
OGSA-DAI Status and Benchmarks

Mario Antonioletti1, Malcolm Atkinson2, Rob Baxter1, Andrew Borley3, Neil P. Chue Hong1, Patrick
Dantressangle3, Alastair C. Hume1, Mike Jackson1, Amy Krause1, Simon Laws3, Mark Parsons1, Norman

W. Paton4, Jennifer M. Schopf2,5, Tom Sugden1, Paul Watson6 and David Vyvyan3

1. EPCC, University of Edinburgh, JCMB, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK.
2. National e-Science Centre, Universities of Edinburgh & Glasgow, Edinburgh EH8 9AA, UK.
3. IBM United Kingdom Ltd, Hursley Park, Winchester S021 2JN, UK.
4. Department of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
5. Mathematics and Computer Science Div., Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL, USA.
6. School of Computing Science, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK.

Abstract

This paper presents a status report on some of the highlights that have taken place within the OGSA-
DAI project since the last AHM. A description of Release 6.0 functionality and details of the
forthcoming release, due in September 2005, is given. Future directions for this project are discussed.
This paper also describes initial results of work being done to systematically benchmark recent OGSA-
DAI releases. The OGSA-DAI software distribution, and more information about the project, is
available from the project website at www.ogsadai.org.uk.

1 Introduction and Overview
OGSA-DAI [1] is a widely used piece of
middleware infrastructure enabling client
applications to perform a set of activities on a
remote data resource, e.g. a relational database or a
file. These activities are aggregated into a single
request document to minimise the number of
client-service interactions required to obtain the
desired result. The use of request documents also
avoids unnecessary data movement by placing the
computation next to the data.

We provide a set of core activities that
implement the basic functionality needed to
interact with a data resource, and it is easy for users
to add new activities that operate within the
OGSA-DAI framework. There are three types of
activities: Statement activities that wrap the user’s
query into a format understood by the underlying
database to perform basic functions such as update,
query, joins, etc.; Transformation activities that
change the formatting of the data into output more
suitable for a given client (for example, changing
raw XML results into output for project web site,
or compressing the data); Delivery activities that
allow 3rd party delivery techniques such as
GridFTP or SMTP.

The first OGSA-DAI distribution was released
in January 2003. In the last two years there have
been six major and three minor releases all of
which have been based on the OGSI infrastructure
 [2].

After release 5.0, December 2004, a move was
made towards supporting two additional platforms,
WS-I and WSRF. We define a WS-I-based
platform to be one that only uses standards
explicitly included in the WS-I Basic Profile [3],
for example, a vanilla Apache Tomcat and Axis
infrastructure or the WS-I+ [4] -based OMII 2.0
distribution. Our second new supported platform is
the WSRF-based platform, as implemented by the
Globus Toolkit 4.0.

In May 2005 we released three related OGSA-
DAI distributions: release 6.0 of the OGSI-based
distribution, which will be the last release for this
platform, and release 1.0 of both OGSA-DAI WS-I
and OGSA-DAI WSRF.

This paper discusses the effort made to migrate
to three supported platform infrastructures, the
current and planned features for these versions,
some performance data, and data about current
usage and projects.

2 Migration
When the move to three supported platforms

began, we restructured the code significantly to
have a common core with interfaces to allow for
the different versions. The infrastructure had to be
refactored to provide for this core component in
addition to WSI, WSRF and OGSI-specific
components, where each component consists not
only of code but also XML Schema, user
documentation, configuration files and build tools.

We took advantage of this refactoring to implement
a change in the service model. This is a first step
towards the new OGSA-DAI architecture, the
design of which is being led by Malcolm Atkinson
and is outlined in [5].

2.1 Refactoring the Server

In order to make the development and maintenance
tractable, we restructured the OGSA-DAI server
code into a three-tiered implementation, shown in
Figure 1..

The Presentation Layer consists of a set of Data
Services that perform two functions. First, a Data
Service accepts a version-specific message from
the client, and strips the payload from the message
to create a version-neutral perform document that
consists of the set of activities to be performed.
Second, the Data Service decides which Data
Service Resource (DSR) in the Core Layer is the
proper one for the activities and submits the
document to that DSR.

