
to the other!

1.0x10%
r{em)

Graphic from A. Siegel, ANL

Challenges in Application 1/0

" Leveraging aggregate communication and I/O
bandwidth of clients

- ...but not overwhelming a resource limited I/O system with
uncoordinated accesses!

" Limiting number of files that must be managed
- Also a performance issue
" Avoiding unnecessary post-processing
" Often application teams spend so much time on this
that they never get any further:
- Interacting with storage through convenient abstractions
- Storing in portable formats

Parallel 1/0 software is available to address all
of these problems, when used appropriately.

/0 for Computational Science

High-Level 1/0 Library
maps application abstractions
onto storage abstractions

and provides data portability.

HDFS5, Parallel netCDF, ADIOS

1/0 Forwarding
bridges between app. tasks
and storage system and
provides aggregation for
uncoordinated 1/O.

IBM ciod

ﬂ
4

Application

High-Level I/O Library

I/O Middleware

l/O Forwarding

Parallel File System

I/O Hardware

%

1/0 Middleware
organizes accesses from
many processes,
especially those using
collective I/O.

MPI-IO

Parallel File System
maintains logical space
and provides efficient
access to data.

PVFS, PanFS, GPFS, Lustre

Additional 1/O software provides improved performance and usability over directly
accessing the parallel file system. Reduces or (ideally) eliminates need for
optimization in application codes.

The Present: Oak Ridge Computing Platform

Serial ATA InfiniBand
. Seastar2+ 3D Torus
3 Gbit/sec 16 Gb1USE'IC 9.6 Gbytes/sec
366 384
Gbytes/s 284 Ghytaes.l's - ~

Ei Ghrlesfs Gbytes/s

<Z>§:

SEcinllL e
s]]

Jaguar XT5

NN

£

0

e

Other Systems
(Viz, Clusters)

Enterprise L‘-’WEEE Storage Nodes SION Network Lustre Router Nodes
controllers and large run parallel file system provides connectivity run parallel file system
racks of disks are connected software and manage between OLCF client software and
via InfiniBand. incoming FS traffic. resources and forward 1/0 operations
) primarily carries from HPC clients.
48 DataDirect 52A9900 192 dual quad core storage traffic.
controller pairs with Xeon servers with 192 (XT3) and 48 (XT4)
1 Tbyte drives 16 Gbytes of RAM each 3000+ port 16 Gbit/sec one dual core
and 4 InifiniBand InfiniBand switch Opteron nodes with
connections per pair complex 8 GB of RAM each

Figure compliments Galen Shipman (ORNL),
a Feb. 16, 2010. 8

N
/0 Hardware and Software on Blue Gene/P

High-level 1/0 libraries 1/0 forwarding software Parallel file system Drive management
execute on compute nodes, runs on compute and code runs on gateway and software or firmware executes
mapping application abstractions gateway nodes, bridges storage nodes, maintains on storage controllers,

into flat files, and encoding data networks, and provides logical storage space and organizes individual drives,

in portable formats. aggregation of independent enables efficient access to detects drive failures, and

1/0 middleware manages I1o.) data. reconstructs lost data.

collective access to storage. X

Compute nodes Gateway nodes Commodity network Storage nodes Enterprise storage
40,960 Quad core 640 Quad core 900+ port 10 Gigabit | 36 two dual core | 7 DataDirect 52A9900
PowerPC 450 nodes with PowerPC 450 nodes with Ethernet Myricom Opteron servers with controller pairs with 480
2 Gbytes of RAM each 2 Gbytes of RAM each switch complex 8 Gbytes of RAM each | Tbyte drives and

8 InfiniBand ports per pair
Architectural diagram of the 557 TFlap IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

s 9

ngh-level Libraries High-level 1/0 libraries and
and MPI-10 Software MPI-10 execute on compute nodes

and organize accesses before the /O

system sees them.

Compute nodes

run application codes with high-level /O
libraries and MPI-1O. |/O libraries make
I/O calls to I/O forwarding system

6 10

1/0 Forwarding Software 1/0 forwarding software runs on

compute and gateway nodes and
bridges between the compute nodes
and external storage.

I ——. R .
i
' e O 4 !
] ﬁ:*x ﬁ::: ﬁ:u . 1
| R 2R ZE ml
I T T AT~ T~ I
I o = =TI~ T I~ !
I =1 I~ ~TT™ T +
i T~ T~ T~ | M
I ~TI~ P ol I
i = o P Pl i
I I o ol I I
1 T~ 1 ™
' ~T~ ~TIT~ T~ '
I ~TI~ Came ~T I~ '
I T T T :
| f
Compute nodes Gateway nodes
run /O forwarding software run I/O forwarding software
intercepting /O calls from accepting /O requests from
application and forwarding to compute nodes and forward
gateway nodes to parallel file system

é 11

Parallel Fl le SyStem PVFS code runs on gateway and
SOftware storage nodes, maintains logical

storage space, and enables efficient
access to data.

