
to appear in the Proceedings of the UK eScience All Hands Meeting 2007

OGSA-DAI 3.0 – The Whats and the Whys
Mario Antonioletti

1
, Neil P. Chue Hong

1
, Alastair C. Hume

1
, Mike Jackson

1
, Kostas Karasavvas

2
, Amy

Krause
1
, Jennifer M. Schopf

1,2,3
, Malcolm P. Atkinson

2
, Bartosz Dobrzelecki

1
, Malcolm Illingworth

1
,

Nicola McDonnell
1
, Mark Parsons

1
and Elias Theocharopoulos

2
.

1. EPCC, The University of Edinburgh, JCMB, Mayfield Road, Edinburgh EH9 3JZ, UK.
2. National e-Science Centre, University of Edinburgh, Edinburgh EH8 9AA, UK.
3. Distributed Systems Laboratory, Argonne National Laboratory, Argonne, IL, 60439 USA.

Abstract

OGSA-DAI provides an extensible framework that allows data resources to be
incorporated into Grid fabrics. The current OGSA-DAI release, version 3.0, is a
complete top-to-bottom redesign and implementation of the OGSA-DAI product. A
number of fundamental conceptual and design changes are introduced in this release. In
this paper we describe the motivation behind this redesign and provide an overview of
OGSA-DAI 3.0, comparing and contrasting it with OGSA-DAI 2.2. We also outline the
implications that these changes have for the OGSA-DAI user community.

1. Introduction
The Open Grid Services Architecture – Data
Access and Integration (OGSA-DAI) project
[1], currently funded as part of the Open
Middleware Infrastructure Institute UK (OMII-
UK) [2], aims to provide the e-Science
community with a middleware solution to
provide access to and integration of data for
applications working across administrative
domains. Early Grid applications focused
principally on the storage, replication, and
movement of file-based data, but many
applications now require full integration of
database technologies and other structured
forms of data through Grid middleware. Not
only do many Grid applications already use
databases for managing metadata, but
increasingly many are associated with large
databases of domain-specific information. For
example the AstroGrid [3] and DGEMap [4]
projects utilise large databases of astronomical
and biological data respectively.

OGSA-DAI offers services that add data
access and integration capabilities to the core
functionality of service-oriented Grids.
Structured data resources, whether these are
databases, files, or other types of data, can be
made available to Grid applications. OGSA-
DAI is now widely used within the UK e-
Science community as well as in other Grid
projects world-wide [5].

This paper provides an overview of the new
version of OGSA-DAI, 3.0, released in June

2007. Since 2002, when the OGSA-DAI project
started, there have been regular releases of the
OGSA-DAI product at approximately 6 month
intervals. However, 3.0 was released a full year
after 2.2 in order to allow for fundamental
conceptual and design changes. This paper
explains the reasons for this and gives a
summary of the improvements that users
experience as a result of the changes made.
Section 2 acquaints the reader with some of the
more common concepts and terms that will be
used in the paper. Section 3 provides a brief
motivation for the changes, highlighting the
evolution of previous OGSA-DAI releases.
Sections 4–7 describe the different
improvements made in OGSA-DAI 3.0. The
implications of migrating to release 3.0 for users
of 2.2 and earlier releases are then outlined in
Section 8. A brief summary of related work is
presented in Section 9. Finally, we conclude, in
Section 10, with information on the future plans
of the OGSA-DAI project.

2. OGSA-DAI Concepts and Terms
Comprehensive descriptions of OGSA-DAI are
available in [1][6][7][8]. Some of the basic
concepts are:

Activity – a named data-related operation
supported by OGSA-DAI. Example activities
include executing an SQL query, compressing a
set of data, listing the files in a directory,
performing a transform on an XML document,
and delivering data to an FTP server. Outputs
from an activity may be connected to inputs to

another activity to form a workflow.
Compositions of activities enable a powerful
data transforming facility that can move
computations closer to the data.

Block – a chunk of data, for example a
number, a boolean, a string, a byte, a byte array,
or a tuple.