The Core Layer, sometimes called the
Processing Layer, consists of a set of DSR’s that
act as a front-end to a Data Resource. Each DSR
implements the core DAI functionality which
includes overseeing the coordination of the
activities for a specific Data Resource. A Data
Resource can be anything from a database to a
simple file. A DSR may also expose additional
capabilities such as data transport-related
operations and can also cache data for retrieval by
third-parties (if the data service resource is

configured to support asynchronous data delivery).
When completed, the DSR sends the response back
to the client, in the form of a response document,
through the Presentation layer. The DSRs are the
same for all three platforms (OGSI, WSRF, and
WS-I) but specific to a Data Resource type.

For now, Data Services and DSRs are deployed
dynamically and have lifetimes bound to that of the
container. Additional DSRs can be associated (or
dis-associated) with a Data Service, but these
operations require the container to be re-started
before these changes are registered by the service.
The service model and the functionality it exposes
will continue to evolve as elements of the new
architecture [5] are incorporated into future
releases of OGSA-DAI.

2.2 Refactoring the Client

On the client-side, the multiplicity of platforms is
hidden from the user. The client toolkit (CTk) API
has been refactored to abstract away the differences
between the different messaging infrastructures. It
takes the information about the activities from a
user, constructs the performance document, and
then wraps it with the headings for the platform in
use. This implementation-specific SOAP message
is then passed on to the Presentation Layer. If a
client needs to know what type of OGSA-DAI
service is being used, the getVersion operation will
return the OGSA-DAI distribution type (WSRF,
WS-I or OGSI) and its version number.

Data Services
Presentation

Client

Client

Server

Client Toolkit API

WS-RF OGSI WS-I

SOAP over HTTP

WS-RF OGSI WS-I

Data Resources

Core

Relation XML File

DAI Core

DSR DSR DSR

Figure 1: Schematic representation of OGSA-DAI.

The changes made to the CTk greatly increase
the usability when developing and using the
OGSA-DAI middleware. By having a single client
interface for all platform versions of OGSA-DAI
we were able to use the same system tests across
the three platforms, thus mitigating some of the
effects of having to support three platforms. The
client toolkit has also proven to be of value by
hiding changes in specifications from client tools.

2.3 Effort

In addition to extensive code restructuring for both
the client and server, the adaptation to three
platforms also included changing the XML schema
used additional documentation, changes in
configuration files, and additional build tools. The
overnight automated test system also had to be
extended to run tests over three builds rather than
one. In all, we estimate that this refactoring took
approximately two developer months to complete,
compared to two weeks to port just the code..

However, in addition to these upfront costs,
there are many ongoing overheads. Moving from
one to three distributions results in an increase in
the time to prepare and test releases as well as in
satisfying our ongoing user support commitments.
It also means that we must address the expectation
that, for example, OGSA-DAI WSI services be
fully inter-operable with OGSA-DAI WSRF
services. In addition, commitments to release
OMII-compliant versions of OGSA-DAI and to
bundle OGSA-DAI with the Globus Toolkit yield
additional constraints upon the team's time. This
inevitably has constrained the effort available to
develop new functionality or address areas of
concern such as performance.

For this reason, together with the finite
developer effort available, it has become necessary
to discontinue further development of the OGSI-
compliant OGSA-DAI distribution. It is hoped that
the community will be able to converge on a single
infrastructure and thus OGSA-DAI need only
support a single service layer. However, it does not
appear as though this will happen in the near future
so we are forced to drop support for OGSI in order
to achieve a balance between supporting emerging
specifications and extending and improving
OGSA-DAI.

3 Other Current and Planned
Features

The main change in the OGSI distribution for 6.0
was the refactoring of the code base. It also had a
number of bug fixes. Other changes and additions

in functionality that affect all three distributions are
discussed in this section.

3.1 Control Flow

In the current release we have implemented
control flow constraints to be expressed in a
perform document. This dictates the processing
order of activities that should facilitate the
description of more complex interactions that
require a definite temporal ordering to make sense,
for example a new table needs to be created before
it can be populated.

The control flow capability is enabled through
two new elements: a sequence element signifies
that any activities or activity pipelines contained
within it will be processed sequentially, one after
the other; and a flow element allows any activity or
activity pipeline contained in to be processed
concurrently using different processing threads.
These two elements can be nested within each
another. These elements provide the client with
some control over the order in which activities are
processed – the activity model previously worked
in a much more haphazard manner. Thus it is
possible to specify that one activity does not start
until its predecessor has completed or that several
activities should be performed in parallel.

