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Abstract 
The increasingly common practice of using multiple 

distributed storage systems as a distributed data store 

within which large datasets may be replicated has led to 

the problem of how to access replicated data efficiently. 

Multiple-source parallel transfers can improve data 

throughput time by transferring data from several replicas 

in parallel. However, we then face the problem of deciding 

how to distribute the data load among different storage 

resources. We propose a Tuned Conservative scheduling 

technique that uses predicted mean and variance network 

information to make data distribution decisions. This 

stochastic scheduling technique uses a tuning factor to 

adjust the amount of the data assigned to a link in 

accordance with the variability of the network 

performance. We apply our technique to the GridFTP 

implementation in the Globus Toolkit and demonstrate 

that the technique can produce data transfer times that are 

significantly faster and less variable than those of other 

techniques. 

 

 

1. Introduction 

 
In an increasing number of scientific disciplines, large 

data collections are emerging as important community 

resources. Furthermore, increases in network speed make 

it feasible and useful to distribute large data sets across 

geographically distributed computer and storage resources 

that may be located in different parts of a country or even 

in different countries.  

For example, scientific experiments such as CMS [8] 

and ATLAS [11] involve data collections with a total size 

that will soon reach multiple petabytes. While these 

experiments may maintain a master copy of their data at a 

single central site, various (overlapping) subsets of this 

data are also distributed at national Tier 1 sites, each with 

roughly one-tenth the capacity; and smaller subsets are 

cached at national, regional, and university sites. Any 

particular file is likely to have multiple replicas located at 

different sites.  

Given such multiple replicas, data retrieval can 

potentially be accelerated by downloading different parts 

of the file from different sources in parallel. Various file 

distribution systems and tools (e.g., DPSS [15], BitTorrent 

[9], GridFTP [2], I2-DSI [3])have been developed to 

support parallel transfers of distributed or replicated data. 

The time required for such systems to complete a transfer 

is strongly influenced by the amount of data fetched from 

each source, particularly in a heterogeneous and dynamic 

network environment. Thus arises the problem 

investigated in this paper: how to determine the amount of 

data to be fetched from each of several sources. 

A simple approach is to request the same amount of 

data from each source. However, such a scheme is 

unlikely to result in an efficient data transfer because it 

does not consider the heterogeneous network connections 

with sources. While adaptive data decomposition 

techniques can be used to address heterogeneous resource 

capabilities, temporal variations in those capabilities have 

seldom been considered. An alternative approach, which 

we focus on here, is to use stochastic information about 

the performance (mean and variance) of past transfers to 

predict the performance of future transfers.  

More specifically, we present a Tuned Conservative 

scheduling technique that uses predicted mean and 

variance network information to adjust the amount of data 

allocated to multiple network links. The basic idea is 

straightforward: we seek to allocate more data to network 

links that we expect to deliver higher performance. 

However, we often see that a link with a larger capacity 

will also show a higher variance in performance and 

therefore will more strongly influence the transfer time 

than will a link with less variance. (For example, we 

observed that during a five-minute period, the bandwidth 

of a network link from the University of California, San 

Diego, to the University of Tennessee averaged 1.52 Mb/s, 

with a variance of 0.12, while the bandwidth of a network 

link within the University of California, San Diego, 

averaged 30.99 Mb/s with a variance of 31.53). Intuitively, 

the resource with high variance is less “reliable” and 

should be allocated less work than resources with less 
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variance in performance. The Tuned Conservative 

scheduling method uses a tuning factor to adjust the 

amount of the data assigned to a link in accordance with 

the variability of the network performance.  This technique 

addresses both the dynamic and the heterogeneous nature 

of shared network environment. 

We evaluate the effectiveness of this scheduling 

technique by implementing it within the Globus Toolkit
®
 

implementation of the GridFTP parallel FTP standard. 

These results demonstrate that we can achieve significant 

improvements in both mean transfer times and the 

variance of those times when compared to nonadaptive 

schemes in heterogeneous, dynamic environments. 