%
|
T AT~ ~TT~ : [
i o e i T
AT~ T~ P |
T~ AT~ AT~ ><-
P e ™ Pl ™ | 1
1 ™ T I~ ~ ™ i
AT~ ~TI~ ~TT~ : y =
AT~ ~TIT~ ~TI~ | n
AT AT~ AT~ l
T~ ~Tr~ AT~ ><_
ol ™ g ™ A |
T T T |]
T~ T~ T~ : |
T~ ~TT~ ~TT~ : L
T~ “TT~ AT | .
L |
= |
| !
Gateway nodes Commeodity network Storage nodes Enterprise storage
run parallel file primarily carries run parallel file accept block device
system client storage traffic system server requests from file
software software and server and manage
manage incoming logical units (LUNs)
FS traffic

12

Exascale Systems: Potential Architecture

Systems Differenc
e
System Peak 2 Pflop/sec 1 Eflop/sec 0O(1000)
Power 6 Mwatt 20 Mwatt
System Memory 0.3 Pbytes 32-64 Pbytes 0O(100)
Node Compute 125 Gflop/sec 1-15 Tflop/sec 0O(10-100)
Node Memory BW 25 Gbytes/sec 2-4 Thytes/sec 0O(100)
Node Concurrency 12 O(1-10K) 0O(100-1000)
Total Node Interconnect BW 3.5 Gbytes/sec 200-400 Gbytes/sec 0O(100)
System Size (Nodes) 18,700 0O(100,000-1M) O(10-100)
Total Concurrency 225,000 O(1 billion) 0(10,000)
Storage 15 Pbytes 500-1000 Pbytes 0(10-100)
1/0 0.2 Thytes/sec 60 Tbytes/sec 0(100)
MTTI Days O(1 day)

From J. Dongarra, “Impact of Architecture and Technology for Extreme Scale on Software
and Algorithm Design,” Cross-cutting Technologies for Computing at the Exascale, February

2-5, 2010.
é 13

The MPI-IO Interface

MPI-10

B |/O interface specification for use in MPIl apps
B Data model is same as POSIX

- Stream of bytes in a file
B Features:

- Collective I/O

- Noncontiguous I/O with MPI datatypes and file views
- Nonblocking I/O

- Fortran bindings (and additional languages)

- System for encoding files in a portable format (external32)
* Not self-describing - just a well-defined encoding of types

B |Implementations available on most platforms (more later)

15

Independent and Collective I/0

POl PL P2 |P3fjpafies | [P0 |PLf[p2| P3 P4 PS|
e =

Independent I/O Collective I/O

* |ndependent I/O operations specify only what a single process will do

- Independent I/O calls do not pass on relationships between |I/O on other processes
* Many applications have phases of computation and 1/0

- During I/O phases, all processes read/write data

- We can say they are collectively accessing storage
= (Collective I/O is coordinated access to storage by a group of processes

- Collective 1/0 functions are called by all processes participating in I/O

- Allows 1/O layers to know more about access as a whole, more opportunities for
optimization in lower software layers, better performance

16

Contiguous and Noncontiguous I/0

i w
Contiguous Noncontiguous Noncontiguous Noncontiguous
in File in Memory in Both

« Contiguous I/O moves data from a single memory block into a single file region
« Noncontiguous I/O has three forms:
_ Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
» Structured data leads naturally to noncontiguous 1/0 (e.g. block decomposition)
» Describing noncontiguous accesses with a single operation passes more knowledge to 1/0 system

Nonblocking and Asynchronous 1I/0

B Blocking, or Synchronous, I/O operations return when buffer may
be reused
- Data in system buffers or on disk
B Some applications like to overlap I/O and computation
- Hiding writes, prefetching, pipelining
B A nonblocking interface allows for submitting I/O operations and
testing for completion later
B |f the system also supports asynchronous |/O, progress on
operations can occur in the background
- Depends on implementation

B Otherwise progress is made at start, test, wait calls

18

= Data sieving is used to combine
lots of small accesses into a
single larger one

- - Remote file systems (parallel or
/ not) tend to have high latencies

Memor

- Reducing # of operations important

= Similar to how a block-based file
system interacts with storage

= Generally very effective, but not
as good as having a PFS that
supports noncontiguous access

Buffer

File

Data Sieving Read Transfers

s 19

Data Sieving Write Operations

B Data sieving for writes is more

Memor complicated
y / / - Must read the entire region first
- Then make changes in buffer
v_ U v__V - Then write the block back
Buffer B Requires locking in the file

system

- Can result in false sharing
(interleaved access)

B PFS supporting noncontiguous
writes is preferred

Data Sieving Write Transfers

s 20

Collective I/0 and Two-Phase 1/0

Initial State Phase 1: I/O Phase 2: Redistribution
Two-Phase Read Algorithm

Problems with independent, noncontiguous access
- Lots of small accesses
- Independent data sieving reads lots of extra data, can exhibit false sharing
» |dea: Reorganize access to match layout on disks
- Single processes use data sieving to get data for many
- Often reduces total I/O through sharing of common blocks
= Second “phase” redistributes data to final destinations
= Two-phase writes operate in reverse (redistribute then 1/0)
- Typically read/modify/write (like data sieving)
- Overhead is lower than independent access because there is little or no false sharing
= Note that two-phase is usually applied to file regions, not to actual blocks

21

Two-Phase I/0 Algorithms

Imagine a collective I/O access
using four aggregators to a file

Offset in File

striped over four file servers A $ |
(indicated by colors): Stripe Unit Lock Extent of Accesses
Boundary
One approach is to evenly Aggregator | | Aggregator2 | Aggregator3 | Aggregator4 |
divide the region accessed
across aggregators. T T YT | """"""" T T
Lock Contention

Aligning regions with lock > —>

- . - F=-======---------- Fosssss-s------o- o ittty Fm-=========-=-==-- \
bou{'di':'es eliminates lock A‘ . Aggregator | | Aggregator 2 E Aggregator 3 | Aggregator 4 |
contention. ' : :

Mapping aggregators to servers
reduces the number of
concurrent operations on a
single server and can be helpful LAl A2 A3 L A4 T AL A TTTA3
when locks are handed out on ' ' ' ' '
a per-server basis (e.g., Lustre).

