System Design Document

Joseph Bester, Univ of Chicago / Argonne

Globus Development Team

Stuart Martin, Univ of Chicago / Argonne

March 5, 2007

A JSDL-based Architecture for Resource Management

Table of Contents

1Table of Contents

1.
Introduction
2
2.
GRAM Overview
2
3.
JSDL Overview
2
4.
GRAM and JSDL Implementation Considerations
3
4.1
Developer-Centric View of GRAM and JSDL
3
4.2
Administrator-Centric View of GRAM and JSDL
3
4.3
User-Centric View of GRAM and JSDL
4
5.
JSDL Extensions Implementation Priorities
4
5.1
Application Extensions
4
5.2
Data Staging Profiles
5
5.3
Resource Requirements Profiles
5
6.
GRAM4 JSDL Service Functionality Investigation
6
7.
Milestones
6
8.
Issues with the current Alpha version
6

1. Introduction

The JSDL specification describes a language for describing jobs composed of job identification, application, resource requirements, and data staging components. The JSDL language defines many points where extension elements may be added to describe new job features.

GRAM is a family of related implementations of a remote job submission and monitoring service. Since its original design in the late 1990s, its feature set evolved slowly over several different internal redesigns and protocol changes. The adoption of Web Service protocols and the JSDL language provides an opportunity to redesign GRAM in a way that is both more flexible to users and site administrators, and provides a more agile framework for exploring new features.

2. GRAM Overview

The Globus Toolkit provides GRAM4, a Web Service for securely and reliably submitting, monitoring, and controlling jobs on remote resources. These jobs are targeted at a single computation resource, and consist of an optional input file staging phase, job execution, then an optional output file staging and cleanup stage.

Grid computing resources are typically operated under the control of a local resource manager that implements allocation and prioritization policies while optimizing the execution of all submitted jobs for efficiency and performance. GRAM is not a local resource manager (LRM), but rather a protocol processor for communicating with a range of different local resource managers using a standard message format. Examples of LRMs are Torque and Platform Computing’s Load Sharing Facility.

In GRAM4, jobs are described using the Job Description Language, which is the direct successor of the Resource Specification Language (RSL) used in an earlier GRAM system (now known as GRAM2) developed as part of the Globus Toolkit. This language contains elements to describe the low-level requirements for starting a job: the command line for starting the process, the environment for the job, its resource limits, and data staging requirements. File staging is defined using elements from the Globus Toolkit’s Reliable File Transfer (RFT) document format. This Job Description language contains a single extensibility point, to be used for LRM-specific extensions.

In GRAM4, jobs are processed using a state machine designed to process the elements of the JD document. Much of the processing is done independently of the LRM being used. GRAM4 uses sudo to start an external program to do LRM-specific processing.

For more information on GRAM4, see http://www.globus.org/toolkit/docs/4.0/execution/wsgram.

3. JSDL Overview

The Open Grid Forum (OGF) has recommended Job Submission Description Language (JSDL) as a standard way to describe jobs submitted to Grid systems. JSDL consists of XML elements describing job identification, application, resource requirements, and data staging. These job aspects are described at a high level by the core JSDL specification, but each aspect may contain specializations (some of these system-specific) to define low-level details about the jobor features and requirements needed by the job processor.

The JSDL specification document includes one set of specializations for describing in high detail the environment and system requirements for running an execution job on a POSIX system. Other profiles are currently being defined within OGF; these include a simpler definition of an execution job suitable for High-Performance Computing applications (HPCProfile), a Single Process, Multiple Data (SPMD) parallel job process application profile, and a parameter-sweep application profile.

In the future, we expect to see additional profiles developed for all aspects of the JSDL Job Definition. From our experience with GRAM, we will expect to see support for accounting-system extensions for job identifiers, additional application types (hot deployment of web services, grid-specific environment configuration such as softenv or modules), support for heterogeneous resource requirements, advance reservations, data staging profiles for GridFTP or other transfer services.

For more information about JSDL, see https://forge.gridforum.org/projects/jsdl-wg/.

4. GRAM and JSDL Implementation Considerations

4.1 Developer-Centric View of GRAM and JSDL

As mentioned in §2, the GRAM4 state machine processes the JD document, and a scheduler-specific program handles interfacing with the LRM and supporting any extensions to the JD document. Both the architecture and the implementation of the architecture present problems when dealing with a highly extensible language like JSDL.

Within the GRAM4 architecture, there is no distinction between JD document elements related to resource requirements or job execution. There is no explicit way to know that a particular JD element has been understood and processed by GRAM4 or the LRM.