The rest of this paper is organized as follows. Section 2 

introduces related work. Section 3 describes the problem. 

Section 4 describes our Tuned Conservative scheduling 

policy. Section 5 presents our experimental results. 

Section 6 summarizes our work. 

 

2. Related work 

 
Significant previous work aims at providing efficient 

access to distributed data. The Distributed Multi-Storage 

Architecture [13] satisfies both performance and capacity 

requirements of data intensive applications by storing 

different data sets of one application in different storage 

resources that may be distributed over heterogeneous 

networks. However, this system uses only user-provided 

data and historical performance information to choose the 

storage resource, ignoring dynamic changes in system 

performance. 

The Internet2 Distributed Storage Initiative (I2-DSI) 

[3] project is a replicated hosting platform for Internet 

content and services. Content is distributed at the network 

edges, improving latency and reducing bandwidth 

consumption. However, the best replica is selected based 

only on simple criteria such as data availability and 

proximity of the server. 

Distributed Parallel Storage Server (DPSS) [15] aims to 

provide image streams fast enough to permit multi-user 

and real-time applications by using the network to 

aggregate the server output. Large collections of disks 

seek in parallel, and all servers send the resulting data to 

the application in parallel. The performance of the system 

heavily depends on the data organization, which is 

determined by the application as a function of data type 

and access patterns. 

Bittorrent [9] is a P2P application that enables efficient 

access to large amounts of distributed data by enforcing 

cooperation among clients to elevate file server load and 

improve data transfer performance using swarming 

techniques. The amount of data retrieved from each data 

source is determined by the specification of the data 

provider and the download speed of the client itself. 

Recent work on network performance predication 

allows the use of predicted information when making data 

allocation decisions. The Network Weather Service 

(NWS) [17] provides measurements and a one-step-ahead 

prediction for network capability by sending out small 

probes (normally 64 kB) at regular intervals. In the 

nonstochastic setting, this single point value is used to 

estimate the data transfer time, which is used to help select 

the best replica. However, single point values are often 

inaccurate or insufficient representation for characteristic 

that change over time. Vazhkudai and Schopf [16] also use 

a point value prediction of file transfer times, but they use 

GridFTP log files, NWS data, and I/O data and a 

regression technique.  

In our previous work [19], we proposed a conservative 

scheduling policy able to achieve efficient execution of 

data-parallel computations in heterogeneous and dynamic 

environments. This policy uses information about the 

expected mean and variance of future CPU capabilities to 

define computing workload mappings appropriate for 

dynamic resources. In this work, we extend those 

techniques to evaluate network status, and we use 

expected mean and variance of network information to 

guide data allocation decisions among different network 

links. The result is an approach that exploits predicted 

variance in network performance information to define a 

time-balancing scheduling strategy that achieves better 

data transfer times with smaller variance. 

 

3. Problem statement 

 
Efficient data retrieval in a distributed system can 

require, in the general case, mechanisms for the discovery 

of source machines that have data replicas, the selection of 

an appropriate subset of those sources, and the mapping of 

the required data onto selected sources. For the purpose of 

this article, we assume that the target set of sources is 

fixed, and the dominant factor in data retrieving is data 

communication.  We ignore the disk I/O time and focus on 

the data allocation problem for multiple link parallel data 

transfers using network capability information. We do not 

assume that the network links in this resource set have 

identical or even fixed capabilities. Within this context, 

our goal is to achieve data assignments that balance load 

between network links so that each link finishes 

transferring at roughly the same time, thereby minimizing 

the total transfer time. This form of load balancing is also 

known as time balancing. 

Time balancing is generally accomplished by solving a 

set of equations, such as the following, to determine the 

data assignments: 

        ji,      )(D T)(D T jjii ∀=                                (1) 

        ∑ = Totali DD  , 
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where 

• Di is the amount of data assigned to resource i; 

• DTotal is the total amount of data need to be 

transferred ; 

• Ti(Di) is the time needed to transfer Di data from 

ith data source to destination. It can be calculated 

by using the following function: 

       Ti(Di)  = EffectiveLatencyi + Di/EffectiveBWi         (2) 

To proceed, we need mechanisms for obtaining some 

measure of future network capability, and translating this 

measure into an effective network capability that is then 

used to guide data mapping. As we discuss below, two 

measures of future resource capability are important: the 

expected value and the expected variance of that value. 

