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Abstract

The minimum linear arrangement problem is widely used and studied in many practical an
oretical applications. In this paper we present a linear-time algorithm for the problem inspir
the algebraic multigrid approach which is based on weighted edge contraction rather than
contraction. Our results turned out to be better than every known result in almost all cases, w
short running time of the algorithm enabled experiments with very large graphs.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The minimum linear arrangement (MinLA) problem belongs to a large family of g
layout problems such as: bandwidth, cutwidth, vertex separation, profile of graph, su
etc. Commonly for general graphs these problems are NP-hard and their decision v
are NP-complete [14].
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Originally the MinLA problem was formulated in 1964 by Harper in [15]. His aim w
to design error-correcting codes with minimal average absolute errors on certain c
of graphs. The MinLA may also be motivated as a model used in VLSI design, wh
the placement phase it is required to minimize the total wire length [10]. Additionally
the MinLA appears in several biological applications, graph drawing, reordering of
sparse matrices and other fields (see [11,16,20,28]).

Since the MinLA has a practical significance, many heuristic algorithms were d
oped in order to achieve near optimal solution. Among the most successful are: spec
sequencing [17], optimally oriented decomposition tree [1], multilevel based [19],
ulated annealing [22,23], genetic hillclimbing [24] and some of their combinations
these heuristics were tested on the test suite that was compounded by Petit [22], som
proven themselves superior in solution quality while other in execution time.

In this paper we present a new multilevel algorithm for the MinLA problem based o
algebraic multigrid scheme (AMG) [2–4,9,26,30,31]. The main objective of a multilev
based algorithm is to create a hierarchy of problems (coarsening), each representing th
original problem, but with fewer degrees of freedom. General multilevel techniques
been successfully applied to various areas of science (e.g., physics, chemistry, engin
etc.) [6,8]. AMG methods were originally developed for solving linear systems of e
tions resulting from the discretization of partial differential equations. Lately they
been applied to various other fields, yielding for example a novel method for image
mentation [29]. In the context of graphs it is the Laplacian matrix that represents the relate
set of equations. The main difference between our approach to other multilevel appr
(not necessarily related to the MinLA but also to other graph optimization problems)
coarsening scheme. While the previous approaches may be viewed asstrict aggregation
process, the AMG coarsening is actually aweightedaggregation. In a strict aggregatio
process (also called edge contraction or matching of nodes) the nodes of the gra
blocked into small disjoint subsets, called aggregates. By contrast, in weighted ag
tion each node can be divided intofractions, and different fractions belong to differe
aggregates. In both cases, these aggregates will form the nodes of the coarser le
AMG solvers have shown,weighted, instead ofstrict aggregation is important in order
express thelikelihoodof nodes to belong together; these likelihoods will then accumu
at the coarser levels of the process, automatically reinforcing each other where appropria
This enables more freedom in solving the coarser levels and avoids making hardene
decisions, such as edge contractions, before accumulating the relevant global informat
while a strict aggregation may lead to inconsistency between local and global pictur

To escape false local minima we have used the general method of simulated anneal
(SA) [18]. By introducing a temperature like parameter, moves which increase the
function one wants to minimize are accepted with some non-vanishing probability. The
algorithms are usually extremely inefficient, since they require exponential slow tem
ture decrease to approach the true minimum. In the multilevel framework, however,
aimed at searching forlocal changes with rapid cooling at each level that guarantee
preservation of large-scale solution features inherited from coarser levels.

Our experimental results show that the algebraic multilevel framework can be us
the MinLA problem to obtain high quality results in linear time. Our algorithm actu
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provides the best results (excluding one case) compared to [1,11,13,19,22–24], w
speed (despite its unoptimized current state) is much better than the fastest algorith

The problem definition and its generalization are described in Section 2. The
level algorithm along with additional optimization techniques are presented in Sect
A comparison of our results with various other works is finally summarized in Sectio

2. Problem definition and generalization

Given a weighted graphG = (V ,E), whereV = {1,2, . . . , n}, denote bywij the non-
negative weight of the edgeij between nodesi andj (if ij /∈ E thenwij = 0). The purpose
of the MinLA problem is to find a permutationπ of the graph nodes such that the cost

∑
ij∈E

wij

∣∣π(i) − π(j)
∣∣

is minimal. In the generalized form of the problem that emerges during the mult
solver, each vertexi is assigned with alength (or volume), denotedvi . The task now is
to minimize the cost

∑
ij∈E wij |xi − xj |, wherexi = vi/2 + ∑

k,π(k)<π(i) vk , i.e., each
vertex is positioned at its center of mass capturing a segment on the real axis which
its length (see Fig. 1). The original form of the problem is the special case where a
lengths are equal.

We will not discuss here theoretical complexity issues, such as lower and upper b
for the solution cost. We are not interested in the worst possible cases, which are ext
non-representative.Our focus is on practicalhigh-performancealgorithm, such that in mo
practical cases would yield a good approximation to the optimum at low computa
cost. Typically, the multilevel algorithms exhibit linear complexity, i.e., the computati
cost in most practical cases is proportional to|V | + |E|.