In the 4.1.1 GRAM prototype JSDL implementation, before the JD document is presented to the LRM specific program, it is converted to a format compatible with GRAM2. The document is flattened into a hash table of values, stripping the document elements of context, such as their position in the job specification and their XML namespace. The document is checked against a blacklist of XML elements that are not supported by various schedulers, and if any are present, it rejects the job. There is no mechanism for indicating that a particular extension is intended for the core GRAM4 state machine or the LRM-specific program or is an extension.

A GRAM4 implementation that handles JSDL must be prepared to process extension elements and validate that all parts of the JobDefinition are processed and all job requirements are met. As JSDL producers besides those shipped as part of the Globus Toolkit emerge, the set of extensions and types of job expressions used may change, and GRAM4 must be designed to be agile in handling this. The blacklist method currently used does not provide this ability.

Another concern with the current GRAM4 design is its inflexible way of supporting new features. These features must either be added to the core GRAM4 state machine (for cross-cutting features like auditing) or as modifications to one or more LRM interface programs (for LRM-specific extensions). It is hard to quickly prototype new features as a significant understanding of either the (poorly documented) GRAM4 state machine or the LRM implementation script is needed.

An implementation of GRAM4 that uses JSDL should be easily extensible for rapid prototyping and development, and support extensions both within the common service code and the LRM-specific program.

4.2 Administrator-Centric View of GRAM and JSDL

Some of the architectural limitations discussed in §4.1 affect the ability of administrators to customize GRAM4 deployments. The administrator is limited in the ability to control JD elements which are handled by the core state machine. Controlling file staging (restriction to trusted hosts, restriction to non-executable files, controlling where files are staged to for different users) is not possible. Elements handled in the LRM interface program can be updated by modifying the program itself. For example, this enables sites to limit executables to a known list, or add support for an environment configuration system such as softenv. However, this must be done by modifying files which are created at postinstall time, so upgrades will erase such local changes unless done carefully.

With JSDL, this limitation becomes more troublesome. Not all system administrators will want all features provided by JSDL core or extension languages to be provided to all users. Some extensions will be processed in the GRAM4 service implementation and some will be LRM specific.

The GRAM4 JSDL service should support a combination of these profiles that can be configured in a flexible way. A configuration system should be implemented to control parameters related to the availability and site-specific policy for the JSDL processor.

4.3 User-Centric View of GRAM and JSDL

In contrast with the Job Description language used in GRAM4, the core JSDL Job Definition language models jobs in a more abstract manner. Applications are modeled with a name and version; files to be staged are modeled as execution resource paths and source/target URIs. The JSDL group and other related groups are developing a number of profiles for different types of applications. Additional profiles for staging and resource selection will presumably also be developed. A client will be able to programmatically discover what profiles have been configured for a deployed GRAM4JSDL service.

5. JSDL Extensions Implementation Priorities

5.1 Application Extensions

The JSDL language core does not include information about expressing exactly how a job is executed. This is expressed via extensions to the jsdl Application element. Those being discussed within OGF working groups are listed in Table 1.

Table 1 Application Profiles

	Profile Name
	Standardization Status
	Implementation Priority

	HPC Profile
	Completed Public Comment
	High

	SPMD
	In Public Comment
	High

	POSIX [Part of JSDL 1.0]

	Recommended Standard
	Medium?

	Parameter Sweep
	In Development
	Wait

	Application-Specific Profiles
	N/A
	?

Of these, the HPC Profile extension is the most visible within the OGF community. It has been part of an interoperability demo at SC’06 and will be part of another in SC’07. It provides a language for describing the most common features of High-Performance Computing jobs.

The SPMD profile best fits the model we’ve used for GRAM in the past. It incorporates a similar subset of functionality found in the HPC Profile with extensions for submitting parallel jobs. These extensions include the type of parallel job (similar to the GRAM “jobtype” RSL element) and means of controlling the number of processes and threads per node. This specification is in public comment and should be relatively stable.

The POSIX application profile contains some controversial parts which request more control over a job than a general-purpose scheduler allows. However, there are subsets which are likely to match the interfaces provided by the various schedulers. It might be possible to perform transforms from the other profiles to the POSIX Application profile as part of the processing done by GRAM.

The Parameter Sweep Profile is in discussion within OGF. It provides a way to express arrays of jobs within a single JSDL document. It uses a custom syntax to describe the parameters used by the job and methods replacing them with numerical values (via a loop construct) or XML values (via an XML substitution construct). This profile is still in early design.

Application-Specific Profiles are those which provide a higher-level description of a job than the other profiles. For example, one could consider a Matlab profile which names a MATLAB script to execute
.

5.2 Data Staging Profiles

The data staging portion of JSDL has not had any extensions developed within OGF yet. There was a small bit of discussion during recent BES meeting about exploring this, but no documents have been begun yet. In Table 3, we suggest a few extensions we define and implement to both provide features we have in GRAM4 and add explore technologies.

