Local invocations in GT4

1Overview

What are local invocations?
1
Why local invocations?
1
Mechanics
2
Local Invocation Utility
2
Getting a service's object
2
Doing a local invocation
2
Subscriptions and Notifications
4
Operation Providers
4
Security Issues
5
Required code changes
5
Java WS Core
5
WS-GRAM
6
RFT
6
Unresolved Issues
6
Tests
7

Overview

What are local invocations?

Local invocations mean invoking service A from service B with a direct Java call and not via a web services invocation. This is of course only possible if both services are located in the same container.

Local invocations differ from the 'Local Call' feature provided by Apache Axis web service engine. This feature can speed up a WS invocation to a service located in the same container by doing all necessary processing actions in memory only; but nonetheless in such a local WS call, serialization/deserialization and processing by all handlers is done.

Why local invocations?

Local invocations provide significant performance improvements, when services are collocated and WS invocations are not required. 

During performance testing with GT GRAM4, it was identified that jobs that include file staging and/or file cleanup perform significantly worse than jobs without file staging/cleanup. GRAM4 uses RFT to do file staging and file cleanup and by default the collocated RFT is used. Although the 'Local Call' feature of Apache Axis is used by GRAM4 for RFT invocations, the WS overhead of a call was found to be up to 3-4 seconds per call, depending on the load of the container. Numerous calls to RFT are done, if a job includes the tasks stageIn, stageOut and fileCleanUp.

Preliminary testing of the use of local invocations for all GRAM/RFT invocations, including notifications, show significant performance improvements. Some comparison numbers are provided below:

750 jobs

· WS invocations:    45min

· Local invocations: 27min

2000 jobs

· WS invocations:    2h20min

· Local invocations: 1h12min

Furthermore, the tests also showed that sending notifications in Java WS Core, which is also done using WS invocations, may delay for up to 15 seconds if the container is under load. While this requires further investigation, the use of local invocations in Java WS-Core notification could potentially yield considerable performance gains under such conditions.

We propose to provide utilities and support in Java WS core for local invocations, in order to leverage scenarios where services are co-located and web services overhead can be avoided.

Mechanics

Local Invocation Utility

The basic piece that takes care of local invocations is the LocalInvocationHelper. It is not limited to WS-GRAM – RFT interaction but can and should be used whenever local invocations instead of WS invocations to a collocated service are done.

It offers an interface to call an arbitrary method of an arbitrary service located in the same container, to destroy a resource and to subscribe for notifications. The following subsections describe the internals of the Local Invocation Utility.

Getting a service's object

The Apache Axis API offers a way to get a service’s object .The method that needs to be invoked on that service is looked up via introspection of the service object. Currently we rely on the deployment property “handlerClass”, specified in the services deployment descriptor, to obtain the provider class of the service and to get the service object from the provider. 

Also, in the utility implementation, both the service objects and method objects are cached for further use so that they need not be looked up all the time.

Doing a local invocation

Java WS Core provides an implementation of ResourceContext interface for services to resolve the resource home and resource on any invocation. The ResourceContextImpl offers convenience functionality that makes it easy to get information like a resource key or the resource home and makes use of the message context.

When a local invocation is done, then the message context information associated with thread is the calling service’s information, rather than the targeted service. Hence the utility provided creates a new message context, adds some information to it and associates it to the thread that will do the local call. After the local invocation is completed, the message context is de-associated from the thread again.

The message context of a local call contains much less information than the message context of a WS call. For example we don’t have a SOAP message in it. To be able to differ between the message context of a local invocation and a WS invocation, the property GLOBUS_LOCAL_INVOCATION is added to a local message context to identify it as a message context of a local invocation.

The ResourceContext implementation is modified to differentiate between local and WS invocation and extract the resource key from a property or SOAP header respectively. The deployed services that use ResourceContext implementation remain transparent to the type of invocation.


Since the message context of a local call contains much less information and not all methods of the ResourceContextImpl can be executed on that limited message context, the ResourceContextImpl should throw an exception in case that a client calls methods of ResourceContextImpl that are incompatible with the message context of a local invocation.

The table below contains an overview of all properties that are added to a message context within a local invocation:

	Name
	Type
	Description

	GLOBUS_LOCAL_INVOCATION
	java.lang.Boolean
	Value that indicates that the message context is part of a local invocation

	GLOBUS_LC_RESOURCE_KEY
	org.globus.wsrf.ResourceKey
	If a resource key is needed as part of a service invocation, this property will contain it. If no resource key is needed, this value of this property will be null.

	callerSubject
	java.lang.String
	The name of this property is defined in org.globus.wsrf.impl.security.authentication.Constants.PEER_SUBJECT and contains the name of peer subject as a String.


Note: the target service is set in the MessageContext of a local invocation via its method

setTargetService(String).

Subscriptions and Notifications

The subscription and notification code base has to be extended to support this feature. If a subscription request is done locally and not via a WS invocation, the notification will be sent directly from the SimpleSubscriptionTopicListeners to the specified 

NotifyCallback using a direct Java call. No notification listener will be set up in the client that waits for incoming notifications and delivers them to the registered NotifyCallbacks, like it’s done in WS notifications.