Workflow – one or more sequences of
connected activities. A workflow can have
multiple sequences of activities that can be
executed in series or in parallel.

Request – a workflow submitted by a client
to OGSA-DAI. A request is a workflow with a
unique identity.

Session – a named context that allows
multiple requests to share state.

Activity framework – a software component
that creates, initialises, and processes workflows
and activities contained in a request.

Engine – a software component that queues
requests and submits them for processing to the
activity framework. The engine is a generic
component and has no knowledge of activities
or workflows.

OGSA-DAI core – software components that
provide the fundamental OGSA-DAI
functionality, including the activity framework
and engine as well as data resource interaction
components, persistence and configuration
components, and utilities.

Presentation layer – a front-end to the
OGSA-DAI core via which clients can access
and use OGSA-DAI. These can expose the
OGSA-DAI core via Web services.

Data service – a Web service that provides
access to the OGSA-DAI core. Part of a Web
services-based presentation layer.

3. OGSA-DAI 3.0 – a New Genesis
Every OGSA-DAI release up to and including
OGSA-DAI 2.2 (April 2006) has been an
evolution of the previous version. With OGSA-
DAI 3.0 we have taken the decision to
implement a complete top-to-bottom redesign
and rewriting of OGSA-DAI from scratch
which will stabilise the OGSA-DAI framework
for developers and end users.

The number of OGSA-DAI users has
increased to over 2800 in the last five years, and
as those numbers have grown the requirements
OGSA-DAI must satisfy have grown as well.
OGSA-DAI 2.2 was not suitable for addressing
this set of requirements, in particular those
relating to data streaming, standardisation of
activity inputs, and outputs and supporting
arbitrary presentation layers in a straightforward
way.

Therefore, to address this need OGSA-DAI
was redesigned from scratch, including the
activity framework and engine through to the
service-based presentation layers. This peer
reviewed design phase was followed by an
extensive testing phase which has extended the
coverage of our tests, and provided a new set of
scenarios to test against.

4. Improvements to Activities
The activity model in OGSA-DAI allows new
functionality to be created, deployed and used in
OGSA-DAI services in a similar way to plug-
ins in many other pieces of software. This
provides two important benefits to developer-
users: a well-defined, composable, workflow
unit, and an easy way to extend functionality
without needing to understand the underlying
infrastructure.

4.1 Defining a Standard Activity Library

In previous versions of OGSA-DAI, the set of
available activities grew in a relatively ad hoc
manner as specific requirements were met.
Consequently, these activities did not form a
complete set, lacked consistency, and did not
compose easily.

In release 3.0, a complete analysis and
redesign of the activity library gave us the
opportunity to improve on these shortcomings.
Specifically, having more experience of what
our users want, we defined a specification of a
comprehensive and consistent standard set of
activities [9] that covers the data access and
integration requirements of many users.

4.2 Activity Structure

In OGSA-DAI release 2.2, activity input,
output, and parameter naming were activity
specific and tied to the activity representation.
Parameters differed from inputs in that they
were specified once in the request. Previous
activities in the flow could not provide a
parameter value to a downstream activity at run-
time – inputs and parameters were not
interchangeable which meant it was difficult to
compose activities and enforce connection
semantics.

In release 3.0, we have formulated a generic
activity representation where inputs and
parameters have been homogenised – now we
only have inputs. A special kind of input, called
an input literal, replaces parameters in requests.
Since we have a common passing mechanism
for all inputs, clients are free to choose whether
an input value is specified in the request or is
obtained from the output of another activity.

4.3 Activity Inputs and Outputs

The new set of recommended inputs and outputs
defined in the activity library set includes Java’s
basic types (Object, String, Integer, Long,
Double, Number, Boolean) as well as some
other types like char[], byte[], Clob, Blob. We
have also defined two types – tuple and
MetadataWrapper – that are of particular
importance.