For more information, see W.K. Liao and A. Choudhary, “Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based
on Underlying Parallel File System Locking Protocols,” SC2008, November, 2008.

s 22

Impact of Two-Phase 1/0 Algorithms

53D 'O on GPFS

This graph shows the 08 -
performance for the S3D o7 | ven i E,ff“’ T
combustion code, writing to a = o /

single file. " rd

Aligning with lock boundaries & *°| /ﬁ '
doubles performance over § oa f,f f--*""_“"
default “even” algorithm. 2 o3

“Group” algorithm similar to = ﬂ-ifr/sr——ﬁ’_“ e-nﬁw
server-aligned algorithm on .

0.1
last slide. T v % ‘*’% -ﬁ;. %,

. Mumber of Processes
Testing on Mercury, an IBM
|A64 system at NCSA, with 54 W.K. Liao and A. Choudhary, “Dynamically
servers 3 nd 512KB Stri pe Size Adapting File Domain Partitioning Methods for

Collective
I/O Based on Underlying Parallel File System
Locking Protocols,” SC2008, November, 2008.

23

S3D Turbulent Combustion Code

= S3D is a turbulent combustion

application using a direct 4D subarray in -
numerical simulation solver from P®% . neml
Sandia National Laboratory .
. . local-to—global
= Checkpoints consist of four ' y /\\, mapping
global arrays
n=0

- 2 3-dimensional
- 2 4-dimensional =z
- 50x50x50 fixed f’x

n=m-1

SUbarrayS 48 - 49 - 50 .~ &1
ap ~ 33 34 7 35
16 ~ 17 ~ 1B ~ 18
//// 18,1 |/ -
Pu F"1 F’2 F"3 ng-‘i
e A
Pl Fs| Fe| P Pt
[7 . .
Pa F"g F1= o F1' 1 /4 B3 m: length of the 4th dimension
31 n=0 n: index of the 4th dimension
Rz| Ra| R4l Rs

Thanks to Jackie Chen (SNL), Ray Grout (SNL), and Wei-Keng Liao (NWU) for providing the S3D 1/O benchmark,
Wei-Keng Liao for providing this diagram.

v 24

Impact of Optimizations on S3D I/0
= Testing with PnetCDF output to single file, three configurations,

16 processes

- All MPI-10 optimizations (collective buffering and data sieving)
disabled

- Independent I/O optimization (data sieving) enabled
- Collective 1/0O optimization (collective buffering, a.k.a. two-phase

Coll. Buffering Data Sieving Coll. Buffering
and Data Enabled Enabled (incl.
Sieving Aggregation)
Disabled

POSIX writes 102,401 81 5

POSIX reads 0 80 0

MPI-1O writes 64 64 64

Unaligned in file 102,399 80 4

Total written (MB) 6.25 87.11 6.25

Runtime (sec) 1443 11 6.0

Avg. MPI-IO time 1426.47 4.82 0.60

per proc (sec)

25

MPI-10 Implementations

MPI-IO Interface
B Different MPI-IO implementations exist Common Functionality

B Three better-known ones are: ADIO Interface

- ROMIO from Argonne National Laboratory PVFS XFS
’ Leverages MPI-1 communication ROMIQO’s layered architecture.

* Supports local file systems, network file systems,
parallel file systems
— UFS module works GPFS, Lustre, and others

* Includes data sieving and two-phase optimizations
- MPI-IO/GPFS from IBM (for AlX only)

* Includes two special optimizations

— Data shipping -- mechanism for coordinating access to a file to alleviate
lock contention (type of aggregation)

— Controlled prefetching -- using MPI file views and access patterns to
predict regions to be accessed in future

- MPI from NEC

* For NEC SX platform and PC clusters with Myrinet, Quadrics,
IB, or TCP/IP

* Includes listless I/O optimization -- fast handling of
noncontiguous I/O accesses in MPI layer

26

The Parallel netCDF
Interface and File Format

Thanks to Wei-Keng Liao, Alok

Choudhary, and Kui Gao (NWU)
for their help in the

development of PnetCDF.

Higher Level I/0 Interfaces

" Provide structure to files

Well-defined, portable formats

Self-describing

- Organization of data in file

Interfaces for discovering contents

" Present APIs more appropriate for computational science
- Typed data
- Noncontiguous regions in memory and file
- Multidimensional arrays and I/O on subsets of these arrays

= Both of our example interfaces are implemented on top of MPI-1O

28

Parallel netCDF (PnetCDF)

B Based on original “Network Common Data Format” (netCDF) work from

Unidata

Derived from their source code

B Data Model:

Collection of variables in single file

- Typed, multidimensional array variables

Attributes on file and variables

B Features:

C and Fortran interfaces

Portable data format (identical to netCDF)
Noncontiguous I/O in memory using MPI datatypes
Noncontiguous I/O in file using sub-arrays
Collective 1/O

Non-blocking I/O

B Unrelated to netCDF-4 work

29

Data Layout in netCDF Files

Application Data Structures

26

—

\

SFRUEESTTS)

netCDF File "checkpoint07.nc"

Variable "temp" {
type = NC_DOUBLE,
dims = {1024, 1024, 26},
start offset = 65536,
attributes = {"Units" = "K"}}

Variable "surface_pressure” {
type = NC_FLOAT,
dims = {512, 512},
start offset = 218103808,
attributes = {"Units" = "Pa"}}

< Data for "temp" >

< Data for "surface_pressure" >

%

netCDF header describes
the contents of the file:
typed, multi-dimensional
variables and attributes

on variables or the dataset
itself.