3. The algorithm

In the multilevel framework a hierarchy of decreasing size graphs:G0,G1, . . . ,Gk is
constructed, see Fig. 2. Starting from the given graph,G0 = G, create bycoarseningthe
sequenceG1, . . . ,Gk , then solve the coarsest level directly, and finally uncoarsen th
lution back toG. This entire process is called aV -cycle.

Fig. 1. An example for the generalized form of the problem. Each node captures a segment on the real axi
length is written above it. If, for instance, the edge between the first node to the fifth one has weightw, then its
contribution to the cost of the linear arrangement isw · 8.5.
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Fig. 2. The scheme of a V-cycle. Solid arrows stand for coarsening, dotted for uncoarsening.

As in the general AMG setting, the choice ofthe coarse variables (aggregates),
derivation of the coarse problem which approximates the fine one and the design
coarse-to-fine disaggregation (uncoarsening) process are determined as described

3.1. Coarsening: weighted aggregation

Coarsening will be interpreted here as a process ofweighted aggregation(or of weighted
edge contraction) of the graph nodes to define the nodes of the next coarser graph. I
strict aggregation process (also called edge contraction or matching of nodes) the
are blocked in small disjoint subsets, called aggregates. Two nodesi andj would usually
be blocked together (put in the same aggregate) only if their coupling isstrong, meaning
that wij is comparable to min{maxk wik,maxk wkj }. In weightedaggregation, each nod
can be divided intofractions, and different fractions belong to different aggregates
both cases, these aggregates will form the nodes of thecoarser level, where they will be
blocked into larger aggregates, forming the nodes of astill coarser level, and so on. As
AMG solvers have shown,weighted, instead ofstrict, aggregation is important in order
express thelikelihoodof nodes to belong together; these likelihoods will then accumu
at the coarser levels of the process, automatically reinforcing each other where appropria
Strict aggregation, by contrast, may run into a conflict between the local blocking de
and the larger-scale picture.

The construction of a coarse graph from a given one is divided into three stage
a subset of the fine nodes is chosen to serve as theseedsof the aggregates (the nodes
the coarse graph), then the rules for interpolation are determined, thereby establish
fraction of each non-seed node belonging to each aggregate, and finally the strength of t
connections (or edges) between the coarse nodes is calculated.

Coarse nodes. The algebraic representation of a graph is given by itsLaplacian A

(a |V | × |V | matrix), whose terms are defined by

Aij =




−wij for ij ∈ E, i �= j,

0 for ij /∈ E, i �= j,∑
k �=i wik for i = j.

(1)

The construction of the set of seedsC and its complement, denoted byF , is guided by
the principle that eachF -node should be “strongly coupled” toC. Also, we will include in
C nodes with exceptionally large volume, or nodes expected (if used as seeds) to ag
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around them exceptionally large volumes ofF -nodes. We start with an empty setC, hence
F = V , and then sequentially transfer nodes fromF to C, employing the following steps

Let wS(ij) denote the normalized weight of an edgeij with respect to the set of node
S and to the vertexi, defined by

wS(ij) = wij∑
k∈S wik

. (2)

As a measure of how large an aggregate seeded byi ∈ F might grow, define itsfuture-
volumeϑi by

ϑi = vi +
∑
j∈F

vj · min

(
1,

dj

ρj

· wV (ji)

)
, (3)

wheredj is the degree ofj andρj = min(r, �Q · dj�) is a rough estimate of the num
ber of C nodes to which nodej will be connected, the thresholdQ (see below) and th
coarse neighborhood sizer (see Appendix B) being parameters. The basic idea is that ea
F -node will eventually be associated with only alimited number (the coarse neighbo
hood sizer) of C-nodes, thus the relative connectionwV (ji) of eachj ∈ F to i is usually
amplified bydj/ρj , as for the cases wherer < dj , the volumevj is divided among les
neighbors. Nodes with future-volume larger thanη times the average ofϑ should auto-
matically be included inC as most “representative”. (In our testsη = 2.) The insertion of
additional fine nodes toC depends on a thresholdQ (in our testsQ = 0.4) as specified
by Algorithm 1. That is, a fine nodei is added toC if its relative connection toC is not
strong enough, i.e., smaller thanQ. Also, vertices with larger values ofϑ are given highe
priority to be chosen toC.

Algorithm 1. CoarseNodes(fine levelF ).

Parameters: Q,η

C ← ∅,F ← V

Calculate ϑi for eachi ∈ F

C ← nodes withϑ > η · (average ofϑ)

F ← V \ C

Recalculate ϑi for eachi ∈ F

Sort F in descending order ofϑ
Go through alli ∈ F in decreasing order ofϑ

If (
∑

j∈C wij /
∑

j∈V wij ) � Q then movei from F to C

Return C

For convenience we are currently using a libraryO(n · log(n)) sorting algorithm. How-
ever, since no exact ordering is really needed, this can be replaced by a rough sor
hasO(n) complexity. This remark will be validfor all cases where we have used ex
sort.