A tuple is used to represent a row of
relational data. Each element of a tuple
represents a column. Relational resources are
commonly used in many OGSA-DAI scenarios
and using a preferred (and recommended)
format has many benefits, one of which is that
we need only one set of transformation
activities, e.g. for projection, sorting, etc. In
previous releases we used more types internally,
including CSV, WebRowSet and ResultSet so
for example, it was possible for one activity to
project data represented in CSV and another to
project data represented in WebRowSet.
Release 3.0 uses data conversion activities to
convert tuples to CSV or WebRowSet if
required.

A MetadataWrapper can wrap any object
that the users want to be treated as metadata by
activities. It is left to individual activities to
handle metadata blocks as they see fit. OGSA-
DAI is agnostic of metadata representations and
allows users to use any kind of domain-specific
metadata they might need.

4.4 Activity APIs

The redesign of activity inputs and outputs also
yields a simpler API for activity developers.
This has been simplified further by the fact that
activity developers no longer need to parse
XML fragments to elicit activity input and
output names and configuration settings. The
activity framework provides this information in
a standard set of Java objects. Activity
developers also do not need to write XML
Schema documents describing their activities.

Activities can implement “extension”
interfaces to specify what they require from the
activity framework to be able to execute, for
example: Do they need data resources? Do they
spawn activities? Do they produce events for
monitoring? Do they need a security context?
This provides a simpler method for activity
developers to specify to the activity framework
their initialisation and configuration
requirements and removes some of the overhead
of developing this themselves.

5. Improvements to OGSA-DAI
Workflows
The OGSA-DAI activity model allows activities
to be composed together. The OGSA-DAI
activity framework and engine, which execute
the data-centric workflows from clients, have
been completely rewritten to support a number
of scenarios which benefit developers and users
of OGSA-DAI.

5.1 Lists and Data Grouping

In OGSA-DAI 3.0 we have introduced lists,
blocks that are inserted into a stream of data to
mark the beginning and end of a group of data
blocks. A list groups related data together as
one unit. For an example consider the
SQLQuery activity in Figure 1.

Figure 1 – Two executions of an SQLQuery.

SQLQuery can dynamically take any number

of SQL expressions as input. The output for
each expression is a number of rows represented
as tuples. Without a way to group the output
tuples we would have no way to differentiate
between the results of queries e1 and e2. We
can use lists (illustrated with the square brackets
in the figure) to group the output of each
execution of the query. This results in two lists,
one with the output of e1 and one with that of
e2. Lists play an important role in the streaming
of data through activities. They allow us to
describe activities in terms of different
granularities instead of only different types in
terms of their inputs and outputs. For example
an activity could take a simple string per
execution or a list of strings per execution and
then iterate over the strings internally. That
decision is up to the activity developer. In our
standard activity library we have defined
activities in their lowest sensible1 granularity to
enhance composability. To homogenise
granularity, release 3.0 provides utility activities
that allow lists to be flattened,. ListRemover, or
flattened and then reconstructed,
ListProcessingWrapper.

1 Sometimes we chose not to use the lowest possible
granularity for optimisation reasons.

e1, e2 SQLQuery [t11, t12] [t21, t22, t23]

Figure 2 - Flattening and reconstructing lists.

Figure 2. shows an activity A that takes a

single element as input for one execution while
the initial input that ListProcessingWrapper
gets is a list. Effectively, the
ListProcessingWrapper activity iterates over the
activities A, B and C by providing the single
values that are required while at the same time
adding the correct list markers in the output to
maintain the relationships between the inputs
and outputs.

5.2 Workflows and Data Resources

One major change in OGSA-DAI 3.0 is to
support workflows that target multiple data
resources.

OGSA-DAI 2.2 (see Figure 3, top half) had
a data service resource (DSR) which was
associated with a single data resource, e.g. an
instance of a database. A DSR was accessed via
a data service, which could expose any number
of DSRs, and thus any number of data
resources. Each DSR used its own instance of
an engine and activity framework to execute
workflows received from clients. A major
shortcoming of this model was that a workflow
submitted to a specific DSR could not access, or
reference, data resources exposed by other
DSRs under the same data service.

In OGSA-DAI 3.0, the DSR has been
superseded by the data request execution
resource (DRER) (see Figure 3, bottom half). In
common with a DSR, a DRER uses an engine
and activity framework to execute workflows.
Unlike DSRs however, a DRER can be
associated with any number of data resources
and different activities within the same
workflow can be targeted at different data
resources known to the DRER.