Data for variables is stored
in contiguous blocks,
encoded in a portable binary
format according to the
variable's type.

30

Record Variables in netCDF

Record variables are defined to have a
single “unlimited” dimension

Convenient when a dimension size is
unknown at time of variable creation

Record variables are stored after all the
other variables in an interleaved format

Using more than one in a file is likely to
result in poor performance due to number
of noncontiguous accesses

Record Data

Fixed—sized data

e

"

7
L

e

netCDF Header

l1st non—record variable

Z2nd non-record variable

2R

LR

nth non—record wariable

1zt Record for 1st Eecord ¥Yar

1=t Record for ?nd Record Var

1zt Record for rth Eecord ¥ar

Z2nd Record for lst,
Znd,...,rth Record

VYariables 1n order

r"'L
-

%1

T

Eecords grow in the TNLINITED
dimenszion for 1,2,...,rth war

31

S |

Storing Data in PnetCDF

Create a dataset (file)
- Puts dataset in define mode

- Allows us to describe the contents
* Define dimensions for variables
* Define variables using dimensions
* Store attributes if desired (for variable or dataset)

Switch from define mode to data mode to write variables
Store variable data
Close the dataset

32

Example: FLASH Astrophysics

= FLASH is an astrophysics code for
studying events such as
supernovae
- Adaptive-mesh hydrodynamics
- Scales to 1000s of processors
- MPI for communication

= Frequently checkpoints:

- Large blocks of typed variables
from all processes

- Portable format

- Canonical ordering (different than
in memory)

- Skipping ghost cells

33

B Ghost cell
BStored element

Example: FLASH with PnetCDF

= FLASH AMR structures do not map directly to netCDF
multidimensional arrays

" Must create mapping of the in-memory FLASH data structures into
a representation in netCDF multidimensional arrays

" Choseto
- Place all checkpoint data in a single file
- Impose a linear ordering on the AMR blocks
* Use 4D variables
Store each FLASH variable in its own netCDF variable
* Skip ghost cells
Record attributes describing run time, total blocks, etc.

34

Defining Dimensions

int status, ncid, dim_tot _blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;

/* create dataset (file) */

status = ncmpi_create(MPI_COMM_WORLD, filename,

NC_CLOBBER, hints, &file_id);

/* define dimensions */

status = ncmpi_def dim(ncid, "dim_tot_blks",
tot blks, &dim_tot blks);

status = ncmpi_def dim(ncid, "dim_nxb",
nzones_bl

status = ncmpi_def dim(ncid, "dim_nyb",
nzones_block[1], &

status = ncmpi_def dim(ncid, "dim_nzb",
nzones block[2], &dim_nzb);

Each dimension gets
a unique reference

35

Creating Variables

int dims = 4, dimids[4];

int varids[NVARS];

/* define variables (X changes most quickly) */
dimids[0] = dim_tot blks;

dimids[1] = dim_nzb; \Same dimensions used

dimids[2] = dim_nyb;

for all variables
dimids[3] = dim_nxb; /
for (i=0; i < NVARS; i++) {

status = ncmpi_def var(ncid, unk_label[i],
NC DOUBLE, dims, dimids, &varids[i]);

s 36

Storing Attributes

/* store attributes of checkpoint */

status = ncmpi_put_att text(ncid, NC_GLOBAL,
"file_creation_time", string_size, file_creation_time);

status = ncmpi_put_att_int(ncid, NC_GLOBAL, "total blocks",
NC_INT, 1, tot blks);

status = ncmpi_enddef(file id);

/* now in data mode ... */

37

Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */
size_t start 4d[4], count 4d[4];

start 4d[0] = global offset; /* different for each process */
start 4d[1] = start 4d[2] = start 4d[3] = O;

count 4d[0] = local_blocks;

count 4d[1] = nzb; count 4d[2] = nyb; count 4d[3] = nxb;
for (i=0; i < NVARS; i++) {

/* ... build datatype “mpi_type” describing values of a
single variable ... */

/* collectively write out all values of a single variable */
ncmpi_put vara_all(ncid, varids[i], start 4d, count _4d,

unkowrs, 1, mpl_typel:

} Typical MPI buffer-count-
status = ncmpi_close(file_id); type tuple

38

Inside PnetCDF Define Mode

" In define mode (collective)
- Use MPI_File_open to create file at create time
- Set hints as appropriate (more later)

- Locally cache header information in memory
* All changes are made to local copies at each process

" At ncmpi_enddef
- Process 0 writes header with MPI_File_write_at
- MPI_Bcast result to others

- Everyone has header data in memory, understands placement of all
variables

* No need for any additional header I/O during data mode!