The coarse problem.The chosen setC of seeds becomes the set of coarse level no
Define for eachi ∈ F a coarse neighborhoodNi = {j ∈ C,wij � αi}, whereαi is deter-
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mined by the demand that|Ni | does not exceed the allowed coarse neighborhood sr
chosen to control complexity. (For typical values ofr consider Appendix B.) The classic
AMG interpolation matrixP (of size|V | × |C|) is defined by

Pij =



wNi (ij) for i ∈ F, j ∈ Ni,

1 for i ∈ C, j = i,

0 otherwise.

(4)

Pij thus represents the likelihood ofi to belong to thej th aggregate. The Laplacian
the coarse graphAc can be calculated by the so called Galerkin coarseningAc = PT AP .
Here, however, we follow the approximated scheme used in [29], namely, the edge co
ing two coarse aggregatesi andj , wc

ij , is assigned with the weightwc
ij = ∑

k �=l PkiwklPlj .
The volume of theith coarse aggregate is

∑
j vjPji . Note that during the process of coa

ening the total volume of all vertices is conserved.

3.2. The coarsest level

Solving the coarsest level, which consists of no more than 8 nodes (otherwise a s
coarser level should be introduced for efficiency) is performed directly by simply tryin
possible arrangements and choosing the minimal one.

3.3. Disaggregation (uncoarsening)

Having solved a coarse problem, the solution to the next-finer-level problem is in
ized by first placing the seeds according to thecoarse order and then adjusting all oth
F -nodes while aiming at the minimization of the arrangement cost. This approxim
is subsequently improved by severalrelaxationsweeps, first compatible, then regular w
or without additional stochastic elements, as explained below and summarized in Alg
rithm 2.

3.3.1. Initialization
Given is the linear arrangement of the coarse level aggregates in its generalized

where the center of mass of each aggregatej ∈ C is positioned atxj along the real axis. We
begin the initialization of the fine level arrangement by letting each seed inherit the po
of its respective aggregate. DefineV ′ ⊂ V to be the subset of nodes that have already b
placed, i.e., initiallyV ′ = C. Then proceed by positioning each fine nodei ∈ V \ V ′ at the
coordinateyi in which the cost of the arrangement, at that moment wheni is being placed
is minimized. The sequence in which thenodes are placed is roughly in decreasing or
of their relativeconnection toV ′, that is, the nodes which have strong connections toV ′
compared with their connections toV are placed first. To be precise, the coordinateyi is
located within theminimization segment(possibly containing a single point) defined by{

y:

∣∣∣∣
∑

yj<y,j∈V ′
wij −

∑
yj>y,j∈V ′

wij

∣∣∣∣ is minimal

}
, (5)

which can be easily obtained by calculating the partial sums of weights along the a
placed neighbors of vertexi. Note that for the case where all thew’s are identical, as indee
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in the original graph,yi is just themedianof the locations of the already placed neighb
of i, as in [19]. In the general case,yi is placed within the minimization segment, whe
the sum of all left oriented adjacent edges is roughly equal to the sum of all right orient
adjacent edges, as close as possible to theend of the bigger sum and thus minimizes the
cost of the arrangement with respect toi. ThenV ′ ← V ′ ∪ {i} and the process continue
until V ′ = V . Finally each positionyi is changed to

xi = vi

2
+

∑
yk<yi

vk, (6)

thus retaining order while taking volume (length) into account.

3.3.2. Relaxation
The arrangement obtained after the initialization is not likely to be accurate enoug

only about 25% of the vertices end up within their minimization segment (satisfyin
for V ′ = V ). It should therefore be followed by several sweeps ofrelaxation, first com-
patiblethenGauss–Seidel-like. These two types of relaxation are very similar to the ab
initialization. In each sweep, the nodes are scanned in their natural order, replacing the
position one at a time by locally minimizing the cost of the arrangement associated w
The compatible relaxation, motivated in [7], only improves the positions of theF -nodes
according to the minimization criterion (5) (whereV ′ = V ) while keeping the positions o
the seeds (C-nodes) unchanged, the Gauss–Seidel-like relaxation is similarly perfo
everywhere. Each such sweep is again followed by (6). Our tests show that by em
ing just a small number of relaxation sweeps the number of vertices located within the
minimization segment grows to about 70%.

3.3.3. Strict minimizations
A simple strict minimization is a relaxation that accepts only changes which decre

the arrangement cost. Since done in the multilevel framework, it can be restricted a
level to just local changes, i.e., reordering small sets of neighboring nodes, whic
adjacent (or relatively close) to each other at the current linear arrangement. It is easy to
that switching positions between several adjacent nodes is indeed a local operation, si
the resulting new arrangement cost can be calculated only at the vicinity of the adju
and not elsewhere.