Figure 3: Services and resources in OGSA-

DAI 2.2 (above) and 3.0 (below).

Figure 4: Using multiple resources in the
scope of a single request.

This redesign allows OGSA-DAI to execute

workflows, for example as shown in Figure 4,
where a transfer of data from data resource R1
to data resource R2 does not include
transferring data external to the data service. An
SQL query on R1 produces data, which is then
written to R2 via the SQL Bulk Load Tuples
activity. In OGSA-DAI 2.2 this scenario would
have required the submission of requests to two
OGSA-DAI services and the transfer of the data
from one service to the other.

The restructuring in 3.0 allows clients to
undertake data transformation and integration
scenarios across various data resources within
the scope of a single OGSA-DAI workflow.

5.3 Resource Groups

One of the features of OGSA-DAI 2.2 was the
multi-resource – a data resource that opaquely
federated N DSRs (and so N data resources)
through the same data service. This is still
supported in OGSA-DAI 3.0 via the notion of a
resource group – a data resource that maintains
the identifiers of a number of other data
resources available on an OGSA-DAI server.
An OGSA-DAI deployer can easily configure a
server to expose a resource group that clients
can then use, e.g. the SQLBag activity can be
targeted at a resource group that federates N
relational resources with the same database
schema.

OGSA-DAI 3.0 also provides a
CreateResourceGroup activity that allows
clients, rather than OGSA-DAI deployers, to
create and use resource groups. This flexibility
means that clients can set up and use their own
federations according to their application-
specific requirements. In this scenario the client
is aware of the individual data resources that
make up the group.

List Processing Wrapper

A

[a,b,c],[d,e] [[f(a)f(b),f(c)], [f(d),f(e)]

[f(a)f(b),f(c),f(d),f(e)] [a,b,c,d,e]

B C

Client DataService
DSR

DSR

Client DRES DRER

[t1,t2,…,tn]

tableName: images2

SQLQuery
(R1)

SQLBulkLoadTuples
(R2)

expression:
select label, blob from
images;

6. Improvements to Data Streaming
OGSA-DAI can be used as a workflow
processing system that is designed to stream
data through a set of activities in a pipelined
manner. Take, for example, a workflow
consisting of a data producing activity, a data
transformation activity and a data delivery
activity. If the activities are well-defined then
they can each execute concurrently, with each
processing a different portion of the data stream.
This approach leads to efficient processing of
arbitrarily large data with a small memory
footprint. The introduction of lists and data
grouping provide the foundations for better data
handling in OGSA-DAI 3.0. This has been
extended to also provide better handling of
BLOBs and binary data, and improved
asynchronous data delivery.

6.1 BLOBs and Binary Data

The activities shipped with OGSA-DAI have
been designed to support binary data in two
different representations. Binary data obtained
from databases as BLOBs are stored as BLOB
objects within tuples and references to the entire
BLOB are passed between activities. Binary
data obtained from other sources, such as FTP,
is streamed through activities as a list of
relatively small byte arrays.

It is important to support both mechanisms
as they each have their advantages. BLOBs are
very useful when it is desirable to keep the
binary data grouped with other data elements in
a tuple. The list of byte arrays representation
better fits the pipeline streaming model of
OGSA-DAI as it allows multiple activities to be
processing different portions of the binary data
stream at the same time. In OGSA-DAI 3.0 all
the binary data processing activities have been
designed to operate with both these
representations of binary data.

6.2 Asynchronous Data Delivery

OGSA-DAI 2.2 supported asynchronous data
delivery via OGSA-DAI data services. Input or
output streams would be set up and then data
could be pushed or pulled to and from these via
the data services. One problem with this
approach was that the data service and its
associated DSR were used to execute workflows
as well as transmit or receive data. This meant
that the data service was overloaded.