39

Inside PnetCDF Data Mode

B |nside ncmpi_put vara all (once per variable)
- Each process performs data conversion into internal buffer

- Uses MPI_File_set view to define file region
« Contiguous region for each process in FLASH case

- MPI_File_write_all collectively writes data

B At ncmpi_close
- MPI_File_close ensures data is written to storage

B MPI-10 performs optimizations
- Two-phase possibly applied when writing variables

B MPI-IO makes PFS calls
- PFS client code communicates with servers and stores data

40

Inside Parallel netCDF: Jumpshot view

|: Rank O write header
independent 1/O)
1 |

3: Collectively

write 4 variables

v [<]r][ala[=[a]a] B84 [z]a]6]

el Global Min Time iew Init Time Zoom Focus Time Wiew Final Time Global Max Time Time Per Pixel ”_ |‘ oy W
3 n.a728113824 59591601065 5.6226675796 6.6065601059 66065601053 0.0008 q §‘Tvl X ERIE
TimeLines - 5| 120
241
: 201
_ 161 I/ :
|l -l | Aggregato
: 81
: 41
EE : [ﬁ 1
[l Dl — Kl »
' ICIMNE iy s Tof K
@ weorlcl_rank |« | Fit A1 Ro
| | | | | | | | | | | | I
:-:i £.00 605 610 615 620 £.25 630 635 640 645 650 £.55 (A3 ‘Qw
4 Dl Time tseconds) | [TR »

—

2: Collectively write
app grid, AMR data

4: Close file

41

PnetCDF Wrap-Up

= PnetCDF gives us

- Simple, portable, self-describing container for data

- Collective 1/O

- Data structures closely mapping to the variables described
* If PnetCDF meets application needs, it is likely to give good

performance

- Type conversion to portable format does add overhead
= Some limits on (old, common CDF-2) file format:

- Fixed-size variable: < 4 GiB

- Per-record size of record variable: < 4 GiB

- 2%-1 records

- New extended file format to relax these limits (CDF-5, released in
pnetcdf-1.1.0)

42

The HDF5 Interface and
File Format

HDF5

Hierarchical data organization in single file
Typed, multidimensional array storage
Attributes on dataset, data

Features:

C, C++, and Fortran interfaces

Portable data format

Optional compression (not in parallel I/0 mode)

Data reordering (chunking)

Noncontiguous I/O (memory and file) with hyperslabs

Hierarchical Data Format, from the HDF Group (formerly of NCSA)
Data Model:

44

HDF5 Files

HDF5 File “chkpt007.h5"

Dataset “temp” Group “viz”

3 datatype = H5T_NATIVE_DOUBLE
4 dataspace = (10, 20)

20
—

]

attributes = ...

= HDF5 files consist of groups, datasets, and attributes
— are like directories, holding other groups and datasets
— hold an array of typed data
e A describes the type (not an MPI datatype)
e A gives the dimensions of the array

— are small datasets associated with the file, a group,
or another dataset

* Also have a datatype and dataspace
* May only be accessed as a unit

45

HDF5 Data Chunking

Apps often read subsets of arrays (subarrays)
Performance of subarray access depends in part
on how data is laid out in the file

- e.g. column vs. row major

Apps also sometimes store sparse data sets

Chunking describes a reordering of array data
- Subarray placement in file determined lazily

- Can reduce worst-case performance for subarray
access

- Can lead to efficient storage of sparse data
Dynamic placement of chunks in file requires
coordination

- Coordination imposes overhead and can impact
performance

Dataset data

N
]
4

File data

index

Chunk +

O

v

46

Example: FLASH Particle I/0 with HDF5

FLASH “Lagrangian particles” record
location, characteristics of reaction
- Passive particles don't exert forces;

pushed along but do not interact
. . . , Block=30;
= Particle Flata |nF:Iuded in check.pomts, Pos x=0.65;
but not in plotfiles; dump particle data Pos y=0.35;
to separate file Pos z=0.125;
= One particle dump file per time step Tag=6o;
: I : il icl Vel x=0.0;
- |..e., all processes write to single particle Vel y=0.0;
file vel z=0.0;

= Qutput includes application info,

. . : .) Typical particle data
runtime info in addition to particle data

47

Opening file

hid_t acc_template;

S
“P": property list
“F"”: file operations
“S": dataspace,
“T"”: datatype,

“D": dataset!

lerr = H5Pset_alignment(acc_template, 524288, 262144);
ierr = MPI_Info_set(info, "IBM_largeblock_io", "true");

/* set the file access template for parallel 10 */
ac_template = H5Pcreate(H5P FILE_ACCESS);

/* tell HDF5 to use MPI-IO interface */

lerr = H5Pset_fapl mpio(acc_template, *io_ comm, info);

[* create the file collectively */

file_identifier = H5Fcreate(filename, H5F _ACC_TRUNC,
H5P _DEFAULT, acc_template);

/* release the file access template */
lerr = H5Pclose(acc_template);

48

. . Remember:
Storing Labels for Particles “S" is for dataspace,

“T"” is for datatype,
“D” is for dataset!

int string_size = OUTPUT _PROP_LENGTH;
hsize t dims _2d[2] = {npart_props, 1};
hid _t dataspace, dataset, file_id, string_type;

/* store string creation time attribute */

, get a copy of the
string_type = H5Tcopy(H5T _C_S1);] string type and
H5Tset size(string type, string size); resize it
dataspace = H5Screate simple(2, dims_2d, NULL);

dataset = H5Dcreate(file_id, “particle names", string_type,
dataspace, H5P_DEFAULT);

If (myrank == 0) { Write out
status = H5Dwrite(dataset, string type, H5S ALL,] ?a:lbgls N
H5S ALL, H5P_DEFAULT, particle_labels); one call

S 49

Storing Particle Data with Hyperslabs (1 of 2)

hsize t dims_2d[2];