3.2 Differences Between Versions

The functionality included in the WS-I and WSRF
releases is, more or less, equivalent but not yet on a
par with that available in the OGSI based release.
Two notable exceptions are:

• Lack of concurrency support: only one client

can interact with a data service at time.
Previously, in the OGSI-based model, the
factory pattern could be used to create a new
service, a Grid Data Service (GDS), on
demand allowing concurrent access to the data
resource.

• Lack of security support: Grid credentials are
not used by the services to map the role data
from the DN to a data base user and password.
Also, transport and message level security
have not been tested as thoroughly as the
previous OGSI version.

Both of these are expected to be addressed in the
next OGSA-DAI release, due in September 2005.

3.3 Future Plans

In addition to unifying the functionality of the
current versions, several other additional features
are planned for the next release. These include:

• Implementation of the GGF DAIS WG [6]:

part of the motivation of OGSA-DAI has
always been to not only provide a piece of
middleware to provide access to data but also
to try and standardise the way that data is
accessed through web service interfaces.
Hence, the OGSA-DAI group has been very
active in the production of a set of standards
through GGF. A candidate standard
recommendation is expected shortly after
GGF14 (June 2005). We plan to implement
this standard as part of the standardisation
process.

• Tighter integration with OGSA-DQP:
OGSA-DAI has mainly addressed the issue of
data access, with much less effort spent on
data integration. The OGSA-Distributed Query
Proecess (DQP) Project [7] has been adding
data integration functionality using OGSA-
DAI services. OGSA-DQP works closely with
the myGrid project [8]. In the next release of
OGSA-DAI we plan to have a closer
integration of the two products and embed
some of the DQP functionality into the OGSA-
DAI framework.

• Benchmarking of OGSA-DAI code: In order
to better understand the performance
limitations of OGSA-DAI, and to be able to
recommend deployment guidelines, we are
benchmarking the OGSA-DAI distributions.
Initial results are discussed in later in this
paper.

4 Benchmarking OGSA-DAI
Although some effort has previously been
expended by the OGSA-DAI team doing
performance analysis and optimisation of the
OGSA-DAI code [14], a more systematic approach
is now being undertaken to produce a benchmark
suite that will run automatically. The recorded
results will be made public to encourage selection
of priorities and focused improvements and to
inform the community on best practice regarding
getting good performance out of OGSA-DAI
services. Here we present some preliminary results
concentrating on delivery of data from an OGSA-
DAI data service.

Initial studies have shown that the performance
of OGSA-DAI can vary markedly depending on
which of the various activities and delivery
mechanisms are used. The default behaviour of
OGSA-DAI is to return result data within a SOAP
response document. Two useful alternatives to this
default are to return the data using FTP or to make
the data available via an HTTP URL using a
servlet. Both of these delivery mechanisms bypass
the overhead of SOAP but may require slightly
more work from the client developer.

The first OGSA-DAI benchmark measures the
time taken to send an SQL query to the server and
iterate through each of the rows returned, summing
the values in one of the columns. The data set used
was the OGSA-DAI test dataset ‘littleblackbook’
which can be generated by code included in the
OGSA-DAI distributions. This dataset contains one
table with four columns as shown in Table 1. In all
cases, the server was already running. For the
JDBC tests, the time to create the connection was
not included in the benchmark. The software stack
used included OGSA-DAI WSRF 1.0, Globus
Toolkit WS Core 4.0.0, Apache Tomcat 4.1.29 and
MySQL 4.1.9. Table 2 shows the specifications of
the server and client machines.

Column name Column type
Id Int
Name varchar(64)
Address varchar(128)
Phone varchar(20)

Table 1: Littleblackbook test table

The results of the benchmark are show in
Figure 2. Results obtained by connecting directly
to the MySQL database on the server using JDBC
are also included for comparison, although it
should be noted that this approach returns data
without conversion to the WebRowSet format so
cannot be directly compared.