Node-by-node minimization.We have chosen to minimize over a sequence of lo
changes in which the candidate positions for each vertexi, in its turn, are scanned ov
a segment of (maximal) length of 2k + 1, startingk positions to the left of the current loca
tion of i, endingk positions to its right (with exceptions of course at the beginning and
of the arrangement). Each of the candidatepositions has its own cost and the arrangem
with the minimal cost is finally chosen. Such minimization sweeps are repeated un
significant improvement in the arrangement is observed or until a given maximal al
number of repetitions is reached. This parameter as well ask are addressed in Appendix B

Segment minimization.We have also used another more sophisticated minimization
egy that operates on segments of subsequent nodes. In each sweep, the nodes are sca
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according to their current lineararrangement, extractingweaklyconnected segments
subsequent nodes. A weakly connected segment of nodes is a segment which is co
within itself but is either completely disconnected or only slightly connected to its righ
left neighbors in the arrangement. Then the position of each such segment is replace
minimizing the cost of the arrangement associated with it. The minimization of the e
of such a segment is similar to that of a single node. LetW = {i1 = π−1(p + 1), . . . , iq =
π−1(p + q)} be a segment ofq sequential vertices in the current arrangement, i.e.,
nodes positioned atq subsequent coordinates starting at thepth position.W will be moved
to the position where the sum of all its edges to the right is as equal as possible to th
to its left, that is, we used a generalization of the criterion (5), where the sums run
all i ∈ W . The sweeps are again repeated up to some maximal allowed number o
tions. This minimization has been in particular successful for meshes as is summarize
Table 3.

3.3.4. Simulated annealing
A general method to escape false local minima and advance to lower costs is to repla

the strict minimization by a process that still accepts each candidate change which
the cost, but also assigns a positive probability for accepting a candidate step wh
creases the cost of the arrangement. The probability assigned to a candidate step
to exp(−δ/T ), whereδ > 0 measures theincreasein the arrangement cost andT > 0
is a temperature-like control parameter which is gradually decreased towards zero. T
process, known assimulated annealing(SA) [18], in large problems would usually nee
to applyvery gradualcooling (decrease of temperatures), making it extremely slow an
inefficient for obtaining global optimum.

In the multilevel framework, however, the role of SA is somewhat different. At e
level it is assumed that theglobal arrangement of aggregates has been inherited from
coarser levels, and thus onlylocal, small-scale changes are needed. For that purpos
have started at relatively highT , lowered itsubstantiallyat each subsequent sweep un
strict minimization is employed.

Similar to the above strict minimization, 2k + 1 candidate locations are examin
for each vertex, each corresponds to moving it some distancel, 0 < |l| � k. The initial
temperatureT = T (|l|) > 0 is calculated apriori for each distancel by aiming at the
acceptance of a certain percent of changes (for instance 60%). In detail, the prob
of moving a vertexl positions (l = ±1, . . . ,±k) is Pr(l) = z · min(1,exp(−δ(l)/T (|l|)),
wherez is a normalization factor calculated by the demand

∑k
l=−k Pr(l) = 1 and Pr(0) =

z · minl=±1,...,±k(1− Pr(l)/z). In each additional sweepT (|l|) is reduced by a factor, suc
as 0.6. Typically only three such cooling steps are used.

Repeated heating and cooling is successively employed for better search over the loc
landscape. This search can be further enhanced by the introduction of a “memor
tool consisting of an additional permutation which stores thebest-so-far(BSF) observed
arrangement. Henceafter, the BSF is being occasionally updated by the procedure
lowest common configuration(LCC) [5] which enables thesystematic accumulation o
sub-permutations into it over a sequence of different arrangements, such that eac
sub-permutation exhibits the best minimal suborder encountered so far. The cost
obtained BSF is at most the lowest cost of all the arrangements it has observed, and
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it is lower. The use of LCC becomes more important for larger graphs, where it is exp
that the optimum of a subgraph is only weakly dependent on other subgraphs. Thus,
necessary to wait until all minimal sub-permutations aresimultaneouslyobtained, which
may take exponential time; instead it is sufficient to obtain each such minimal suborder j
once, since henceforth it is guaranteed to appear in the BSF. In detail, the BSF (of a certa
level) is initialized by the arrangement obtained at the end of the strict minimization.
the BSF is improved by the LCC procedure which updates parts of it taken from th
arrangements reached right after each heating–cooling procedure. All these accumula
updates are thus stored at the BSF which actually provides the current calculated min
The complete description of the LCC algorithm is given in Appendix A.

Algorithm 2. Disaggregation(coarse levelC, fine levelF ).

Parameters: k1, . . . , k8, γ (for details consider Appendix B)

Initialize F from C
Apply k1 sweeps of compatible relaxation onF
Apply k2 sweeps of Gauss–Seidel-like relaxation onF
Apply at mostk3 sweeps of strict minimization within distancek4 onF
Apply at mostk5 sweeps of segment minimization onF
Initialize BSF← current arrangement ofF
Do k6 times of heating and cooling

Calculate T (|l|) for l = 1, . . . , k7
Do k8 steps

Apply SA within distancek7 onF
Decrease all T (|l|) by a factorγ

Apply at mostk3 sweeps strict minimization within distancek4 onF
Update BSF← LCC (BSF,current arrangement ofF)