/* Step 1: set up dataspace -
describe global layout */

| ocal _np = 2,

. . ffset = 3,
dims_2d[0] = total_particles; T
dims_2d[1] = npart_props; Npart _props = 8

dspace = H5Screate simple(2, dims_2d, NULL);

dset = H5Dcreate(file id, “tracer particles”,
H5T _NATIVE DOUBLE, dspace, H5P_DEFAULT);

Remember:

“S” Is for dataspace,
“T"” is for datatype,
“D"” is for dataset!

s 50

Storing Particle Data with Hyperslabs (2 of 2)

hsize t start 2d[2] = {0, O},
stride 2d[1] = {1, 1};
hsize t count 2d[2] = {local np,
npart_props};

/* Step 2: setup hyperslab for | ocal _np = 2,

dataset in file */ part_of fset = 3,
total particles = 10,

Npart props = 8
start 2d[0] = part_offset;

/* MPI_Allgather earlier determined particles */

status = H5Sselect_hyperslab(dspace,> - dataspace from

H5S SELECT SET, last slide
start_2d, stride_2d, count_2d, NULL);

- Hyperslab selection similar to MPI-IO file view
- Selections don’t overlap in this example (would be bad if writing!)
- H5SSelect none() if no work for this process

s 51

Collectively Writing Particle Data

“P"” is for property list;
/* Step 1: specify co||ectiveMtunlng parameters

dxfer_plist = H5Pcreate(H3P) DATASET XFER);

lerr = H5Pset_dxpl_mpio(dxfer_plist,
H5FD_MPIO_COLLECTIVE);

dataspace
/* Step 2: perform collective write */ describing
status = H5Dwrite(dataset, rlr(;enlnory,
H5T_NATIVE_DOUBL O ot
memspace, ypP
dspace, +~—— = dataspace describing
Remember: xfer plist, region in file, with
$ ° ;8: g:igfﬁsge articles): hyperslab from previous
“D" is for dataset! two slides

s 52

Inside HDF5

B MPI File open used to open file

B Because there is no “define” mode, file layout is
determined at write time

B |n H5Dwrite:

- Processes communicate to determine file layout
» Process 0 performs metadata updates after write
- Call MPI File set view
- Call MPI_File_write_all to collectively write
- Only if enabled via property list

B Memory hyperslab could have been used to define
noncontiguous region in memory

B In FLASH application, data is ke]pt N natlve format
and converted at read time (defers overhead

- Could store in some other format If desired

B At the MPI-IO layer:

- Metadata updates at every write are a bit of a bottleneck
« MPI-IO from process 0 introduces some skew

53

Inside HDF5: Jumpshot view

- Rank O write initial structure 3: Determine location 5: Rank O writes
nultiple independent 1/0O) For variable (orange) final md
R

-
i
]

0.0002303447 | B.B92075514 F.0133832887 | 7.3304755165 7.3394755165

[R R W R W R R W— —
— —— —— —— —— — — — — ——

|H
2.
- 2 |-

[T Tw] [4]

670 675 [R:11) £.85 6.90 k.95 7.on 15 720 7.25 730 CR{":’
1) | ——— {11 153V) A

2: Collectively write 4: Collectively write 6: Close file
grid, provenance data variable (blue)

HDF5 Wrap-up

" Tremendous flexibility: 300+ routines
= H5Lite high level routines for common cases
* Tuning via property lists

- “use MPI-IO to access this file”

- “read this data collectively”

= Extensive on-line documentation, tutorials (see “On Line
Resources” slide)
= New efforts:
- Journaling: make datasets more robust in face of crashes (Sandia)
- Fast appends (finance motivated)
- Single-writer, Multiple-reader semantics
- Aligning data structures to underlying file system

55

Other High-Level I/0 libraries

» NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
- netCDF API with HDF5 back-end

= ADIOS: http://adiosapi.org
- Configurable (xml) I/O approaches

= SILO: https://wci.llnl.gov/codes/silo/
- A mesh and field library on top of HDF5 (and others)

= H5part: http://vis.Ibl.gov/Research/AcceleratorSAPP/
- simplified HDF5 API for particle simulations

= GIO: https://svn.pnl.gov/gcrm
- Targeting geodesic grids as part of GCRM

= PIO:

- climate-oriented I/O library; supports raw binary, parallel-netcdf, or
serial-netcdf (from master)

= ... Many more: my point: it's ok to make your own.

http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm

/0 in Parallel Volume
Rendering

Thanks to Tom Peterka (ANL)
and Hongfeng Yu and Kwan-Liu
Ma (UC Davis) for providing the
code on which this material is
based.

57

Parallel Volume Rendering

"= Supernova model with focus
on core collapse

* Parallel rendering techniques
scale to 16k cores on Argonne
Blue Gene/P

" Produce a series of time steps
" 1120° elements (~1.4 billion)
= Structured grid

* Simulated and rendered on
multiple platforms, sites

" |/O time now largest
component of runtime

Time (sec)

— 5o

L
total ———

Fiw]
render —%— -

——,

- \ composite = -
e E

o E'_------

— —

100

#18¥ Cores

58

The 1/0 Code (essentially):

MPI_Init(&argc, &argv);
ncmpi_open(MPI_COMM_WORLD, argv[1l], NC_ NOWRITE,
info, &ncid));
ncmpi_ing_varid(ncid, argv[2], &varid);
buffer =calloc(sizes[0]*sizes[1]*sizes[2],sizeof(float));
for (i=0; i<blocks; i++) {
decompose(rank, nprocs, ndims, dims, starts, sizes);
ncmpi_get vara_float_all(ncid, varid,
starts, sizes, buffer);
}

ncmpi_close(ncid));
MPI_Finalize();