 Server Client
OS Windows XP Windows 2000
Processor Intel Pentium M Intel Pentium 4
Speed 1.60GHz 2.40GHz
RAM 1GB 0.5GB
Java VM 1.4.2_04 1.4.2_04
Network 100Mbit shared network

Table 2: Client and server specification

0

2000

4000

6000

8000

10000

12000

14000

0 5000 10000 15000 20000

Rows

D
ur

at
io

n
(m

s)

SOAP StreamServlet FTP JDBC

Figure 2: OGSA-DAI and JDBC performance –
retrieving rows from relational database. Error bars

show standard deviation

OGSA-DAI’s deliverToStream activity allows
users to specify that data should be retrieved from a
servlet thus allowing a simple HTTP request to be
made without incurring the overhead of SOAP.
SOAP is still used for the request and response as
normal but the SOAP response does not contain the
result data.

A performance gain can be achieved by
bypassing the SOAP overhead when delivering the
data, as shown when we compare the results for the
default SOAP delivery mechanism and the use of
the deliverToStream activity. Use of the
deliverToStream activity requires the client to
make an additional request to retrieve the data. To
remove this additional request while retaining the
performance improvement of bypassing SOAP we
plan to provide SOAP with attachments [15] and
MTOM [16] delivery options in later versions of
OGSA-DAI.

Figure 2 also includes the results obtained using
OGSA-DAI’s deliverToURL activity to send query
results to an FTP server. It is unfair to compare the
FTP results directly against the other approaches
because the FTP results do not include the client
iterating through the rows of the result set. Despite
this it is useful to include the results to emphasise
that OGSA-DAI can be used to extract results from
a database and return these as files using FTP or
GridFTP. In this case the files are in the XML
WebRowSet format but it would be easy to include
an activity at the server that converts these to
another format before delivering the data.

The results shown in Figure 2 for the SOAP
and Stream Servlet implementations use the
OGSA-DAI Java client toolkit to iterate through
the result returned by the query. The client toolkit
returns objects that implement the Java ResultSet
interface. By default the client toolkit returns a

forward-only ResultSet and it is the results of using
this ResultSet implementation that are shown in
Figure 2. OGSA-DAI provides a forwards-
backwards ResultSet implementation. The OGSA-
DAI benchmarks compare the performance of both
implementations.

Figure 3 shows the performance results when
using the default SOAP delivery mechanism with
the two ResultSet implementations. The forwards-
backwards implementation is significantly faster
than the forwards-only implementation. These
results are echoed for the StreamServlet delivery
mechanism as shown in Figure 4.

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000

Rows

SOAP f orwards-only SOAP f orwards-backwards

Figure 3: Performance of SOAP delivery using
different ResultSet implementations.

It is surprising that the forwards-backwards

ResultSet implementation performs so much better
than the forwards-only implementation. The
forwards-backwards implementation parses the
XML result data and creates a DOM object
representing all the data. The forwards-only
implementation attempts to only parse the XML
result data one row at a time when the client
requests the row. The forwards only
implementation has a considerably smaller memory
footprint than the forwards-backwards
implementation and both require only a single pass
through the XML data. Given this we would expect
the large performance difference between the two
is surprising and will be investigated in more detail
by the OGSA-DAI team.

0

1000

2000

3000

4000

5000

6000

0 5000 10000 15000 20000

Rows

D
ur

at
io

n
(m

s)

StreamServlet forwards-only StreamServlet forwards-backwards

Figure 4: Performance of Stream Servlet delivery
using different ResultSet implementations

Table 3 includes a selection from the above graphs
in numerical form to allow for easier comparison.

Delivery ResultSet Rows Duration

(ms)
Std
Dev

SOAP FO 10,000 3,671 644
SOAP FO 20,000 10,881 2,478
SOAP FB 10,000 3,529 637
SOAP FB 20,000 6,907 1,046
Servlet FO 10,000 2,885 477
Servlet FO 20,000 5,047 401
Servlet FB 10,000 1,635 618
Servlet FB 20,000 2,773 576
JDBC - 10,000 236 30
JDBC - 20,000 275 46

Table 3: OGSA-DAI performance benchmark
results.

The OGSA-DAI benchmark work has started to
lead towards a much better understanding of the
performance of OGSA-DAI.

5 Projects and Collaborations
Current download statistics for the different
distributions are shown in Table 5. One must be
careful in interpreting these figures but they do
demonstrate that there is still an interest/demand
for the OGSI based releases. Release 5.0 is still
required for use with the 2.0 release of the OGSA-
DQP package. Releases 1.0 to 3.1 of OGSA-DAI
and release 1.0 of the OGSA-DQP package are no
longer available for download from the OGSA-
DAI web site as these are no longer officially
supported.

