

Globus Toolkit Advance Reservation

Contents

21
Globus Toolkit Advance Reservation Architecture Summary

2
Web Service Interfaces
2
2.1
AdvanceReservationFactory Port Type
2
2.1.1
Resource Properties
2
2.1.2
Operations
2
2.2
AdvanceReservation Port Type
3
2.2.1
Resource Properties
3
2.2.2
Operations
4
2.2.3
Reservation Statuses
4
3
Implementation Details
5
3.1
Reservation Description
5
3.2
Managing Reservations in a Local Resource Manager
6
3.3
Binding job(s) to existing reservations
6
3.4
Authentication and Authorization
7
3.5
Logging and Auditing
7
4
Glossary
7
4.1
Acronyms
7
4.2
Namespaces
8
5
Appendix A: Normative AdvanceReservationFactory GWSDL
9
6
Appendix B: Normative AdvanceReservation WSDL
11

1 Globus Toolkit Advance Reservation Architecture Summary

The goal of this approach is to enable GT4 users to create and manage advance reservations of compute nodes using LRMs that include support for AR. Resource management systems such as LSF and PBSPro, and schedulers such as Maui and Moab that can be plugged into several LRMs provide compute node advance reservation functionality. The fundamental idea behind this approach is to create a service that provides a thin veneer on top of LRM functionality.

There exists another document parallel to this document that wants to collect the semantics of various LRMs and schedulers regarding AR capabilities. This document highly depends on what will be found there because finally the interface we propose can't offer more than the least common denominator of what is offered by the various LRMs and scheduler.

In this approach, a reservation is an independent entity. In other words it is a resource reservation and not a job reservation (not bound to a particular job). A reservation can be requested via a WSRF-compliant interface; one or more jobs (depending on LRM policy) can be subsequently submitted to use the reservation. Jobs submitted to a reservation can be cancelled without the reservation being cancelled. A reservation should not be rendered useless if a bound job fails.

The output of a reservation request is both an EPR and the LRM-provided reservation ID. Both values are returned in order to provide maximum flexibility and use of the AR service. For example, after making a reservation, a job can be submitted using that reservation to a job submission service that can consume either the reservation EPR or the reservation ID. The reservation EPR can be used to manage the reservation.
2 Web Service Interfaces

Here we define, abstractly, the interfaces for advance reservation services (see Appendix A for the actual WSDL documents).

2.1 AdvanceReservationFactory Port Type

This interface defines the operations and resource properties needed to request a reservation.

2.1.1 Resource Properties

	Name
	Number
	Type
	Description

	LocalResourceManagerType
	0 or 1
	xsd:string
	The common name of the LRM that is used by this factory resource to create reservations.

	ReservationTable
	0 or 1
	xsd:anyType
	An xsd:anyType element representing a domain-specific reservation table.

	ReservationReference
	≥0
	wsa:EndpointReferenceType
	A list of EPRs for currently active Reservation resources.

2.1.2 Operations

2.1.2.1 CreateReservation

Given a reservation description, this method attempts to create a reservation via an LRM.

2.1.2.1.1 Input(s)

· xsd:anyType ReservationRequest: The domain-specific reservation request.

2.1.2.1.2 Output(s)

· EndpointReferenceType ReservationReference: An EPR pointing to the newly created reservation resource.

· xsd:string ReservationId: The ID returned from the LRM upon creation of the reservation

2.1.2.1.3 Fault(s)

· wsbf:BaseFaultType UnacceptableReservationRequestFault

2.1.2.2 QueryReservationTable (to be determinted)

2.1.2.2.1 Input(s)

· Some query elements
2.1.2.2.2 Output(s)

· Some list of possible future slots
2.1.2.2.3 Fault(s)

· To be determined

2.2 AdvanceReservation Port Type

This interface defines the operations and resource properties needed to modify, cancel, and destroy a reservation. This port type inherits the operations from the following WSRF port types:

wsrpw:GetMultipleResourceProperties

wsrpw:QueryResourceProperties

wsrlw:ScheduledResourceTermination

wsrlw:ImmediateResourceTermination

wsntw:NotificationProducer

2.2.1 Resource Properties

The following resource properties are defined for the Reservation port type:

	Name
	Number
	Type
	Description

	ID
	0 or 1
	xsd:string
	The ID returned from the LRM upon creation of the reservation.

	ReservationRequest
	1
	xsd:anyType
	The reservation request document used to create the reservation.

	ReservedHosts
	≥0
	xsd:string
	A list of the hosts that the scheduler indicates will be allocated for use during the reservation.

	Status
	1
	ar:StateEnumeration
	The status of the reservation.