One approach to obtaining these two measures would be to 

negotiate a service level agreement (SLA) with the 

resource owner under which the resource owners would 

contract to provide the specified capability [5]. 

Alternatively, we could use observed historical data to 

generate a prediction for future behavior [6,12,14,16-18]. 

We focus in this article on the latter approach and present 

techniques for predicting the future capability. However, 

we emphasize that our results for data mapping are also 

applicable in the SLA-negotiation case, as our techniques 

can be used to determine how best to adapt to a set of 

SLAs once they are negotiated.  

 

4. Stochastic time balancing 

 
NWS applies a collection of one-step-ahead prediction 

strategies to a time series of network or computations 

resource data and chooses the prediction strategy used for 

the “next” time step dynamically according to which 

strategy has been most accurate over recent measurements. 

However, this one-step-ahead prediction is not sufficient 

for our purposes. Our transfers may take a significant time, 

during which network performance may change, unlike 

the conditions experienced by a simply 64K probe.  

What is needed for better data distribution and 

scheduling is an estimate of the average network 

capability that the data transfer will experience during the 

entire transfer period, rather than the network information 

at a single future point in time.  

In dynamic environments, we find that a link with a 

larger capacity typically shows a higher variance in 

performance and therefore can more strongly influence the 

transfer time than a link with smaller variance. Thus, the 

variation of the future capability should also be considered 

in the scheduling policy. 

With these considerations in mind, we have developed 

a stochastic scheduling policy that uses predicted variation 

information to tune the predicted average network 

capability and to adjust the data allocated to the network 

links based on run-time information. To allow for the use 

of stochastic information, we do not use the one-step-

ahead prediction information to calculate how much data 

should be allocated by the time-balancing formula. 

Instead, we define the effective bandwidth of a link as 

      Effective BW  = BWMean  + TF * BWSD,               (3) 

where 

• BWMean is the predicted mean bandwidth of the 

network link the data will encounter during 

transfer, 

• BWSD is the predicted variation of bandwidth of 

the network link the data will encounter during 

transfer, and  

• TF is a per link Tuning Factor used to determine 

the number of the standard deviations to add to the 

mean value of bandwidth on the network link. 

This factor is used to determine how conservative 

the data allocation policy should be. For links with 

higher variation, we prefer a more conservative 

scheduling policy. 

Notice that EffectiveLatency is also a variable in 

Formula 2. We focus only on the bandwidth because, in 

our experiment, the latency is only a very small portion of 

the total data transfer time (< 0.1% for network links 

within one domain, and <1% for network links across 

domains). Hence, we ignore the influence of latency when 

calculating the total data transfer time.  

 

4.1. Predicting mean and variance 
 

We now describe how to determine the predicted 

stochastic value—mean and standard deviation of 

bandwidth—by extending the NWS predictors. We then 

define the algorithm used to select the Tuning Factor 

based on the run-time conditions. 

 

4.1.1. Bandwidth mean prediction. Instead of predicting 

the value at a single future time point, we want to be able 

to predict the network capability over the time interval of 

the data transfer. Since the network traffic exhibits a high 

degree of self-similarity [10], averaging values over 

successively larger time scales will not produce time series 

that are dramatically smoother. Thus, to calculate the 

predicted average network bandwidth the data will 

encounter during its transfer, we need to first aggregate the 

original network bandwidth time series into an interval 

network bandwidth time series and then run predictors on 

this new series to estimate its future value.  

Aggregation, as defined here, consists of converting the 

original time series into an interval time series by 

combining successive data over a nonoverlapping larger 

time scale. The aggregation degree M is the number of 

original data points used to calculate the average value 

over a time interval. This value is determined by the 

resolution of the original time series and the execution 
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time of the applications, and need be only approximate. 