Table 3 Data Staging Extensions

	Feature
	Standardization Status
	Implementation Priority

	RFT-Based Staging

	OGF Probably not interested
	High

	Replica-Based Staging
	Might be interesting --- is there a OGF group doing replication?
	Low

The RFT-based staging extension would be similar to the GRAM4 staging mechanism. As OGF’s DMI comes closer to completion, we might be able to adapt this extension to use DMI.

The other extension would use replica technologies such as RLS or RLS to map logical names and transfer them (perhaps refining the JSDL document to include a RFT-based staging extension?).

5.3 Resource Requirements Profiles

Resource specification requirements in core JSDL are incapable of expressing heterogeneous resource requirements or select queues. In Table 5, we

Table 5 Resource Extensions

	Feature
	Standardization Status
	Implementation Priority

	Heterogeneous Resource Selection

	Unclear---we can propose to JSDL/BES once we have experience
	Medium

	XQuery-based Resource Selection
	Being discussed in OGF, might have high processing costs.
	Wait and see

	Queue Selection
	Might be generally useful, propose once we have experience
	High

	Software Environment
	Unclear--- can propose to JSDL/BES once we have experience
	Medium

The Heterogeneous Resource Selection extension would implement the functionality of the Resource Allocation Groups that we have in GT4, as a way to request multiple different types of resources. For example, this could be used to select a mix of compute and visualization nodes for a job.

People in OGF are considering using the XQuery language to define complex resource requirements and provide matchmaking between resources and jobs. This is in early discussion and evaluation phase.

A queue selection extension has been presented to OGF by Platform Computing. This allows jobs to be targeted to particular resource queues in a scheduler. This type of functionality is essential to running jobs on some systems, so we will need to have something similar, or help push the standardization of this extension.

The Software Environment extension would allow users to select softenv or modules keys to set environment variables for a job. This is something the TeraGrid users require. It is unclear whether this sort of extension is useful outside of that community.

6.
GRAM4 JSDL Service Functionality Investigation

Before a design can be created for this new GRAM4 JSDL service, some investigation is needed to determine how the functionality is best implemented. Each solution for the below functionality must be evaluated for suitability, reliability, performance and scalability.

Investigate and determine method for

· Validating that all JSDL elements and extensions have been processed

· Identifying which handler should process JSDL elements

· XPath expressions?

· XSLT or XQuery to modify the document after handling?

· Dispatching JSDL elements to handlers

· Apache Commons Chaining?

· Configuring Extension handlers into the service

· Allow sysadmins to select based on role and extension and system?

· Providing Resource Persistence and Recovery in this service

· Do handlers need to do anything?

Is persistence just another handler that is executed periodically?

7. Milestones

· Nov 07 - SC07 OGSA-HPCP-WG Interop Demo

· ?Date? - AHE wants JSDL version for recommending GRAM4 for UK Grid

8. Issues with the current Alpha version

- A service that receives a JSDL doc must return a fault if there are elements that it does not understand or support. Our current alpha version does not handle this situation correctly.

- New profiles cannot be supported easily (e.g. SPMD)

- A subset of possible profiles cannot be configured

- Users cannot find out what JSDL profiles and elements are supported

�PAGE \# "'Page: '#'�'" ��The more I read, it seems that the other app profiles from OGF seem to be able to be reduced to this so it might make sense for this to be what is presented to the LRM (so maybe this becomes high)

�PAGE \# "'Page: '#'�'" ��I think this would be a good proof-of-concept for this architecture. Maybe engage some application groups, or admins on systems with tight application restrictions

�PAGE \# "'Page: '#'�'" ��Would be good to come up with a few more here

�PAGE \# "'Page: '#'�'" ��I think we should document these well, so we can see if there is possibility of standardization of these.

�PAGE \# "'Page: '#'�'" ��During the JSDL talk at OGFG20, Mark Morgan presented a provisioning extension from Genesis II that did some staging but without actually using the staging element. However, in HPC Profile group, Marty Humphrey sounded interested in staging extensions to BES. There was some discussion of using DMI but people seemed unconvinced yet willing to investigate.

�PAGE \# "'Page: '#'�'" ��There was a proposal to use XQuery for more complicated matchmaking and requirements expressions at OGF20

�PAGE \# "'Page: '#'�'" ��Do we know of any users of this job type?

�PAGE \# "'Page: '#'�'" ��Can we hold off this for now and try to engage condor to come up with a profile if they’re interested in JSDL?

�PAGE \# "'Page: '#'�'" ��This is part of the OGSA BES specification as a BES extension

�PAGE \# "'Page: '#'�'" ��Do we have abstract configuration of what we want to provide, or do we have something like the handler chain/security interceptor model where there is a list of handler objects with optional parameters passed to their initialization?

bester@mcs.anl.gov

1
smartin@mcs.anl.gov

