
Anomaly Detection
and Diagnosis in Grid 
Environments

Lingyun Yang, Chuang Liu, 
Jennifer M. Schopf, Ian 
Foster
Argonne National Laboratory
University of Chicago



2

The Problem:

Failure rates in production systems are extremely high
– Both OSG and TG report 30% + failures at times

Key to delivering reliable application-level is detection 
of anomalies
– Unexpected changes in behavior
– Reasons behind these changes

Current techniques have a very high false positive rate
– Some changes in performance are normal

• eg nightly backups
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Our Solution:

1)Filter out periodic data from trace data to identify real 
anomalies

2)A diagnostic technique to determine the cause of 
anomalies

3)Extensive experimentation
– for CPU, memory-based, and network anomalies
– simulated and actual environments
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Anomaly Detection

True anomalies
– Caused by a failure or unexpected event

Periodic anomalies
– Caused by normal periodic changes in behavior
– For the most part should not be considered 

anomalous
Only true anomalies should cause alert flags and be 
diagnosed
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Periodic Behavior

Shared network links have a daily pattern in that they 
are usually busier during the daytime
– Barford, et al, 2002

Number of jobs submissions has a 24-hour pattern of 
more daytime submissions and then a nightly draining 
of the queues
– Downey, 1998

Periodic system administration tasks can have finer-
grained, even hourly, occurrences
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CPU Periodic Patterns

Week long trace showing daily periodic pattern of CPU 
load (righthand.eecs.harvard.edu)

Data measured every 30 seconds
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CPU Periodic Patterns (2)

Two-hour CPU load trace showing half-hour variance 
(vatos.cs.uchicago.edu) 

Data measured every 30 seconds
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Traditional Anomaly Detection:
Window Averaging

Just what it sounds like
– Average over a window
– Anything greater or less than a threshold tagged as 

an anomaly
Pros
– Simple
– Efficient
– Widely used

Cons
– Can have a high false positive rate
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Modified Window Averaging with Filtering
Use Fourier transforms to filter the signal stream
– Time domain representation shows how a signal 

changes over time
– Frequency domain shows 

• “Does the data include any periodic signals?”
• “What is the frequency and amplitude if there are 
any?”

Remove all strong periodic signals
– Set amplitude of the corresponding periodic 

frequency to zero
– Transform back to the time domain

We do not need to know whether a periodic signal 
exists or what its frequency, amplitude, or shape is
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Filtering Example

Raw CPU load and CPU load after pattern-filtering
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Anomaly Diagnostics

In addition to application performance, collect system 
metrics for background behavior
– Disk measurements
– Network Weather Service BW measurements
– Etc.

Calculate the window average for each system metric
Use this window average as the baseline for resource 
behavior
Compare variance of system metrics with time of 
anomaly occurrence
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Cactus Experiments
Cactus on 4 node cluster
– Evaluated changed in run time

4 sets of 2 week data
– First set used as training data for parameters

Inserted 100 anomalies
– Bandwidth hog, memory hog and CPU hog 

programs
– Random times

Metrics:
– Number of anomalies successfully detected
– Number of false positives



15

Cactus Detection Results

Traditional window average method
~ 600 false positives
– ~90% are caused by the half-hour periodic variations 

Modified approach
– Eliminated between 84% and 91% of the false pos. 
– Identified between 93% and 96% of the injected 

anomalies

Traditional Modified
# of Hits # of FPs # of Hits # of FPs

Data 1 99 588 96 63
Data 2 99 633 93 59
Data 3 98 551 94 89

Data Set
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Cactus Diagnosis Results

Compared the reasons reported with the type of anomaly 
inserted
– CPU, Memory, Bandwidth

Correct diagnosis in  82 to 87 of anomalies

Data Set # of Anomalies 
Detected

# of Anomalies 
Diagnosed

Data 1 96 87
Data 2 93 84
Data 3 94 82



17

GridFTP Data Transfers
Used Emulab so we could inject anomalies
Collected resource performance data
– GridFTP server and client machines
– Ping measurements from the client and server node 

to other three nodes
Performance metric for the GridFTP transfer is the data 
transfer rate, in megabits per second. 