For example, if the resolution of the original time series is 

0.1 Hz (i.e., measured every 10 seconds) and the estimated 

data transfer time is about 100 seconds, the aggregation 

degree M can be calculated by 

M = transfer time  * frequency of original time series    (4) 

  = 100 * 0.1 

  = 10. 

Hence, the aggregation degree is 10, meaning that 10 

data points from the original time series are used to 

calculate one aggregated value over 100 seconds. The 

process of aggregation is as follows: 
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where  

   C=c1,c2,…,cn  is the original preceding network 

bandwidth time series measured at constant-width time 

interval; 

   M is the aggregation degree, calculated by Equation 

4; and 

   A = a1,a2,… ,ak ( k=  Mn ) is the interval network 

bandwidth time series, calculated by Equation 5: 
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Each value in the interval time series “ai” is the average 

network bandwidth over the time interval that is 

approximately equal to the data transfer time. 

After creating the aggregated time series, we use the 

one-step-ahead NWS predictor on the aggregated time 

series to predict the mean interval network bandwidth. 
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The output paK+1 is the predicted value of ak+1, which is 

approximately equal to the average network bandwidth the 

data will encounter during its transfer.  
 

4.1.2 Bandwidth variance prediction. To predict the 

variation of network bandwidth, we use the standard 

deviation during the data transfer. We need to calculate the 

standard deviation time series using the original bandwidth 

time series C and the interval bandwidth time series A 

(defined in Section 4.1.1): 
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Assuming the original bandwidth time series is 

C=c1,c2,…,cn, the interval bandwidth time series is 

A=a1,a2,…,ak( k=  Mn ), and an aggregation degree of 

M, we can calculate the standard deviation bandwidth time 

series S=s1,s2,…,sk: 
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Each value in standard deviation time series “si” is the 

average difference between bandwidth and the mean 

bandwidth over the interval. 

To predict the standard deviation of the network 

bandwidth, we use the one-step-ahead NWS predictor on 

the standard deviation time series. The output psk+1 will be 

the predicted value of sk+1, or the predicted bandwidth 

variation for the next time interval. 
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4.2. The tuning factor 

 
The goal of this work is to achieve better data 

assignment on different contended network links in order 

to reduce the total data transfer time. To this end, we 

define a conservative scheduling method that uses 

predicted means (defined in Section 4.1.1) and variances 

(defined in Seciton 4.1.2) for network capacity 

information to make data-mapping decisions. To take into 

account in our data-scheduling decisions the variability of 

the network capability, we define a Tuning Factor (TF), 

which represents the variability of the bandwidth as a 

whole and, as such, provides the “knob” to tune to make 

use of the scheduling policy more or less conservative. 

The basic idea behind our approach is to assign less data 

on network links with a larger variability in performance, 

which is considered less “reliable”. Hence, for a link with 

more variable bandwidth, effective bandwidth will be 

smaller.  

We calculate EffectiveBandwith as a formula based on 

the base predicted mean bandwidth value, the TF, and the 

standard deviation information. Specifically, we vary the 

number of the standard deviation added to the base 

bandwidth mean value using the TF. So for a link with a 

high variance, to calculate a smaller effective bandwidth, 
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we set the TF to be small (adding a smaller number of 

standard deviation to the base bandwidth mean value).  

In previous work [19], we used a similar technique for 

CPU data. However, unlike CPU load, which usually has a 

small variance, bandwidth can have a large variation, 

which sometimes can be as twice large as the mean of the 

bandwidth. Thus, the Tuning Factor is also needed to limit 

the influence of the standard deviation on the mean.  

So we required a TF value that (1) is inversely 

proportioanl to the value of variance of the network 

bandwith. For a link with a larger variance in its 

bandwidth, we want a smaller TF value, thus a more 

conservative scheduling policy, vice versa; (2) is able to 

limit the the number of the standard devation added to the 

mean, expecially when the variance is large. With these 

considerations in mind, we use the algorithm in Figure 1 to 

calculate the Tuning Factor.   