In release 3.0, input streams and output
streams have been replaced by data sink and
data source resources, respectively. A request
can be submitted that creates a data source or a
data sink resource. Clients can then interact with

these resources using dedicated data source or
data sink services which only support
interaction with data source and sink resources,
rather than via a single overloaded data service.
Furthermore WS-ResourceLifetime [10] and
WS-ResourceProperties [11] operations can be
used to query the state of these resources, via
their dedicated services, and to terminate them
if required.

This approach yields a more modular set of
services, which is in line with the WSRF
resources model. This also leads to a more
consistent handling of data sources and sinks –
they are simply resources, and like data
resources or resource groups, they can be
created and utilised via activities or dedicated
services.

7. Improvements to OGSA-DAI
Resources and Services
There have been a number of improvements in
OGSA-DAI 3.0 at the level of resources and
services.

7.1 Sessions and Requests

All versions of OGSA-DAI have supported
requests and recent releases, including 2.2,
supported sessions. One problem however was
that all interaction and management of the
services and requests, including creation,
destruction, and updates, was done via a DSR,
its supported activities, and its service, which
was overloaded.

In OGSA-DAI 3.0, sessions and requests are
viewed as types of resource. When a client
requests a new session then a session resource
is created. Activities in OGSA-DAI workflows
can then interact with these sessions, using them
as repositories to store and retrieve data within
the scope of the OGSA-DAI server upon which
they are created. Sessions can be used across
multiple requests – data or other state stored
during one workflow can then be accessed by a
subsequent workflow. A session service
supporting standard WS-ResourceLifetime
operations can be used to manage the lifetime of
these session resources.

Likewise every request submitted to a
DRER has an associated resource created. A
request service supporting standard WS-
ResourceProperties and WS-ResourceLifetime
operations, and directed at the request resource,
can be used to query the progress of the request
and to prematurely terminate the request if
desired.

By exposing sessions and requests as
resources, clients that create and use these have

more control, and also modular services and
resources result.

7.2 Requests and Request Status Objects

OGSA-DAI 2.2 and its predecessors were based
around the use of XML documents. A data-
centric workflow to be executed by an OGSA-
DAI service was presented in a perform
document and the execution status, and often the
resulting data itself, were returned in a response
document. The use of perform documents was
central to the activity framework and engine,
which form the core of OGSA-DAI.

For the 3.0 release, the document concept
has been purged from the OGSA-DAI core – the
activity framework and engine now use a Java
request object and return a Java request status
object. The conversion to and from XML
becomes the responsibility of Web service-
based presentation layers. This allows OGSA-
DAI core components to be created and used
directly, and potentially allows the engine and
activity framework to be embedded in other
applications.

7.3 Web Services and Workflows

When using the OGSA-DAI 3.0 Web service
presentation layers the request and request
status are still communicated via XML (SOAP).
Clients wishing to use OGSA-DAI construct the
XML documents themselves or use the client
toolkit. In OGSA-DAI 3.0, the OGSA-DAI
Web service operation signatures have been
changed so that they fully describe the format of
a request or a request status. Accessing the
WSDL of a service provides access to an XML
representation of a request and a request status.
Running an automated code generation tool,
such as Apache Axis WSDL2Java, on a 3.0 data
request execution service will provide a
complete set of objects which can be used to
construct a request or traverse a request status in
code, avoiding the need for direct XML
manipulation. It is also hoped that this change
will make the inclusion of OGSA-DAI services
in established workflow engines, an interest of
such projects as SAW-GEO [12], more
straightforward.

7.4 Configuration and Persistence

In OGSA-DAI 2.2, all OGSA-DAI
configuration was specified via XML
configuration files. In OGSA-DAI 3.0, an
explicit persistence layer has been introduced to
hide the nature of the persistence media from
the core. OGSA-DAI 3.0 supports configuration
from simple text files. However, as the

persistence layer offers an abstraction layer it is
possible for this to be replaced by any other
means of specifying configurations, e.g.
specifying the configuration via a relational
database. At every service operation invocation
the persistence layer is consulted and the
OGSA-DAI server state is created from
persisted state and configuration. This means
that configuration can be changed without
having to restart OGSA-DAI, e.g. deployers can
modify the activities supported by an OGSA-
DAI resource or expose new data resources.
Consultation of a persistence layer necessarily
incurs an additional overhead during request
execution. This can be mitigated by either
choosing a more efficient persistence media or
exploiting caching so that persisted state and
configuration is only loaded if it has changed
since a previous request. Both the choice of
persistence media and the OGSA-DAI
components that interact with this are an
extensibility point in 3.0 allowing for their
transparent replacement.