	FactoryReference
	1
	wsa:EndpointReferenceType
	The EPR of the ReservationFactory that created this reservation.

2.2.2 Operations

The following operations are defined for the Reservation port type:

2.2.2.1 Cancel

This operation cancels a reservation without destroying the Reservation resource.

2.2.2.1.1 Input(s)

· None

2.2.2.1.2 Output(s)

· None

2.2.2.1.3 Fault(s)

· wsbf:BaseFaultType NotAuthorizedFault

2.2.2.2 Modify

This operation attempts to change an existing reservation. For the common case where an LRM does not support modifications of existing reservations, this operation must return a fault. If a fault is returned, the original reservation must remain valid and active.

2.2.2.2.1 Input(s)

· xsd:anyType ReservationRequest: An updated version of the reservation request.

2.2.2.2.2 Output(s)

· None

2.2.2.2.3 Fault(s)

· wsbf:BaseFaultType UnsupportedFeatureFault

· wsbf:BaseFaultType UnacceptableReservationRequestFault

· wsbf:BaseFaultType NotAuthorizedFault

2.2.3 Reservation Statuses
The following states are defined for use with reservations:

	Reservation Status
	Description

	Pending
	The reservation has been created successfully, but the start time didn’t come yet

	Active
	The start time of the reservation is in the past and the termination time didn’t come yet and the reservation has not been cancelled or destroyed so far

	Done
	The termination time of the reservation is in the past and the reservation was not cancelled by a client or by the system (sys admin) during it’s lifetime.

	Cancelled
	The reservation was cancelled by the client or the system

3 Implementation Details

This section describes the implementation to provide a WSRF compute node reservations.

· AdvanceReservationFactoryService: responsible for the creation of ComputeNodeReservationResources. The output of the creation of a reservation at an LRM or scheduler is a reservation id, and will be stored in the created reservation resource.

· AdvanceReservationFactoryHome: manages and controls ComputeNodeReservationFactoryResources.

· AdvanceReservationFactoryResource: one instance for each available and reservation-capable LRM (Torque, LSF, LoadLeveler, …) will be created during container startup.

· AdvanceReservationService: The implementation of the Reservation port type that is used to modify, cancel, destroy the reservation; as well as query its state.

· AdvanceReservationHome: manages and controls ReservationResources.

· AdvanceReservationResource: a ReservationResource represents a real reservation, and affects the status of the actual reservation in the LRM.

3.1 Reservation Description

The following table lists the elements used to describe a compute node reservation:

	Compute Node Reservation elements

(based on JSDL 1.0 with extensions for the first 3 elements)
	Description

	jsdl-ar:AuthorizedUsers
	List of DNs authorized to use the reservation

	jsdl-ar:StartTime
	Time the reservation will be started

	jsdl-ar:Duration
	Required amount of reservation time

	jsdl:JobDefinition/JobDescription/Resources/TotalCPUCount
	# of total CPUs for the reservation

	jsdl:JobDefinition/JobDescription/Resources/TotalResourceCount
	# of hosts

	jsdl:JobDefinition/JobDescription/Resources/IndividualCPUCount
	# of CPUs per resource

	jsdl:JobDefinition/JobDescription/Resources/TotalDiskSpace
	Total amount of disk space in bytes for all resources

	jsdl:JobDefinition/JobDescription/Resources/TotalPhysicalMemory
	Total physical memory for all resources

	jsdl:JobDefinition/JobDescription/Resources/TotalVirtualMemory
	Total virtual memory for all resources

	jsdl:JobDefinition/JobDescription/Resources/IndividualDiskSpace
	Required amount of disk space in bytes for each resource

	jsdl:JobDefinition/JobDescription/Resources/IndividualPhysicalMemory
	Required amount of physical memory for each resource

	jsdl:JobDefinition/JobDescription/Resources/IndividualVirtualMemory
	Required amount of virtual memory for each resource

The following pseudo-XML markup illustrates how a compute node reservation request can be constructed:
<jsdl:Resources>

 <jsdl:TotalResourceCount><jsdl:Exact>xsd:double</jsdl:Exact><jsdl:TotalResourceCount>

 <jsdl-ar:AuthorizedUser>xsd:string</jsdl-ar:AuthorizedUser>

 <jsdl-ar:StartTime>xsd:dateTime</jsdl-ar:StartTime>

 <jsdl-ar:Duration>xsd:duration</jsdl-ar:Duration>

</jsdl:Resources>

The following is an example of a reservation request document that specifies a 4 node reservation for 2 hours and 30 minutes starting on Christmas 2006 at 1:20 PM:
<jsdl:Resources>