 

 

 

 

 

 

Figure 1.The algorithm to compute our Tuning Factor. 

This alogrithm will give a Tuning Factor that has the 

following characteristics: 

(1) TF = 0 to ½ when SD/Mean > 1. Because the higher 

variation the network link has in its capability, the 

higher N value it will have. When the standard 

deviation is larger than the mean of the bandwidth 

(SD/Mean>1), the network is considered to be high 

variable and less reliable. We want a smaller TF and 

thus a smaller effective bandwidth value in this case. 

A TF value less than ½ can also limit the influence of 

the standard deviation on the mean when the variance 

is high. 

(2) TF = ½ to 1 when SD/Mean <= 1. When the standard 

deviation is smaller than the mean of the bandwidth 

(N <= 1), the network link is considered to be low 

variable and more reliable. We want a larger TF 

value and thus a larger effective bandwidth value.  

(3) In both cases, the Tuning Factor is inversely 

proportional to N. 

To illustrate our idea more clearly, we calculate the 

value of TF by our algorithm, while fixing the mean 

bandwidth value equal to 5 Mb/s and changing the 

standard deviation of bandwidth from 1 to 15. The results 

are shown in Figure 2. 

We can see from Figure 2 that the TF is inversely 

proportional to the bandwidth standard deviation (and N), 

given a fixed mean value. For network links with higher 

variation, we will have a smaller TF and effective 

bandwidth value and thus a more conservative data 

scheduling decision. 

0
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Figure 2. TF value as a function of bandwidth standard 

deviation, when standard mean is equal to 5 Mb/s.  

Note that there are many ways to calcualte the TF value 

as long as the result meets our basic requirements. The 

algorithm given in Figure 1 is only one possible approach. 

The validity of the tuning factor and the tuned 

conservative scheduling method is evaluted in the next 

section. However, we admit that there may exist other 

approaches to calculate the TF value that may further 

improve the efficiency of the tuned conservative 

scheduling method. 

 

5. Experiments 

 
To validate our work, we conducted experiments on the 

GrADs [4] test bed, which comprises workstation clusters 

at universities across the United States, including the 

University of Chicago, University of Illinois at Urbana 

Champaign, University of Tennessee, University of 

California at San Diego, University of Houston, and 

University of South California’s Information Sciences 

Institute.  

 

5.1. Experimental methodology 
 

To show the validity of our technique, we define five 

scheduling policies that we compare in the following 

experiments: 

(1) Best One Scheduling policy (BOS): Retrieve data 

from the network link with the highest predicted 

mean bandwidth. 

(2) Equal Allocation Scheduling policy (EAS): Retrieve 

the same amount of data from each source.  

(3) Mean Scheduling policy (MS): Allocate data 

according to the time balancing formula  and use the 

interval bandwidth prediction, described in Section 

4.1.1, for the effective bandwidth. This is equivalent 

to the Tuning Factor equal to 0. The formula is 

EffectiveBW = predicted BWMean. 

(4) Non-tuned Stochastic Scheduling policy (NTSS): 

Allocate data according to the time balancing 

formula and use non-tuned bandwidth variability to 

adjust the value of effective bandwidth. This is 

equivalent to the Tuning Factor equal to 1. The 

N=SD/Mean 

If (N>1) 

   TF=1/(2*N); 

Else 

   TF=1-N/2; 
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formula is EffectiveBW = predicted BWMean + 

predicted BWSD. 

(5) Tuned Conservative Scheduling policy (TCS): 

Allocate data according to the time balancing 

formula, and use the Tuning Factor as described in 

Section 4.2 to decide how conservative the 

scheduling policy should be. For links with higher 

variability, we estimate more conservative effective 

bandwidth and thus allocate less data. For this 

strategy EffectiveBW = predected BWMean + TF * 

predicted BWSD. The value Tuning Factor adapts 

from 0 to 1 according to the variation in bandwidth, 

using the algorithm given in Figure 1. 

