Monitoring use case: Monitor a Compute Farm for Job Scheduling

· Description:
A job scheduler needs information about available CPU resources in order to plan the efficient execution of tasks. A “Compute Farm” consists of a set of one or more CPUs available for scheduling via Grid protocols. If required by the exact nature of the interrelationship between the farm monitor and the job scheduler, the CPU at a given site may be broken down into multiple farms that consist of homogeneous nodes, such that the local job manager can assume that any queued job can be run on any available node within the farm.

· Contact:

Rich Baker, rbaker@bnl.gov

· Performance events/sensors required:
Static Information (update frequency on a ~hour time scale): Number of compute nodes, CPU type(s), CPU speeds, memory configuration, Operating system(s), available storage systems (including access protocols i.e. nfs, afs, gfs, …). The static info must be sufficient for the scheduler to determine that a given job request can be executed successfully on a given farm.
Dynamic Information (update frequency on the <~1 minute scale): Number of free CPUs, or if all nodes are currently busy, a farm should be able to determine an estimated time until a CPU becomes available.

 (These lists are not intended to be exhaustively inclusive and should be augmented as scheduling algorithms are developed with the primary input coming from the developers of those algorithms.)

· How the performance information will be used:
The scheduler will use this information to find available CPU or to choose a site where the job will be executed at a predictable future time. Using the CPU speed and availability of storage resources, the scheduler should also be able to determine how long a job would take to run (this assumes sufficient information from the application.)

· Access needed:

· Job scheduler will check the info for most sites periodically when scheduling jobs

· Individual physicists may have tools that use this information when submitting interactive requests.

· Size of data to be gathered
· The static information would be on the order of a few kilobytes per farm

· The dynamic information would also be a few kilobytes per farm.

· Overhead constraints
The collection, storage and retrieval of measurement data should impose a minimal load on the host.

· Frequency data will be updated
Static: ~tens of minutes (several times per day)

Dynamic: ~tens of seconds.

· Frequency data will be accessed
Job schedulers will be dealing with hundreds (thousands) of user requests per day, and each request can create tens of thousands of individual jobs, so the scale for the number of jobs created per day is 1 million. The number of times an individual farm’s info will be probed could be on the order of 1 million per day.

· How timely does data need to be:

The timeliness of the dynamic information will bear directly on the efficiency of the scheduling algorithm. A cost/benefit analysis will determine the optimal frequency.

· Scale issues:

A virtual organization can have hundreds, if not thousands of sites. There may be multiple independent job schedulers, and thousands of individual users.

· Security requirements

The information must be accessible only within the virtual organization. (We don’t want to broadcast to the hacker community that we have 1000 available Linux nodes!)

· Consistency or failure concerns
Inaccurate or out of date information will result in reduced efficiency of the scheduling algorithms. The schedulers will probably be designed to be robust against inaccuracy of individual farm info.

· Other explicit requirements
· Duration of the logging:
This data is entirely transient. Only the latest information is useful for the purpose of job scheduling.

· Platforms:

Linux (perhaps others in the future?)