7.5 Deployment

OGSA-DAI 2.2 and its predecessors supported
non-standard deployment of OGSA-DAI into
the Apache Tomcat servlet container [13] and
the Globus Toolkit [14] container. During
deployment all OGSA-DAI binaries and related
configuration files were copied into the target
container and OGSA-DAI deployers were then
required to restart the host container.

OGSA-DAI 3.0 supports WAR-based
deployment into Tomcat. This is a standard way
of deploying Web applications into Tomcat.
One benefit of this is that it removes the need to
shutdown Tomcat before deploying OGSA-DAI
and its services. OGSA-DAI 3.0 also supports
GAR-based deployment into the Globus Toolkit
as recommended by Globus.

7.6 Resource Identification

OGSA-DAI 2.2 releases identified targeted
resources either by appending the resource ID to
the query string part of the URL or by using
WS-Resource qualified endpoint references
(WS-EPRs). For 3.0, WS-EPRs are used in both
Axis and Globus Toolkit compliant versions for
consistency. This does not preclude the
provision, in future, of a presentation layer
which uses a different resource identification
specification.

8. Implications for OGSA-DAI Users
The changes we have implemented for OGSA-
DAI 3.0 affect different classes of end users in

different ways, but we believe in most cases
only moderate adaptation is needed, and this is
more than compensated for by the improved
functionality and flexibility of the new release.

Developers of clients need to be aware of
the changes to the client toolkit APIs as a direct
consequence of the changes made to services,
resources, and requests on the server-side. The
initial release of OGSA-DAI 3.0 provides all the
relational database functionality that was
present in release 2.2, as well as the new
functionality described in this paper. Basic
functionality for XML databases and file
resources is provided in release 3.0, with the
remaining functionality released as part of
OGSA-DAI 3.0.1 in Summer 2007.

Developers of application-specific activities
experience a major change to the activity APIs.
This is mainly a simplification of the APIs due
to the standardisation of activity input and
output types and support for activity iteration.
Those working with application-specific data
resources also experience changes to the data
resource APIs and the resource configuration, as
there has been a decoupling of a resource’s
configuration and how this configuration is
provided and persisted.

Developers of application-specific services
experience changes to the APIs that OGSA-DAI
services use to access the core OGSA-DAI
functionality. The APIs have been cleaned and
the boundary between services and the core
OGSA-DAI functionality redrawn so that only
application-specific code need reside in the
service layer.

9. Related Work
OGSA-DAI is not the only solution currently
available for data in the Grid space. Storage
Resource Broker (SRB) [15] developed by the
San Diego Supercomputer Center, provides
access to collections of data primarily using
attributes or logical names rather than using the
data’s physical names or locations. SRB is
primarily file oriented, although it can also work
with various other data object types. OGSA-
DAI on the other hand takes a database-oriented
approach to its access mechanisms. Although
SRB is currently not open source, whilst
OGSA-DAI is, a new product called iRods [16]
is being developed which will be available
under an open source licence.

 WebSphere Information Integrator (WSII),
a commercial product from IBM, provides data
searching capabilities spanning organisational
boundaries, a means for federating and
replicating data, as well as allowing for data

transformations and data event publishing to
take place [17]. A detailed comparison between
previous versions of OGSA-DAI and WSII can
be found in [18].

Mobius [19], developed at Ohio State
University, provides a set of tools and services
to facilitate the management and sharing of data
and metadata in a Grid environment. To expose
XML data in Mobius, the data must be
described using an XML Schema, which is then
shared via their Global Model Exchange. Data
can then be accessed by querying the Schema
using, for example, XPath. OGSA-DAI, in
contrast, does not require an XML Schema to be
created for each piece of data, rather, it directly
exposes that information (data and
metadata/schema) and relies on the resource’s
intrinsic querying mechanisms to query its data.