We implemented multiple-link parallel data transfers 

using the partial data transfer function provided by 

GridFTP, part of the Globus Toolkit [7]. We measured the 

parallel data transfer time achieved for the five scheduling 

policies described above. We performed experiments on 

different sets of machines so as to evaluate a range of 

different network configurations. Every set includes three 

source machines and one destination machine. We set up 

our experiments using a single destination machine that 

received data from three source machines in parallel. Each 

machine has a replica of the file and provides part of the 

data, with the amount transferred from each source 

determined by the scheduling policy. Each pair of source 

and destination links opens one TCP socket. The networks 

may encounter contending load from other users during 

our experiments.  

To compare the policies fairly, we alternate scheduling 

policies for the same data transfers so that any two 

adjacent runs experience similar load and variation in the 

environment. For each set of experiments we performed 

approximately 100 runs, but the experimental data is 

consistent with larger runs on similarly loaded platforms.  

For method 1 and 3-5, the effective bandwitdh and the 

data allocation scheme are recalculated before each run 

using the run-time information. 

 

5.2. Experimental results 
 

We show results from four representative experiments 

in Figures 3–6. The resource configurations for the 

experiments are summarized in Table 1. We performed 

experiments on different sets of source machines to verify 

our strategy on different network configurations. We find 

that network links within a single domain often have larger 

bandwidth and larger variance, while network links across 

domains often have smaller bandwidth and smaller 

variance. Network status is monitored by NWS during 

experiments. The mean and average standard deviation of 

bandwidth that each link experienced over the entire run 

are also shown in Table 1. Note that although the average 

standard deviation was less than the mean of the 

bandwidth over the whole period of every experiment, 

during some particular runs, the standard deviation was 

larger than the mean value. So both N>1 and N<1 cases 

were evaluated. We varied the size of the data to be 

transferred to make every run finish in a reasonable time 

on different network configurations.  

Table 1.Resource configurations used for experiments. 
Exp Destination 

Machine 

Source Machines BWMean 

(Mb/s) 

BWSD Data 

(M) 

cirque.ucsd.edu,  3.51 1.44 

nouba.ucsd.edu 51.02 23.79 

Fig.3 mystere. 

ucsd.edu 

dralion.ucsd.edu 19.43 12.76 

200 

torc1.cs.utk.edu 1.51 0.04 

nouba.ucsd.edu 47.77 15.77 

Fig.4 mystere. 

ucsd.edu 

dralion.ucsd.edu 39.75 12.98 

200 

torc1.cs.utk.edu 1.54 0.025 

msc01.cs.utk.edu 1.70 0.032 

Fig.5 mystere. 

ucsd.edu 

dralion.ucsd.edu 48.99 11.59 

150 

torc1.cs.utk.edu 1.56 0.051 

msc01.cs.utk.edu 1.72 0.012 

Fig.6 mystere. 

ucsd.edu 

mckinley.cs.uh.edu 2.71 0.174 
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Figure 3. Comparison of the Best One, Equal 

Allocation, Mean, Non-tuned Stochastic Scheduling, 

and Tuned Conservative Scheduling policies on the 

resource set of three source machines in the same 

domain as the destination machine.  
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Figure 4. Comparison of the Best One, Equal 

Allocation, Mean, Non-tuned Stochastic Scheduling, 

and Tuned Conservative Scheduling policies on the 

resource set of two source machines in same domain as 

the destination machine, the third source machine in 

another domain. 
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Figure 5. Comparison of the Best One, Equal 

Allocation, Mean, Non-tuned Stochastic Scheduling, 

and Tuned Conservative Scheduling policies on the 

resource set of one source machine in the same domain 

as the destination machine, the other two machines in 

another domain.  
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Figure 6. Comparison of the Best One, Equal 

Allocation, Mean, Non-tuned Stochastic Scheduling, 

and Tuned Conservative Scheduling policies on the 

resource set of all three source machines in different 

domains from that on the destination machine. 