OGSA-DAI Version Downloads
Total OGSI (R1→R6) 4392
OGSI R6.0 only

201

WSRF (1.0 only, excluding
GT4.0 downloads)

228

WS-I (1.0 only) 90

Table 5: Download stats (as of 29/06/05)

Downloads of the WSRF release are currently
outstripping the WS-I release. This may be in part
by the momentum gathered by the association with
the GT4.0 release. The WS-I version will become
part of the OMII distribution in July 2005, which
might contribute a similar effect. Within Globus,
OGSA-DAI is in the process of migrating from a
Technical Preview to a Core Component of the
Globus Toolkit.

It is also instructive to examine what versions
of OGSA-DAI projects are using or will adopt and
what their upgrade path is likely to be if they are
already using an OGSI version of OGSA-DAI. A
small number of projects were contacted, some of
these having come to existence since those reported
to be using OGSA-DAI at the previous AHM
meeting, [9].

In a lot of cases a specific version of OGSA-
DAI has been used and there is no intent to
upgrade either because the project has come to an
end or the software is perceived to be stable and
there is no perceived need to upgrade lest this
break something. Some of those projects that are
active or that are starting:
• Cancer Biomedical Information Grid

(cabig.nci.nih.gov) [10] have data services that
leverage of OGSA-DAI R5.0. Their next phase
may move to use GT4.0 and the WSRF
version of OGSA-DAI but this remains to be
decided.

• Lead (www.lead.ou.edu) have been using
OGSA-DAI release 3.1 but plan to migrate to
the WS-I version soon.

• myGrid information repository project
(www.mygrid.org.uk/index.php?module=page
master&PAGE_user_op=view_page&PAGE_i
d=47) used one of the technical preview
version of the OGSA-DAI WS-I distributions.
Future development plans aim to stick with the
WS-I version of OGSA-DAI.

• Data Mining Grid (www.datamininggrid.org)
is using GT4.0 and the WSRF version of
OGSA-DAI. Interestingly they also plan to try

use the Triana [11] workflow editor and
integrate this with GT4.0 and OGSA-DAI.

• Grid Miner (www.gridminer.org) are using
OGSA-DAI release 5.0 and do not have
current plans to migrate, although when they
do it will probably be to the WSRF version
when it is deemed to be mature.

• SIMDAT (www.simdat.org) are using a
version of the WS-I implementation that
operates with GRIA [12].

• GOLD (www.goldproject.ac.uk) are also
intending to use the WS-I version of OGSA-
DAI. So these projects are using the activity
framework to tailor code to their own
requirements and deploy it through OGSA-
DAI.

This list of projects seems to reflect the divided
nature of the community with both WS-I and
WSRF based projects being well represented. This
view was reflected at the third OGSA-DAI users’
group meeting [13], held at NeSC with no
dominance of preference of one infrastructure over
the other.

A number of major projects, including the EU
FP6 projects SIMDAT, inteliGrid and
DataMiningGrid, are currently consulting the team
as part of their evaluation or as part of their design
concerning their use of OGSA-DAI. The OGSA-
DAI team are in an e-Science sisters project,
DIALOGUE, which is developing a strategy for
combining multiple data integration systems. The
team continues to contribute to standardisation and
three GGF DAIS recommendation documents are
planned by mid 2005.

6 Conclusions
Two years after its first release, OGSA-DAI
continues to mature and expand in its functionality.
Both the user and contributor base are growing,
with major projects in the USA, Europe and Asia
adopting OGSA-DAI for their Grid applications.
Although there has been a small step backwards to
introduce support for WS-I and WSRF based
platforms, this has led to improvements that ease
future development.

Work has been carried out to understand the
performance bottlenecks of OGSA-DAI and
already some interesting results have been
gathered. Further work on profiling the software, in
conjunction with improvements suggested by the
new architecture will hopefully lead to future
versions of OGSA-DAI that can address the more
complex issues of data integration.