These three projects all provide mechanisms
to share data across organisational boundaries,
however they complement the functionality
provided by OGSA-DAI.

10. The Future
The OGSA-DAI project has a number of plans
to take release 3.0 forward. At the time of
writing these include:

• Releasing additional activities to bring
the complement of activities supported
by release 3.0 in line with those of the
standard activity library specification.

• Investigating persistence and
configuration of OGSA-DAI using a
relational database.

• Investigating clustering and load-
balancing to improve the scalability
and fault tolerance of OGSA-DAI via
the use of multiple JVMs or even
multiple hosts behind an OGSA-DAI
server, to increase the number of
requests that OGSA-DAI can handle
concurrently.

• Continuing investigations into the use
of transactions within OGSA-DAI.

• Implementing the WS-DAI
specifications [20] using OGSA-DAI,
using the new architecture to build a
WS-DAI presentation layer that
interacts with the OGSA-DAI 3.0 core.

• Incorporating the latest version of the
OGSA-DQP [21] distributed query
processor components that allow
queries to be run in parallel across
heterogeneous relational data sources
with different table schemas. This
version features a new pure Java query
compiler which means it will run on

any platform supported by OGSA-
DAI.

• Working with the OMII-Europe project
[22] to port OGSA-DAI to a number of
other platforms, in particular
Unicore/GS and gLite.

• Working closely with a selection of
specific projects to address their
application-specific data access and
integration requirements.

11. Conclusions
OGSA-DAI release 3.0 includes a number of
major changes which we believe will take
OGSA-DAI forward to address the data access
and integration requirements of the Grid
community. Activities have been simplified and
unified to be both more extensible and standard,
and to allow workflows to be composed more
easily. Workflows themselves have been
streamlined to allow more flexibility, in
particular to allow multiple data resources to be
utilised within a single workflow and to allow
different activities to operate upon different
parts of a data stream concurrently. Data
streaming has been made more efficient, and
OGSA-DAI resources and services have also
been simplified, increasing modularity and
reducing overloading of functionality. While the
consequent changes in APIs affects various user
classes, in general the APIs have been
streamlined and the additional functionality and
scalability is seen as a more than acceptable
trade-off.

This release provides a powerful piece of
software for both data integrators and
developers of data applications to build upon.
This paper has outlined the major changes that
have taken place within OGSA-DAI and which
we expect will benefit the e-Science
community. The current release of OGSA-DAI
is available from http://www.ogsadai.org.uk.

Acknowlegements
The OGSA-DAI project is funded by the
EPSRC via the Open Middleware Infrastructure
Institute UK. We also gratefully acknowledge
the input of our past and present partners and
contributors to the OGSA-DAI project
including: EPCC, IBM UK, IBM Corporation,
NeSC, University of Manchester, University of
Newcastle and Oracle UK.

References
[1] OGSA-DAI Project, http://www.ogsadai.org.uk/.

[2] Open Middleware Infrastructure Institute – UK,
http://www.omii.ac.uk/.

[3] AstroGrid, http://www.astrogrid.org/.
[4] DGEMap (Developmental Gene Expression Map),

http://www.dgemap.org/.
[5] OGSA-DAI – projects using OGSA-DAI,

http://www.ogsadai.org.uk/about/projects.php
[6] M. Antonioletti, M.P. Atkinson, R. Baxter, A.

Borley, N.P. Chue Hong, B. Collins, N. Hardman,
A. Hume, A. Knox, M. Jackson, A. Krause, S.
Laws, J. Magowan, N.W. Paton, D. Pearson, T.
Sugden, P. Watson, and M. Westhead. The Design
and Implementation of Grid Database Services in
OGSA-DAI. Concurrency and Computation:
Practice and Experience, Volume 17, Issue 2-4,
Pages 357-376, February 2005.