 <jsdl:TotalResourceCount>4</jsdl:TotalResourceCount>

 <jsdl-ar:StartTime>2006-12-25T13:20:00.000</jsdl-ar:StartTime>

 <jsdl-ar:Duration>PT2H30M</jsdl-ar:Duration>

</jsdl:Resources>

3.2 Managing Reservations in a Local Resource Manager

The GRAM LRM adapter Perl module functionality can be leveraged by the AR service to create a reservation in the LRM. This new functionality should be deployable without depending on GRAM specific functionality deployed. GRAM and ARS are separate services and their dependencies should not overlap unnecessarily. Optionally, a pure java LRM interface could be written for creating and canceling reservations. This has been considered for GRAM4 and may have advantages over perl. The reservation monitoring implementation plan is probably more clear and should leverage the Scheduler Event Generator (SEG) component. The SEG code can be updated to parse reservation events from log files and send the repackaged reservation events to a JSM. Since the reservation state model fits inside the job state model, the actual repackaged reservation events will look identical to a job event. This means that no modifications are necessary to the JSM code.
3.3 Binding job(s) to existing reservations

Job submission services that intend to support reservations from the GT AR service will need to support the job directives for the Reservation EPR, the Reservation ID or both. Supporting the Reservation EPR would mean that the job service would first fetch the Reservation ID from the Reservation Service and then use the ID in the job submission to the LRM. Supporting the Reservation ID would just mean that the job service would simply use the ID in the job submission to the LRM.

Extensibility points exist in the 4.0.x series MJFS so that adding support for Reservation IDs is possible without modifying the MJFS port type. 4.2 MJFS interface will likely support both a Reservation EPR and a Reservation ID.

3.4 Authentication and Authorization

We will apply standard GT4 authentication and authorization to operations invoked via the reservation interface. See the following URL for details

http://www.globus.org/toolkit/docs/4.0/security/message/WS_AA_Message_Level_Public_Interfaces.html#s-message-public-protocol
Furthermore, ReservationResources are secured at the resource level by allowing only the creator of the resource can access it. The credential subject(s) specified in the AuthorizedUser element of the CreateReservation request are converted to a list of local username(s) by the ARFS and then passed down to the LRM for local authorization on the reservation. This will allow any client DN that map to those local usernames to submit jobs to the reservation using the Reservation ID. (What about the Reservation EPR? Seems a client would not be authorized to query the ARS using the AR EPR to get the AR Reservation ID unless we add authorization for those subjects in the ARS. I guess the AuthorizedUser list must effect both the ARS and the local LRM authorization?)

3.5 Logging and Auditing

The ARS will produce log4j INFO level logging for entry and exit for each reservation similar to what GRAM4 produces for jobs. Here is an example from GRAM4:

2005-09-12 12:59:18,953 INFO exec.StateMachine

 [Thread-17,logJobAccepted:3019] Job.

 b35a0332-23c7-11da-8dc1-0008744f939a accepted for

 '/C=US/O=NPACI/OU=SDSC/CN=Mats Rynge/UID=ux454281' mapped

 to local user 'rynge'

2005-09-12 12:59:24,892 INFO exec.StateMachine.

 [Thread-20,logJobSucceeded:3035] Job.

 b35a0332-23c7-11da-8dc1-0008744f939a finished successfully

2005-09-12 12:59:48,183 INFO exec.StateMachine

 [Thread-22,logJobAccepted:3019] Job

 c4e253d4-23c7-11da-a896-0008744f939a accepted for

 '/C=US/O=NPACI/OU=SDSC/CN=Mats Rynge/UID=ux454281' mapped

 to local user 'rynge'

2005-09-12 12:59:53,781 INFO exec.StateMachine

 [Thread-16,logJobFailed:3045] Job

c4e253d4-23c7-11da-a896-0008744f939a failed

In addition, functionality to insert a record at the end of a reservation into the GT service auditing DB should be done too. This should be turned off by default. Again, this functionality is similar to what is in GRAM4. For details see the GRAM4 auditing campaign – http://bugzilla.mcs.anl.gov/globus/show_bug.cgi?id=4410
4 Glossary

4.1 Acronyms

	AR
	Advance Reservation

	LRM
	Local Resource Manager

	PBS
	Portable Batch Systems

	LSF
	Load Sharing Facility

	SEG
	Scheduler Event Generator

	JSM
	Job State Monitor

4.2 Namespaces

	ar
	http://schemas.globus.org/ar/2006/09/ar

	ar-factory
	http://schemas.globus.org/ar/2006/09/ar-factory

	jsdl-ar
	http://schemas.globus.org/jsdl/2006/09/ar

	wsa
	http://schemas.xmlsoap.org/ws/2004/03/addressing

	wsbf
	http://docs/oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd

	wsdl
	http://schemas.xmlsoap.org/wsdl/

	xsd
	http://schemas.oasis-open/2001/XMLSchema

5 Appendix A: Normative AdvanceReservationFactory GWSDL

<wsdl:definition name="AdvanceReservationFactory"

 targetNamespace="http://schemas.globus.org/ar/2006/09/ar-factory"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ar-factory="http://schemas.globus.org/ar/2006/09/ar-factory"

 xmlns:wsa=“http://schemas.xmlsoap.org/ws/2004/03/addressing”

 xmlns:wsbf=“http://docs/oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd”