Return BSF

3.4. Linearization and cycling

The graph Laplacian yields a good coarsening (the AMG coarsening) when the pr
is associated with, or approximated by, the problem of minimizing the quadratic func∑

ij∈E wij (xi −xj )
2. A better quadratic formulation to a non-quadratic minimization prob

lem can usually be obtained in terms of acurrent approximation, in the spirit of Newton
linearization (see [8]). The main property of such an approximate quadratic formu
is stationarity, i.e., the quadratic formulation willreproduce the current approximation
the latter happens to be already the solution to the original (non-quadratic) problem.
context of the MinLA, given a current approximation{x̃i}, a stationary quadratic approx
mation to the generalized MinLA problem is:

minimize
∑ wij

|x̃i − x̃j |α (xi − xj )
2 with α = 1. (7)
ij∈E
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At each level of the multiscale MinLA solver, several cycles to coarser levels can th
performed, using first the original (α = 0) quadratization, then in following cycles gra
ually increasingα to 1. Using a certain value ofα means here to employ newly defin
weightswnew

ij = wij /|x̃i − x̃j |α instead of the original Laplacian in forming the aggre
tion seeds and interpolation weights. That is, a previously obtained approximate so
is used to create weights for the next cycle. We have used this idea only partially, i
performing onlycompleteV-cycles (returning to coarser levels just from the finest lev
with α = 0,1/2,1 successively, while updating the BSF of the finest level by applying
LCC procedure at the end of each additional V-cycle. Note, however, that (7) is stat
only for the real-number approximation to MinLA; it is not stationary when the const
that{xi} should be a permutation of(1, . . . , n) is added.

4. Results and related works

We have implemented and tested the algorithm using standard C++ and LEDA lib
[21] on Linux machine with 1700 MHz processor. The implementation is non-paralle
not fully optimized.

We have started to test our algorithm on the benchmark provided by Petit [22]
test suite graphs are given in Table 1. In Table 2 we present the results we have o
for these graphs compared with other related works. In the column“Petit” we have ex-

Table 1
Petit’s benchmark [22]

Graph name |V | |E| Min/Avg/Max degree Diamete

randomA1 1000 4974 1/9.95/21 6
randomA2 1000 24738 28/49.7/72 3
randomA3 1000 49820 72/99.64/129 4
randomA4 1000 8177 4/16.35/29 4
randomG4 1000 8173 5/16.34/31 23
hc10 1024 5120 10/10/10 10
mesh33x33 1089 2112 2/3.88/4 64
bintree10 1023 1022 1/1.99/3 18
3elt 4720 13722 3/5.81/9 65
airfoil 4253 12289 3/5.78/10 65
crack 10240 30380 3/5.93/9 121
whitaker3 9800 28989 3/5.91/8 161
c1y 828 1749 2/422/304 10
c2y 980 2102 1/4.29/327 11
c3y 1327 2844 1/4.29/364 13
c4y 1366 2915 1/4.26/309 14
c5y 1202 2557 1/4.25/323 13
gd95c 62 144 2/4.65/15 11
gd96a 1076 1676 1/3.06/111 20
gd96b 111 193 2/3.47/47 18
gd96c 65 125 2/3.84/6 10
gd96d 180 228 1/2.53/27 8
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Table 2
Comparative table of results for the test suite of Table 1

Graph Petit KH BEFN Poranen Ours: “extended” Ours: “super

randomA1 867570 909126 884261 878637 890430 888381
randomA2 6528780 6606174 6576912 6553553 6610933 659608
randomA3 14202700 14457452 14289214 – 14349635 1430398
randomA4 1721670 1765217 1747143 1739317 1757119 174782
randomG4 150940 149513 146996 142587 140240 140211
hc10 523776 523776 523776 523776 523776 523776
mesh33x33 31929 31729 33531 32178 31895 31729
bintree10 4069 3950 3762 3899 3707 3696
3elt 363204 373464 363204 383286 359977 357329
airfoil 285231 291794 289217 306005 275833 272931
crack 1491126 – – – 1507325 1489266
whitaker3 1151064 1205919 1200374 1203349 1152441 1144476
c1y 62936 64934 62333 62857 62545 62262
c2y 79429 80148 79571 80327 79200 78822
c3y 123548 127315 127065 125654 126111 123514
c4y 116140 118437 115222 119232 115935 115131
c5y 100264 104076 96956 99389 97840 96899
gd95c 506 509 506 506 506 506
gd96a 96342 106668 99944 101394 98042 96249
gd96b 1416 1434 1417 1416 1416 1416
gd96c 519 519 519 519 519 519
gd96d 2393 2393 2409 2391 2391 2391

The obtained minimum is italized.

tracted thebestresults reported in Petit’s et al. articles [11,13,22,23]. These results
usually obtained by combining spectral sequencing method with simulated anneal
the column“KH” we show the results of Koren and Harel [19]. They developed a lin
time algorithm for the MinLA, based on the combination of spectral methods with
multiscale paradigm. We present their best reported results, those obtained after
V-cycles. In the column“BEFN” the results of Bar-Yehuda et al. [1] are given. They h
developed a polynomial time algorithm (with complexityO(|V |2.2)) for computing an
optimal ordering induced by a binary balanced decomposition tree as an initial so
followed by simulated annealing. Although Bar-Yehuda et al.’s results are of high quali
their algorithm cannot be used for very large inputs due to its high complexity. Finall
“Poranen” column includes the results obtained by the stochastic algorithm called “ge
hillclimbing” [24].