Read-only workload: no switch between define/data mode
Omits error checking, full use of inquire (ncmpi_ing_*) routines
Collective I/O of noncontiguous (in file) data

“black box” decompose function:
- divide 1120”3 elements into roughly equal mini-cubes
- “face-wise” decomposition ideal for I/O access, but poor fit for
volume rendering algorithms

s 59

Volume Rendering and pNetCDF

Original data: netCDF formatted

Two approaches for I/O
Pre-processing: extract each variable to separate file

* Lengthy, duplicates data

Native: read data in parallel, on-demand from dataset
* Skip preprocessing step but slower than raw

Why so slow?

5 large “record” variables in
a single netcdf file

* Interleaved on per-record basis

Bad interaction with default
MPI-IO parameters

Record variable interleaving is
performed in N-1 dimension slices,
where N is the number of dimensions
in the variable.

60

Access Method Comparison

= MPI-IO hints matter

90

I/O Mode Comparison

| [| I I
= HDF5: many small L W Rl
metadata 2 L |
reads &
= Interleaved record g T |
format: bad news i T i
T 40 -
30 - PnetCDF =
20] |] | [l
10 15 20 25 30 35 40
Time (s)
API time (s) accessesread data (MB) efficency
MPI (raw data) 11.388 960 7126 75.20%
PnetCDF (no hints) 36.030 1863 24200 22.15%
PnetCDF (hints) 18.946 2178 7848 68.29%
HDF5 16.862 23450 7270 73.72%
PnetCDF (beta) 13.128 923 7262 73.79%

-

61

_Analysis: Parallel netCDF, no hints

time

-
»

" Block depiction of 28 GB file " Default “cb_buffer_size” hint

= Record variable scattered not good for interleaved
* Reading in way too much netCDF record variables

data!

a Y 62

~ Analysis: Parallel netCDF, hints

e . T
T
[— SR]
[— =
S —
| _—
[S— —
by |
T ee——
[.
B i .
P =
| .
. — By
|-E— e
- ———
—
i S
— = —_— =
hﬁ_‘——_-_ﬁ_ S
-_-—‘I_-_—_ —
'_‘—-_q _.__.-_-_-_-__I
—— —
[— e—
| _h_.“
ey
T _—
By
b Y
b =
— —
[e g
— —_——
]
._H_- —_—
e |
—

|
4/

With tuning, much less
reading

" Better efficiency, but still
short of MPI-IO

||||ﬁ'lmrr'-'u
it

mnpyre-

l. ":'I:rlu!! e

m"!l!ll!lllllllll
[Teimpmym

, time

Still some overlap

“cb_buffer_size” now size of
one netCDF record

Better efficiency, at slight
perf cost

63

~ Analysis: Parallel HDF5

Different file format,
different characteristics

Data exhibits spatial locality

t esff o

= Thousands of metadata reads
_ All clients read MD from file

» Reads could be batched. Not sure why not
(implementation detail: HDF5 folks on the
case).

64

~ Analysis: new Parallel netCDF

, time

« Rank 0 reads header, broadcasts to others
Much more scalable approach

" Development effort to relax
netCDF ﬂle format ||m|tS « Approaching MPI-IO efficiency

Maintains netCDF benefits
Portable, self-describing, etc.

= No need for record variables

" Data nice and compact like
MPI-IO and HDF5

s 65

Data Staging in Exascale Systems

= Memory will be extremely limited in exascale systems, so it is unrealistic to consider
using it for 1/0O buffering.

= More likely, solid state storage will be used to provide this staging area.

, Application Task I ; | Application Task | ' ; | Application Task ‘ '
VO Forward || Ckpoint/Restart | 0OC | * /O Forward |Ckpoint/Restart| OOC | /O Forward || Ckpoint/Restart| 0OC
Operating System | ' : | Operating System | ' e ' | Operating System ‘ '
Global Storage Client ;olij: . . l____ﬁ__l_c_:_bal Storage Client :-';0“;" . . l____gl_o_l:sal Storage Client l:;_olic:l-} .
: State | State c:Sge__:

/O Node

Solid Solid
State St:_u;e

/O Node

Storage Area Network

I

Global Storage

66

Data Analysis Options

.

Intrepid BG% Compute Aesource
I
I
I
m0 M= I Eurca
: 1750 MARS
¥E40 a e E <m0
t Analysis
T MNoics
f eyt 1 Thpa
- iy —
11,860 M oses G [0 4 Complen 106Gk »— ———— — =
1B corms Miodae 1 S-Slape wiga |
— Cios [128 Flie
i | = parks b | Seever
' 1.28Thpy | Modes
! 1
4.3 Tape E.4 Thes i
LARacive Neitwork e— [
etk | |
l I
I | 4 P
' | | Enteprigs
_______________________ ’ : Sicrage
I ———————
Storage
System

Current system
architectures integrate
a separate analysis
Cluster that shares
access to storage over a
large switch complex.
Most data analysis is
performed after
simulations are
complete (post-
processed) on these
nodes, or processed

In situ - process the data (to some degree) in thrermaiedyt of the

running application

Co-processing - process the data around the same time as the
simulation is run, but not on the simulation nodes

Post-processing - store the data and process it later

Image compliments V.