The experimental results shown in Figure 3-6 indicate 

that none of the scheduling polices considered performs 

constantly best. To compare these policies, we used three 

metrics: an absolute comparison of transfer times, a 

relative measure of achievements, and a statistical analysis 

of the significance of the improvement of our strategy. 

The first metric involves an average mean and an average 

standard deviation for all transfer times of each scheduling 

policy as a whole, as shown in Table 2. This metric gives a 

rough evaluation of the performance of each scheduling 

policy over a given interval of time. We can see from the 

results in Table 2 that over the entire run, the Tuned 

Conservative Scheduling policy exhibited 3%-51% less 

overall transfer time than the Best One Scheduling and 

Equal Allocation Scheduling policies (presumably because 

it takes load balancing into account) and 2%-7% less 

overall transfer time than Mean and Non-Tuned Stochastic 

Scheduling policy (presumably because it takes network 

performance variability into account). We also see that 

considering load balancing and variation information in 

the scheduling policy results in more predictable behavior: 

The Tuned Conservative Scheduling policy exhibited a 1% 

- 84% smaller standard deviation in transfer time than the 

Best One, Equal Allocation, and Non-tuned Stochastic 

Scheduling policies.  

Table 2: Average mean and average standard deviation 

for entire set of runs for each scheduling policy. The 

best in each experiment is shown in shade. 
      BOS      EAS MS    NTSS     TCS  

Exp Mean SD Mean SD Mean SD Mean SD Mean SD 

Fig.3 74.82 19.74 130.37 22.89 67.28 10.92 65.38 6.09 63.70 3.69 

Fig.4 73.07 18.97 112.52 3.61 63.02 2.96 63.04 3.91 61.33 3.03 

Fig.5 48.89 9.31 86.04 3.33 45.47 2.72 43.65 3.58 42.34 3.31 

Fig.6 100.61 7.54 64.19 7.92 64.68 10.13 65.37 7.64 62.58 6.33 
 

The second metric we used, Compare, is a relative 

metric that evaluates how often each run achieves a 

minimal transfer time. We consider a scheduling policy to 

be “better” than others if it exhibits a lower transfer time 

than another policy in five adjacent runs. Five possibilities 

exist: best (best transfer time among the five policies), 

good (better than three policies but worse than one), 

average (better than two policies and worse than two), 

poor (better than one policy and worse than three), and 

worst (worst transfer time of all five policies).  

Table 3. Summary statistics using Compare to evaluate 

five scheduling policies, with the largest value in each 

case shown in shade. 

Exp Policy Best Good Avg Poor Worst 

BOS 1 6 4 9 0 

EAS 0 0 0 0 20 

MS 5 3 10 2 0 

NTSS 7 6 2 5 0 

Fig. 3 

TCS 7 5 4 4 0 

BOS 3 3 3 9 2 

EAS 0 0 0 2 18 

MS 4 6 7 3 0 

NTSS 5 6 5 4 0 

Fig. 4 

TCS 8 5 5 2 0 

BOS 5 3 1 11 0 

EAS 0 0 0 0 20 

MS 2 6 6 6 0 

NTSS 6 4 8 2 0 

Fig. 5 

TCS 7 7 5 1 0 

BOS 0 0 0 0 20 

EAS 6 5 4 5 0 

MS 5 5 6 4 0 

NTSS 2 4 7 7 0 

Fig. 6 

TCS 7 6 3 4 0 

These results are given in Table 3, with the largest 

value in each case shown shaded. We see that  Tuned 

Conservative Scheduling using predicted mean and tuned 

variation is more likely to have a “best” or “good” transfer 

time than the other approaches. This fact suggests that 

appropriately taking account of the average and variation 
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network information during the period of data transfer in 

the scheduling policy can significantly improve the 

transfer time.  