The running time of our algorithm clearly depends on several parameters. We ha
sically used three types of V-cycles: the “quick” V-cycle which is aimed at achieving
performance and thus somewhat compromising the quality of the arrangement co
“extended” V-cycle whichruns longer but succeeds in finding lower cost arrangement
and the “super” V-cycle which provides even better results but runs on the average
slower for this test suite. The relevant parameters for all types are presented in Appe
The “quick” V-cycle is mostly useful for large graphs (like those in Table 4) for whic
is crucial to cut down execution time. Here, for the relatively small sized graphs o
tit’s benchmark, we have omitted its detailed results, since the “extended” V-cycle a
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runs fast enough and naturally provides better results. The column (of Table 2) mar
“Ours: extended”summarizes the best results observed out of 100 runs (using differe
quences of random numbers) of three “extended” V-cycles each. The column (of Ta
marked by“Ours: super” summarizes the best results observed out of 50 similar run
three “super” V-cycles each. Excluding the first four random graphs (discussed next)
is evident that our algorithm almost always provides the best results, if not by usin
“extended” V-cycle, then when applying the “super” one. Also important is the fact
the calculated standard deviation of the trials is no bigger than 1% (for both the “ex
ed” and the “super” V-cycles) of the minimal result shown in the table and usually
much smaller. One “quick” V-cycle gave on the average 107.3% of our best results,
three “quick” V-cycles improve it to 105.4%. One “extended” V-cycle further impro
the results to 103.3% and three “extended” V-cycles to 101.5%. Extracting the best
out of only three runs (using different sequences of random numbers) of three “e
ed” V-cycles already gave 100.9% of the best seen costs. Since the running time
algorithm is almost negligible for many of the graphs of Petit’s test suite we present
Table 5) only for the much larger graphs given in Table 4 and discussed below.

Random graphs. Two kinds of random graphs were introduced in Petit’s test su
(a) uniform random graphsGn,p (randomA[1,2,3,4]), wheren = 1000 is the number o
vertices andp is the probability of having an edgebetween any two nodes, and (b) ge
metric random graphGn,d (randomG4) withn = 1000 uniformly distributed nodes in
unit square, such that each pair of nodes which have smaller distance thand are connected
by an edge. It is clear that our algorithm succeeds when the graph has somegeometric
structure like in “randomG4”, and unlike “randomA[1,2,3,4]”. While most algorithms p
form rather well for those uniform random graphs, producing results of comparable qual
the best shown results are those observed by Petit et al. using simulated annealing
is basically a stochastic search. We have however checked that for fixedn andp, different
random generated numbers create different uniform graphs which nonetheless always
hibit similar linear arrangement cost results. And the important point is that cost varia
due to different heuristics are within variations anyway produced by random changes
graph. Therefore, as already stated by Petit [13,22], uniform random graphs are a
unworthy for the purpose of evaluating heuristic algorithms (see analytical explanat
[12]).

Graphs with known minimum.To further measure the quality of our heuristic, we h
tested it on graphs for which the MinLA value is known. Three such examples already
pear in Table 1, namely, the hypercube graph (“hc10”), the lattice graph (“mesh33x33
and the binary tree (“bintree10”) [11]. In addition, we have added four larger lat
(“mesh100x100”, “mesh200x200”, “mesh500x500”, “mesh1000x1000”) and three prop
interval graphs which also have known minima [27]. The results are shown in Ta
We have employed three “extended” V-cycles enhanced by the segment minimizatio
Section 3.3.3). Eventhough the very particular known optimum for meshes was no
reached, our solutions did show very similar structures and close results even for the la
meshes, as is indicated by the last column of Table 3. The quality of our solution h
deteriorated with the growth of the mesh.
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Table 3
Comparative table of results for graphs with known minimum

Graph |V | |E| Our cost Optimal cost Our/Optima

mesh33x33 1089 2112 31720 31680 1.001
mesh100x100 10000 19800 880234 868820 1.013
mesh200x200 40000 79600 7028594 6923320 1.015
mesh500x500 250000 49900 109972299 107916916 1.01
mesh1000x1000 1000000 1998000 879287403 862634024 1.01
bintree10 1023 1022 3696 3696 1
hc10 1024 5120 523776 523776 1
Proper Interval Graph I 200 3213 30766 30766 1
Proper Interval Graph II 500 14784 250241 250241 1
Proper Interval Graph III 1000 45393 1.19709e+06 1.19709e+06 1

Larger graphs. Since the execution time of our algorithm is basically linear (even in
current unoptimized state) we were looking for additional large sized test cases. We h
found only one paper with such results, the one by Koren and Harel [19], which is in
the only one exhibiting linear execution time. In this test suite we have used the
“quick” and “extended” V-cycles as in Petit’s experiments. The results and running ti
(in minutes) are summarized in Table 5. Column“KH” presents those obtained by Kor
and Harel after five full V-cycles. (We have chosen to present these results rather than th
obtained after 10 V-cycles as the latter only improve the former by less than 1% b
twice as slow.) The two columns marked by“Ours” show the extremely fast performan
and very good results of our algorithms: our single “quick” V-cycle runs (on the ave
less than 20% of the running time of Koren and Harel’s algorithm and improves the
sults by 8.3%, while our three “extended” V-cycles run (∼ 3.5 times) slower but exhibit
results which are 12% better. Each cost presents theaverageresult obtained over 10 runs o
different sequences of random numbers, for which we have measured a standard d
not larger than 2%. (Note that stochastisity enters not only in the SA procedure bu
in the given initial order of nodes which affects the coarsening procedure given by Alg
rithm 1.) Additional tests show that three “quick” V-cycles already improve over “KH”
10%, and that dropping the LCC procedure (within the SA process) from the runs of
“extended” V-cycles has worsen those results by about 1%. This last result demon