[7] K. Karasavvas, M. Antonioletti, M.P. Atkinson,
N.P. Chue Hong, T. Sugden, A.C. Hume, M.
Jackson, A. Krause, and C. Palansuriya.
Introduction to OGSA-DAI Services. Lecture
Notes in Computer Science, Volume 3458, Pages
1-12, May 2005.

[8] OGSA-DAI 3.0 design documentation,
http://www.ogsadai.org.uk/documentation/release3.
0/.

[9] Karasavvas, K. Atkinson, M.P. and Hume, A.C.
OGSA-DAI – Redesigned and New Activities,
http://www.ogsadai.org.uk/documentation/release3.
0/.

[10] L. Srinivasan (Ed), T. Banks (Ed). Web Services
Resource Lifetime 1.2 (WS-ResourceLifetime),
Version 1.2, OASIS Standard, 1 April 2006.

[11] S. Graham (Ed), J. Treadwell (Ed). Web Services
Resource Properties 1.2 (WS-ResourceProperties),
Version 1.2, OASIS Standard, 1 April 2006.

[12] SAW-GEO,
http://www.jisc.ac.uk/whatwedo/programmes/erese
arch_grid_ogc_collision/Project_SAW_GEO.aspx.

[13] Apache Tomcat. http://tomcat.apache.org/ .
[14] Globus Toolkit. http://www.globus.org/toolkit/.
[15] Storage Resource Broker (SRB),

http://www.sdsc.edu/srb.
[16] iRods, http://irods.sdsc.edu/.
[17] Web Sphere Information Integrator (WSII),

http://www.ibm.com/software/data/integration/.
[18] R. O. Sinnott and D. Houghton, Comparison of

Data Access and Integration Technologies in the
Life Science Domain, Proceedings of the UK e-
Science All Hands Meeting 2005, September 2005.

[19] Mobius, http://projectmobius.osu.edu/.
[20] Antonioletti, M., Atkinson, M., Krause, A., Laws,

S., Malaika, S., Paton, N. W., Pearson, D. and
Riccardi, G., Web Services Data Access and
Integration – The Core (WS-DAI) Specification,
Version 1.0. GFD-R-P.074, Global Grid Forum.
July 2006.,
http://www.ggf.org/documents/GFD.74.pdf.

[21] Alpdemir, M.N., Arijit M., Gounaris, A., Paton,
N.M., Watson, P., Fernandes, A.A.A, and
Fizgerald, D.J. OGSA-DQP: A Service for
Distributed Querying on the Grid. Editors: E.
Bertino, S. Christodoulakis, D. Plexousakis, V.
Christophides, M. Koubarakis, K. Boehm, Elena
Ferrari. Advances in Database Technology - EDBT
2004: 9th International Conference on Extending
Database Technology, Heraklion, Crete, Greece,
March 14-18, 2004. Lecture Notes in Computer
Science, Volume 2992, pp858-861, 2004.

[22] Open Middleware Infrastructure Institute – Europe,
http://omii-europe.com/.

Formatted: Swedish (Sweden)

Field Code Changed

Formatted: Swedish (Sweden)

Formatted: Swedish (Sweden)

http://www.ogsadai.org.uk/
http://www.ogsadai.org.uk/
http://www.omii.ac.uk/
http://www.astrogrid.org/
http://www.dgemap.org/
http://www.ogsadai.org.uk/about/projects.php
http://www.ogsadai.org.uk/documentation/release3.0/
http://www.ogsadai.org.uk/documentation/release3.0/
http://www.ogsadai.org.uk/documentation/release3.0/
http://www.ogsadai.org.uk/documentation/release3.0/
http://www.jisc.ac.uk/whatwedo/programmes/eresearch_grid_ogc_collision/Project_SAW_GEO.aspx
http://www.jisc.ac.uk/whatwedo/programmes/eresearch_grid_ogc_collision/Project_SAW_GEO.aspx
http://tomcat.apache.org/
http://www.globus.org/toolkit/
http://www.sdsc.edu/srb
http://irods.sdsc.edu/
http://www.ibm.com/software/data/integration
http://www.ggf.org/documents/GFD.74.pdf
http://omii-europe.com/