Notice that the Equal Allocation Scheduling policy is 

always “worst” relative to the other approaches in the 

experiments shown in Figures 3–5. The reason is that in 

these three experiments, network capabilities are highly 

heterogeneous. Thus, the EOS strategy of allocating an 

equal amount of data to all sources results in “unbalanced” 

workload allocation and poor performance. In contrast, the 

Best One Scheduling policy performs worst in the 

experiment shown in Figure 6. During this experiment, 

network capabilities are similar, and thus load balancing 

strategies that distribute load over multiple links tends to 

perform better than the Best One strategy of selecting a 

single “best” link.    

The third metric uses the T-test to evaluate the 

significance of the improvement of our strategy over other 

strategies. The T-test is a statistical method used to assess 

whether the means of two groups are significantly 

different from each other [1]. The result of a T-test is a set 

of P-values that indicate the possibility that the differences 

could have happened by chance: a lower P-value means a 

more significant difference between two groups, so for our 

experiments smaller numbers are better. T-tests can be 

paired or unpaired; a paired T-test is used when the two 

groups are not independent, and an unpaired test is used 

when the two groups are independent. For our 

experiments, we calculate both paired and unpaired T-tests 

because it was not always clear whether the groups should 

be considered independent of one another. In addition, T-

tests can be one-tailed, which is used when one group is 

expected to always be less than (or greater than) the other 

and we know that direction, or two-tailed, which is used 

only to show a difference that can sometimes be less and 

sometimes be greater. Since our strategy should always be 

better than the other strategies, we use a one-tailed test.  

The results of the paired and unpaired one-tailed T-tests 

comparing the Tuned Conservative strategy with the other 

four strategies are shown in Table 4 and Table 5, 

respectively, with P-values smaller than 10% shown 

shaded. These results indicate that the possibility of the 

improvement happening by chance is small. Thus, we 

conclude that our Tuned Conservative scheduling policy 

achieves significant improvements relative to the other 

three strategies in most cases. 

Table 4. Paired one-tailed T test value for the Tuned 

Conservative scheduling policy relative to each of the 

other four policies.  

Exp BOS EAS MS NTSS 

Fig. 3 0.92% <0.01% 8.26% 8.27% 

Fig. 4 0.78% <0.01% 6.09% 7.05% 

Fig. 5 0.30% <0.01% 0.37% 4.74% 

Fig. 6 <0.01% 21.86% 20.28% 9.40% 

Table 5. Unpaired one-tailed T test value for the Tuned 

Conservative Scheduling Policy relative to each of 

other four policies.  

Exp BOS EAS MS NTSS 

Fig. 3 0.80% <0.01% 7.50% 12.07% 

Fig. 4 0.47% <0.01% 4.15% 6.57% 

Fig. 5 0.26% <0.01% 0.11% 11.71% 

Fig. 6 <0.01% 24.05% 21.83% 10.86% 
 

To summarize our results: for all loads and capabilities 

considered on our test bed, the Tuned Conservative 

Scheduling policy achieved better results than did the 

other policies considered. It was both the best policy in 

more situations under all load conditions, and also the 

policy that resulted in the shortest transfer time and the 

smallest variation in transfer time. 
 

6. Conclusion 
 

We have proposed a tuned conservative scheduling 

policy able to achieve efficient multiple-source parallel 

data transfers in heterogeneous and dynamic network 

environments. This policy uses information about the 

expected mean and variance of future network capabilities 

to determine the amount of data to transfer from multiple 

sources. Intuitively, the use of variance information is 

appealing because it provides a measure of resource 

“reliability.” Our results suggest that this intuition is valid.  

Our work comprises two distinct components. First, we 

show how to obtain predictions of expected mean and 

variance network information by extending predictors 

used in the NWS system. Second, we show how to 

compute a Tuning Factor that adjusts the degree to which 

the variability is considered in the scheduling policy, 

based on expected future mean and variance. The Tuning 

Factor acts as a “knob” that determines how conservative 

the data allocation policy should be. We evaluate the 

effectiveness of our prediction techniques and scheduling 

policy by applying them to GridFTP. Our results 

demonstrate that our technique obtains better transfer 

times and more predictable transfer behavior than do 

methods that focus on predicted means alone, or that use 

variances in a less effective manner.  
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