Table 4
KH large graphs test suite

Graph |V | |E| Degree (min/max)

tooth 78136 452591 3/39
ocean 143437 409593 1/6
mrngA 257000 505048 2/4
rotor 99617 662431 5/125
598 110971 741934 5/26
144 144649 1074393 4/26
m14b 214765 1679018 4/40
mrngB 1017253 2015714 2/4
auto 448695 3314611 4/37
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Table 5
Comparative table of results for large graphs

KH: 5 V-cycles Ours: “quick” Improvement Ours: “extended” Improvemen
Graph cost/time single V-cycle (Ours÷KH) 3 V-cycles (Ours÷KH)

cost/time cost/time cost/time cost/time

tooth 255.465.042/10.5 237.353.161/1.2 0.929/0.114 227.639.682/27 0.891/2.571
ocean 141.732.687/13.5 131.968.513/3.2 0.931/0.237 118.882.522/72 0.839/5.333
mrngA 348.448.986/23.5 319.286.767/6 0.916/0.255 305.560.971/90 0.877/3.830
rotor 247.583.742/16.5 230.618.627/1.9 0.931/0.115 221.832.991/42 0.896/2.545
598 340.886.008/19 287.702.639/3 0.844/0.158 281.033.967/57 0.824/3.000
144 772.846.779/28.5 764.706.283/4.4 0.989/0.154 745.701.842/84 0.965/2.947
m14b 1.004.606.217/40 877.930.925/6.8 0.877/0.170 857.743.008/130 0.854/3.250
mrngB 3.558.254.373/98 3.377.861.206/38 0.949/0.3883.254.023.540/520 0.914/5.306
auto 4.501.150.138/100 3.986.693.232/18 0.886/0.1803.871.472.605/340 0.860/3.400

Average 0.917/0.197 0.880/3.57

The obtained minimum is italized.

the ability of the LCC to further extract better minima. We found that the “super” V-cycl
is unuseful here since it does not show any significant improvement of results, while
crease in running time (because of the growing degree of the coarse graphs and ad
SA) makes it unusable for practical purposes, especially for the largest graphs.

5. Conclusions

We have presented a new multilevel algorithm for the MinLA problem for gen
graphs. The algorithm is based on the generalprinciple that during coarsening each v
tex may be associated to more than just oneaggregate according to some “likelihoo
measure. The uncoarsening initialization,which produces the first arrangement of the fi
graph nodes, strongly relies on energy considerations (unlike usual interpolation in
sical AMG). This initial order is further improved by local strict minimization relaxat
and possibly by employing stochasticity, i.e., simulated annealing. The running time
algorithm is linear, thus it can be applied to very large graphs. We have basically use
types of V-cycles: the “quick”, “extended” and “super”. The “extended” V-cycle include
SA, which is enhanced by the LCC procedure, and spends more time on local min
tion. The “super” V-cycle is aimed at achieving even better results for small and medi
sized graphs. The “quick” one runs very fast and provides results which are at most
11% (on the average 4%) off the better results obtained by the “extended” and “s
V-cycles. Due to stochastic elements, different results are observed for different seq
of random numbers; however, all our tests show that this variability is not larger than

Our main conclusion is that the average and the best results of our “extended” an
per” V-cycles are almost always better than the results of completely stochastic heu
(simulated annealing, genetic hillclimbing, etc.), the Fiedler vector multilevel algor
and the binary balanced decomposition tree algorithm. For uniform random graphs it
clear that some results obtained by stochasticheuristics outperform ours. This is becau
our algorithm succeeds when the graph has non-stochastic structure, i.e., in mor
itive words it has “some geometry”. We recommend our multilevel algorithm as a ge
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practical method for solving the minimum linear arrangement problem. The implem
algorithm can be obtained athttp://www.wisdom.weizmann.ac.il/~safro/minla.
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Appendix A. Lowest common configuration (LCC)

The algorithm presented below was originally designed for the traveling salesman
lem [25]. Given two arrangements of the graph nodesϕ = (π−1

1 (1),π−1
1 (2), . . . , π−1

1 (n))

andψ = (π−1
2 (1),π−1

2 (2), . . . , π−1
2 (n)), their LCC, denoted LCC(ϕ,ψ), is a third linear

arrangement whose cost is lower than (or at most equals to) the costs of bothϕ andψ ,
produced as follows.