Vishwanath (ANL). 67

In Situ Analysis and Data Reduction

In situ analysis incorporates analysis routines into the simulation code. This
technique allows analysis routines to operate on data while it is still in memory,
potentially significantly reducing the I/O demands.

One way to take advantage of in situ techniques is to perform initial analysis for the
purposes of data reduction. With help from the application scientist to identify
features of interest, we can compress data of less interest to the scientist, reducing
I/O demands during simulation and further analysis steps.

The feature of interest in this case is
the mixture fraction with an iso value
of 0.2 (white surface). Colored regions
are a volume rendering of the HO2
variable (data courtesy J. Chen (SNL)).

By compressing data more
aggressively the further it is from this
surface, we can attain a compression
ratio of 20-30x while still retaining full
fidelity in the vicinity of the surface.

C. Wang, H. Yu, and K.-L. Ma, “Application-driven compression for visualizing large-scale time-
varying volume data”,
A IEEE Computer Graphics and Applications, 2009. 68

Merging Analysis and Storage Resources

One way to reduce costs, and to potentially improve post-
processing rates, is to merge analysis resources with storage
resources. Need to move to using commodity storage (if
possible) at the same time.

Leadership computing Commodity network Storage nodes run Scientific codes
system executes attaches leadership parallel file system server execute unchanged,
simulation codes in batch computing system to software. Attached to writing to storage as
mode. storage and analysis enterprise storage for before.

resources. data redundancy.

[T T T T TRTT170

11777777777

eaamaaman
77777777777

BT Wl

EESEN IS
FIFRTFITTIT

EENEEEE N
ELLLFLTEILY

OARAAANANAS

Hybrid analysis/storage nodes
place analysis operations close to
| data, reduce overall system cost.

Visualization nodes perform analysis calculations.
Usually multi-core nodes with GPU resources.

@ 69

Printed References

= John May, Parallel 1/O for High Performance
Computing, Morgan Kaufmann, October 9, 2000.

- Good coverage of basic concepts, some MPI-IO, HDF5, and
serial netCDF

- Out of print?

= William Gropp, Ewing Lusk, and Rajeev Thakur,
Using MPI-2: Advanced Features of the Message
Passing Interface, MIT Press, November 26, 1999.

- In-depth coverage of MPI-IO API, including a very detailed
description of the MPI-IO consistency semantics

70

On-Line References

netCDF and netCDF-4
- http://www.unidata.ucar.edu/packages/netcdf/

PnetCDF

- http://www.mcs.anl.gov/parallel-netcdf/

ROMIO MPI-IO

- http://www.mcs.anl.gov/romio/

HDF5 and HDF5 Tutorial

- http://www.hdfgroup.org/

- http://hdf.ncsa.uiuc.edu/HDF5/

- http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html
POSIX I/O Extensions

- http://www.opengroup.org/platform/hecewqg/

Darshan I/O Characterization Tool
- http://www.mcs.anl.gov/research/projects/darshan

71

	The Architecture of Parallel I/O
	Computational Science
	Large-Scale Data Sets
	Disk Access Rates over Time
	Applications, Data Models, and I/O
	Challenges in Application I/O
	I/O for Computational Science
	The Present: Oak Ridge Computing Platform
	I/O Hardware and Software on Blue Gene/P
	High-level Libraries and MPI-IO Software
	I/O Forwarding Software
	Parallel File System Software
	Exascale Systems: Potential Architecture
	The MPI-IO Interface
	MPI-IO
	Independent and Collective I/O
	Contiguous and Noncontiguous I/O
	Nonblocking and Asynchronous I/O
	Noncontiguous I/O: Data Sieving
	Data Sieving Write Operations
	Collective I/O and Two-Phase I/O
	Two-Phase I/O Algorithms
	Impact of Two-Phase I/O Algorithms
	S3D Turbulent Combustion Code
	Impact of Optimizations on S3D I/O
	MPI-IO Implementations
	The Parallel netCDF Interface and File Format
	Higher Level I/O Interfaces
	Parallel netCDF (PnetCDF)
	Data Layout in netCDF Files
	Record Variables in netCDF
	Storing Data in PnetCDF
	Example: FLASH Astrophysics
	Example: FLASH with PnetCDF
	Defining Dimensions
	Creating Variables
	Storing Attributes
	Writing Variables
	Inside PnetCDF Define Mode
	Inside PnetCDF Data Mode
	Inside Parallel netCDF: Jumpshot view
	PnetCDF Wrap-Up
	The HDF5 Interface and File Format
	HDF5
	HDF5 Files
	HDF5 Data Chunking
	Example: FLASH Particle I/O with HDF5
	Opening file
	Storing Labels for Particles
	Storing Particle Data with Hyperslabs (1 of 2)
	Storing Particle Data with Hyperslabs (2 of 2)
	Collectively Writing Particle Data
	Inside HDF5
	Inside HDF5: Jumpshot view
	HDF5 Wrap-up
	Other High-Level I/O libraries
	I/O in Parallel Volume Rendering
	Parallel Volume Rendering
	The I/O Code (essentially):
	Volume Rendering and pNetCDF
	Access Method Comparison
	Analysis: Parallel netCDF, no hints
	Analysis: Parallel netCDF, hints
	Analysis: Parallel HDF5
	Analysis: new Parallel netCDF
	Data Staging in Exascale Systems
	Data Analysis Options
	In Situ Analysis and Data Reduction
	Merging Analysis and Storage Resources
	Printed References
	On-Line References