Some changes are needed here: 

· Because a SimpleSubscription or a PersistentSubscription object, which inherits from SimpleSubscription, is used for both WS-based and local invocation based subscriptions, SimpleSubscription must have a new attribute: a reference to the object that implements NotifyCallback in case it's a local subscription, because the SimpleSubscriptionTopicListeners, which is responsible for sending a triggered notification, will need to look up the destination object (NotifyCallback) from the subscription resource. So either an EPR of the notification listener or a reference to the NotifyCallback will be stored in a subscription resource.

· In order to persist a subscription resource, the new attribute mentioned above must be stored/loaded to/from disk. To be able to store the callback, the object that implements the NotifyCallback must also implement java.io.Serializable.

The new attribute callback in the subscription resource has not been added to the ResourcePropertyDocument of the subscription resource. This would probably require a namespace update, which cannot be done in the 4.0 branch.

Operation Providers

Operation providers like the DestroyProvider or the GetResourcePropertyProvider behave like normal services and look up necessary information via the ResourceContextImpl. Hence no changes are required. 

The only provider that can not be used out of the box by the Local Invocation Utility is the SubscribeProvider, because it cannot differentiate between whether a subscription is done locally or via a WS call. Therefore SubscribeHelper is used by the Local Invocation Utility.

The intended behavior, when a service wants to call a collocated service via local invocations, is to use the Local Invocation Utility; be it a service call, a subscription call or a destroy request.

Security Issues
Because we don't run through our handler chains when doing local invocations, the security handlers are not invoked. This means that the client, who was authorized by the calling service will not automatically be authorized again by the called service. For example, local invocations from WS-GRAM to RFT will not be authorized again by RFT by the security framework. But the resource or service that is invoked using local calls can use the property set on the message context to identify if the calls are local and use the configured authorization mechanism to authorize the call. This is completely up to the deployed service and is not provided by the core framework. 

Also the subscription resources are currently not secured at all when a subscription is done as a local invocation.

Required code changes

Java WS Core

· New package org.globus.wsrf.utils.localcalls: Contains the LocalInvocationHelper who does all the work to call a service locally and the class LocalInvocationMCConstants which defines some constants.
· MessageContextHelper: Added from trunk to 4.0 branch to be able to associate a MessageContext to a thread.

· ResourceContextImpl: Modified to be able to get the necessary information out of both types of messages contexts (local and WS).

· SubscribeHelper: New constructor which is called by LocalInvocationHelper if a subscribe request is done as a local invocation. Changes in the subscribe method to differ between local invocations and WS invocations.

· SubscriptionHome: Modifications to deal with both WS and local subscriptions.

· Interface Subscription: new method getNotifyCallback()
· SimpleSubscription: New attribute callback and the necessary getter. The new attribute is not added to the resource property set, because this would probably need a namespace change then, and is not really needed in the local invocation scenario. The status of a subscription cannot be queried.

· PersistentSubscription: callback is persisted to disk with the other attributes. Therefore in local invocations all objects that are used as NotifyCallbacks must implement the java.io.Serializable interface, in order to be persisted.

· SimpleSubscriptionTopicListener: In notify() a check is done, whether the subscription was done as a local call. If so, the notify object is fetched from the subscription resource and its deliver method is called directly. Otherwise a WS call is done to send the notification.

WS-GRAM

· ManagedJobHelper: New helper method getResourceKey(EndpointReferenceType) added from trunk to 4.0 branch.

· StagingHelper: Made StagingHelper an interface and implement it in new classes WSStagingHelper and LocalStagingHelper. WSStagingHelper is doing WS invocations for all staging tasks, while LocalStagingHelper is doing local invocations. StagingHelper no longer provides static method but is created as normal object in StateMachine.

· StateMachine: use of LocalStagingHelper and WSStagingHelper if staging or file cleanup is involved. Also an info message is printed to the container logfile that indicates whether local invocations are enabled or not.
· StagingListener: Implements interface java.io.Serializable in order to be persisted in a persistent subscription resource. Method deliver(): modified the part where the status of the RFT resource is fetched from the notification message. It's done now as described in the developers guide of the Java WS Core docs.

· FactoryHomeConfiguration: Added attribute enableLocalInvocation and getter and setter. Purpose of this: see next item.

· JNDI configuration: New parameter enableLocalInvocation in section homeConfiguration of ManagedJobFactoryService in WS-GRAMs jndi-config.xml: Depending on that configuration, StateMachine creates either a WSStagingHelper or a LocalStagingHelper to do staging tasks. This new configuration option lets the container admin decide whether he/she wants to allow local invocations and the corresponding security tradeoffs or not.

RFT

No changes required.

Unresolved Issues

If an error happens during a file transfer RFT sends a failed-notification. This notification message includes a fault element, which can’t be deserialized properly if the notification is sent locally. However, sending the same fault element via a WS call works fine. From looking at the messages one can see that the messages are indeed slightly different regarding content and namespaces.

It seems like APACHE AXIS does some changes here, so that there’s no problem with WS notifications.

Tests

Currently there's no automated test for the LocalInvocationHelper. A lot of sequential and concurrent job submissions had been run for testing purpose.

�Please confirm this as a part of the core campaign,

�you mean when this happens on local calls ?

�It doesn’t seem clear to me what this sentence is concluding.  Are you suggesting that we may need to make changes to Axis to get this to work w/ local invocation, or that Axis is currently doing something else behind the scenes to make this work in the case of a normal WS call?



PAGE  
1