Define as acommon sub-permutation(CSP) ofϕ andψ any subsetS for which, for
certaini andj , the following two requirements hold:

(1) S = {ϕ(i), ϕ(i + 1), . . . , ϕ(i + |S| − 1)} = {ψ(j),ψ(j + 1), . . . ,ψ(j + |S| − 1)},
(2) {ϕ(i), ϕ(i + |S| − 1)} = {ψ(j),ψ(j + |S| − 1)}.

That is, the subsetS appears as a consecutive sequence of nodes in bothϕ andψ , possibly
in different orders, but with common ends.

LCC(ϕ,ψ) is constructed by first finding all the CSPsS of ϕ andψ , and then choosin
for eachS the suborder from eitherϕ or ψ , whichever yields the lower cost arrangement.
is not straightforward to find all CSPs of givenϕ andψ , especially if the complexity of tha
subroutine is required not to dominate the entire complexity of the multilevel solve
have constructed an algorithm which finds all CSPs in nearly linear time. The algorit
based on the following observations.

Consider a pair of consecutive suborders (one is taken fromϕ and the other fromψ)
whose ends are common and lengths are equal. Such a pair of suborders issuspectedof
being a CSP (SCSP). Our aim is to find all SCSPs which with very high probabilit
indeed CSPs.

Attach to each vertexj some markingMj , a real number. Construct forϕ the vector
(SM)ϕ of the partial sums of these markings(SM)

ϕ
i = ∑i

l=1 Mϕ(l). Similarly, construct
(SM)ψ for ψ . Let ϕ(i), ϕ(i + 1), . . . , ϕ(i + k) andψ(j),ψ(j + 1), . . . ,ψ(j + k) be a
SCSP. If the SCSP is also a CSP then the following holds:

(SM)
ϕ
i+k − (SM)

ϕ
i = (SM)

ψ

j+k − (SM)
ψ

j . (A.1)

The opposite is, however, not always true: (A.1) may hold for such a SCSP even
the suborders arenot permutations of each other. Consequently the markings should b
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chosen so that this ambiguity will practically never happen. It is enough for examp
chooseMi to be a random number between 0 and 1 taken to some powerp. Clearly, the
probability that (A.1) holds while the SCSP is not a CSP is extremely low.

Equation (A.1) can also be written as

(SM)
ϕ
i − (SM)

ψ
j = (SM)

ϕ
i+k − (SM)

ψ
j+k. (A.2)

If ϕ(i) = ψ(j) = l andϕ(i + k) = ψ(j + k) = m, say, and if we define for every vertexl
the “assignment”

Al = (SM)
ϕ

π1(l)
− (SM)

ψ

π2(l)
, (A.3)

Equation (A.2) implies that ifAl = Am, then with very high probabilityl andm are ends
of a CSP. Such pairs of vertices can easily be found by sorting the list of assignmen
final construction of the LCC follows by choosing the lower cost suborder for each
in ascending order of the length of the CSPs, thus treating successfully even the
occurring situation of nested CSPs. All cases whereϕ(i) = ψ(j + k) andϕ(i + k) = ψ(j)

can also be found by repeating the above procedure while reversing the order of eϕ

or ψ , however in all our tests we have not found an indication of the importance o
additional procedure.

Appendix B. Parameters

In order to control the running time of the algorithm it is important to decrease the
number of edges of the constructed coarse graphs. This is achieved by the followi
parameters: the maximum allowed coarse neighborhood sizer, which restricts the allowe
size|Ni | of the coarse neighborhood of a vertexi ∈ F by deleting the weakestwij , j ∈ C;
and the edge filteringε threshold, which deletes everyrelatively weak edgeij (from the
created coarse graph) if bothwij < ε · si andwij < ε · sj , wheresi = ∑

k wik .
These two parameters and five others which control the uncoarsening procedu

Algorithm 2) are presented in Table 6 for the “quick”, “extended” and “super” V-cycles

Table 6
The parameters used for the “quick”, “extended” and “super” V-cycles

Parameter “quick” “extended” “super” The increa
V-cycle V-cycle V-cycle for levelL

The coarse neighborhood size (r) 6 10 20 + log(R)

The edge filtering threshold (ε) 0.01 0.005 0.001 ·0.9log(R)

The number of sweeps of compatible relaxation (k1) 3 10 10 +2 · L
The number of sweeps of Gauss–Seidel relaxation (k2) 3 10 30 +2 · L
The maximal number of sweeps of node-by-node
minimization (k3)

30 30 30 –

k4 used in the node-by-node minimization 1 10 20 + log(
√

R)

The maximal number of sweeps of segment minimization (k5) 0 0 (30∗) 0 –
The number of heating and cooling in SA (k6) 0 3 20 · log(R)

k7 used in the SA 0 5 10 + log(
√

R)

* used only to obtain the results of Table 3.
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have used. The last two parameters (of Algorithm 2) were constantly chosen to bek8 = 4
andγ = 0.6.

It is however important to mention that these parameters are the ones used only for
finest levels. As the coarse graphs become much smaller they are accordingly increas
This hardly affects the entire running time of the algorithm but systematically impr
the obtained results. In the last column of Table 6 we specifically describe the inc
introduced for each parameter as a function of levelL, which usually depends on the rat
R = max(1, |E0|/|EL|) measuring the relative decrease of the number of edges at leL

compared with the original graph.
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