WAN

Ethernet
100Mb/s

GridFTP Server
NodeA

GridFtp Client
Node D

Router
Node B

computercomputer

Gate Way
Node C

30Mb/s 30Mb/s
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GridFTP Experiments (2)

Three sets of GridFTP data
– Each ~2 weeks

100 inserted anomalies across the three links in the 
path
– Changed the traffic shaping parameters of each link 

in a random order
– Decrease the bandwidth to less than 10% of orig
– Increase delay (or loss ratio) by 5 to 10 times 
– CPU and memory anomalies did not effect perf

Note: No periodic behaviors introduced
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GridFTP Detection Results

Our method is not as efficient as the traditional method for 
detecting anomalies when there is no periodic usage 
pattern in the resource performance

Traditional Modified

# of Hits # of FPs # of Hits # of  FPs
Data 1 99 5 92 2

Data 2 97 9 95 7
Data 3 100 6 90 4

Data Set
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GridFTP Detection Results

For the 92 to 95 anomalies detected, our strategy finds the 
problematic links for 73 to 81 anomalies correctly

WAN

Ethernet
100Mb/s

GridFTP Server
NodeA

GridFtp Client
Node D

Router
Node B

computercomputer

Gate Way
Node C

30Mb/s 30Mb/s

Data Set # of Anomalies 
Detected

# of Anomalies 
Diagnosed

Data 1 92 73

Data 2 95 81
Data 3 90 74
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Sweep 3D

Sweep3D
– 3D discrete ordinates neutron transport application
– Multiple processors using domain decomposition
– MPI message passing
– Execution includes both network communications 

and computation
With varying problem size, computation/communication 
ratio will change
– Application shifts from BW-bound to CPU-bound
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Sweep3d Methodology
Ran Sweep3d on Emulab to control the introduction of 
resource periodic patterns and anomalies
– Four machines from three domains
– One-dimensional decomposition
– Communication happens on A-B, B-C, and C-D

Emulated periodic CPU load patterns for A,B

W AN Ethernet
100M b/s

NodeA

com puter

30M b/s

NodeB

Node D

Node C

30M b/s
30M b/s
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Extra Simulated Behaviors

Emulated periodic CPU load patterns for machines A,B
– A had daily periodic CPU load pattern, amplitude 

equal to 5
– B had 2 hourly periodic CPU load pattern with 

amplitude equal to 3
Ran 3 different problem sizes
– Each run ~9 days
– Inserted 33,33,and 34 NW anomalies
– Memory anomalies had no effect



24

Sweep3D Detection Results

Small - no statistical difference (comm bound)
Medium – We detect  half of the false positives, but miss 5 of 99 anom
Large - Trad has 50 false positives ~90% caused by periodic behavior

Traditional Modified
# of Hits # of FPs # of Hits # of FPs

Data 1 33 1 31 0
Data 2 33 4 29 3
Data3 32 3 32 3
Data1 33 9 32 5
Data 2 33 8 31 4
Data 3 33 10 31 7
Data 1 32 43 30 6
Data 2 32 54 29 9
Data 3 33 52 32 19

Large

Medium

Small

Problem 
Size       

Data 
Set
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Sweep3D Diagnostic Results
Problem 

Size     
Data Set # of Anomalies 

Detected
#  of Anomalies 

Diagnosed
Data 1 31 30
Data 2 29 28
Data3 32 31
Data 1 32 31
Data 2 31 28
Data 3 31 27
Data 1 30 28
Data 2 29 29
Data 3 32 31

Large

Medium

Small
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Conclusions

Periodic variations in resource performance is normal 
and inevitable
– Can cause a high false positive rate for anomaly 

detection
Our approach extends traditional methods by using 
signal processing techniques
– Filter out periodic resource variation
– Diagnosis technique to determine probable cause 

Experimental results show 
– Detection of up to  96% of anomalies
– Reduction of false positive rate up to 90% 
– Diagnostic up to 70%
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More Information 

Jennifer M. Schopf
– jms@mcs.anl.gov
– http://www.mcs.anl.gov/~jms

Lingyun Yang 
– Now at Yahoo!
– lyyang@yahoo-inc.com
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