Acknowledgements:
This work is supported by the UK e-Science Grid
Core Programme, the Open Middleware
Infrastructure Institute, and by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S.
Department of Energy, under Contract W-31-109-
ENG-38. We also gratefully acknowledge the input
of our past and present partners and contributors to
the OGSA-DAI project including: EPCC, IBM
UK, IBM Corp., NeSC, University of Manchester,
University of Newcastle and Oracle UK.

IBM and DB2 are trademarks of International
Business Machines Corporation in the United
States, other countries, or both.

Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both

Other company, product, or service names may
be trademarks or service marks of others.

© Copyright International Business Machines
Corporation, 2005.
© Copyright The University of Edinburgh, 2005.
© Copyright University of Manchester, 2005.
© Copyright University of Newcastle upon Tyne,
2005.

7 References
[1] M. Antonioletti, M. Atkinson, R. Baxter, A.

Borley, N. P. Chue Hong, B. Collins, N.
Hardman., A. Hume, A. Knox, M. Jackson, A.
Krause, S. Laws, J. Magowan, N. W. Paton, D.
Pearson, T. Sugden, P. Watson and M.
Westhead. The design and implementation of
Grid database services in OGSA-DAI.
Concurrency and Computation: Practice and
Experience 17(2): 357-376.

[2] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S.
Graham, C. Kesselman, T. Maquire, T.
Sandholm, D. Snelling, P. Vanderpilt, Open
Grid Services Infrastructure, Version 1.0, June
27, 2003, GFD.15.

[3] K. Ballinger, D. Ehnebuske, C. Ferris, M.
Gudgin, C.K. Liu, M. Nottingham, and P.
Yendluri (ed.) Basic Profile Version 1.1, Web
Services Interoperability Organization Final
Material, 2004-08-24. http://www.ws-
i.org/Profiles/BasicProfile-1.1.html.

[4] M. Atkinson, D. DeRoure, A. Dunlop, G. Fox,
P. Henderson, T. Hey, N. Paton, S. Newhouse,
S. Parastatidis, A. Trefethen, P. Watson, J.
Webber.Web Service Grids: An Evolutionary

Approach.
http://www.omii.ac.uk/web_service_grids.htm.

[5] M. Atkinson, K. Karasavvas, M. Antonioletti,
R. Baxter, A. Borley, N. Chue Hong, A.
Hume, M. Jackson, A. Krause, S. Laws, N.
Paton, J. Schopf, T. Sugden, K. Tourlas,
P.Watson. A New Architecture for OGSA-DAI.
AHM 2005.

[6] See http://forge.gridforum.org/projects/dais-
wg for more details.

[7] See http://www.ogsadai.org.uk/dqp,
[8] See http://www.mygrid.org.uk.
[9] M. Antonioletti, M. Atkinson, R. Baxter, A.

Borley, N. P. Chue Hong, B. Collins, J.
Davies, D. Fitzgerald, N. Hardman, A. C.
Hume, M. Jackson, A. Krause, S. Laws, N. W.
Paton, T. Sugden, P. Watson, M. Westhead
and D. Vyvyan. OGSA-DAI Status Report and
Future Direction. Proceedings of the UK e-
Science All Hands Meeting 2004, September
2004.

[10] W. Sanchez, B. Gilman, M. Kher, S. Lagou, P.
Covitz. caGRID White Paper. July 23, 2004.
See http://cabig.nci.nih.gov/guidelines_
documentation/caGRIDWhitepaper.pdf.

[11] See http://www.trianacode.org.
[12] GRID Resources for Industrial Applications,

see http://www.gria.org.
[13] Notes and presentations from the meeting

available at
http://www.ogsadai.org.uk/docs/UG3/

[14] M. Jackson, M. Antonioletti, N.P. Chue Hong,
A.C. Hume, A. Krause, T. Sugden, and M.
Westhead. Performance Analysis of the
OGSA-DAI Software. Proceedings of the UK
e-Science All Hands Meeting 2004, September
2004.

[15] J.J. Barton, S. Thatte, H. F. Nielsen. SOAP
Messages with Attachments. W3C Note 11
December 2000.
http://www.w3.org/TR/SOAP-attachments

[16] M. Gudgin, N. Mendelsohn, M. Nottingham,
H. Ruellan. SOAP Message Transmission
Optimization Mechanism. W3C
Recommendation 25 January 2005.
http://www.w3.org/TR/soap12-mtom/