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdlpp="http://www.globus.org/namespaces/2004/10/WSDLPreprocessor"

 xmlns:wsrp="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd"

 xmlns:wsrpw="http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl"/>

 <wsdl:types>

 <xsd:schema

 attributeFormDefault="unqualified"

 elementFormDefault="qualified"

 targetNamespace="http://schemas.globus.org/ar/2006/09/ar-factory">

 <xsd:import

 namespace="http://schemas.xmlsoap.org/ws/2004/03/addressing"

 schemaLocation="../../ws/addressing/WS-Addressing.xsd"/>

 <xsd:import

 namespace="http://docs/oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd"

 schemaLocation="../../wsrf/faults/WS-BaseFaults.xsd"/>

<!-- Resource Property Document -->

 <xsd:complexType name=”ReservationFactoryResourcePropertiesType”>

 <xsd:sequence>

 <xsd:element ref=”ar-factory:LocalResourceManagerType”>

 <xsd:element ref=”ar-factory:ReservationReference”>

 <xsd:element ref=”ar-factory:ReservationTable”>

 </xsd:sequence>

 </xsd:complexType>

<!-- Message Types -->

 <xsd:complexType name=”CreateReservationType”>

 <xsd:sequence>

 <xsd:element ref="jsdl:Resources"/>

 <xsd:any namespace=”##other” processContents=”lax”

 minOccurs=”0” maxOccurs=”unbounded”/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name=”CreateReservationResponseType”>

 <xsd:sequence>

 <xsd:element ref=”ar-factory:ReservationReference”/>

 <xsd:element ref=”ar-factory:ReservationID”/>

 <xsd:any namespace=”##other” processContents=”lax”

 minOccurs=”0” maxOccurs=”unbounded”/>

 </xsd:sequence>

 </xsd:complexType>

<!-- Elements -->

 <xsd:element name=”LocalResourceManagerType” type=”xsd:string”/>

 <xsd:element name=”CreateReservation" type=”ar-factory:CreateReservationType”/>

 <xsd:element name=”CreateReservationResponse”

 type=”ar-factory:CreateReservationResponseType”/>

 <xsd:element name=”ReservationID” type=”xsd:string”/>

 <xsd:element name=”ReservationReference” type=”wsa:EndointReferenceType”/>

 <xsd:element name=”ReservationTable” type=”xsd:anyType”/>

 <xsd:element name=”ReservationFactoryResourceProperties”

 type=”ReservationFactoryResourcePropertiesType”/>

</xsd:schema>

 </wsdl:types>

<!-- Fault Messages -->

 <wsdl:message name="UnacceptableReservationRequestFaultMessage">

 <wsdl:part name="fault" element="wsbf:BaseFault "/>

 </wsdl:message>

<!-- Messages -->

 <wsdl:message name="CreateReservationMessage">

 <wsdl:part name="parameters" element="ar-factory:CreateReservation"/>

 </wsdl:message>

 <wsdl:message name="CreateReservationResponseMessage">

 <wsdl:part name="parameters" element="ar-factory:CreateReservationResponse"/>

 </wsdl:message>

<!-- Port Type -->

 <wsdl:portType name="AdvanceReservationFactoryPortType"

 wsrp:ResourceProperties="ar-factory:ReservationFactoryResourceProperties"

 wsdlpp:extends=" wsrpw:GetResourceProperty

 wsrpw:GetMultipleResourceProperties

 wsrpw:QueryResourceProperties">>

 <wsdl:operation name="CreateReservation">

 <wsdl:input

message="ar-factory:CreateReservation"

 wsa:Action=“http://schemas.globus.org/ar/2006/09/ar-factory/AdvanceReservationFactoryPortType/CreateReservation”/>

 <wsdl:output

message="ar-factory:CreateReservationResponse"

 wsa:Action=“http://schemas.globus.org/ar/2006/09/ar-factory/AdvanceReservationFactoryPortType/CreateReservationResponse”/>

 <wsdl:fault name="UnacceptableReservationRequestFault"

message="ar-factory:UnacceptableReservationRequestFaultMessage"/>

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

6 Appendix B: Normative AdvanceReservation WSDL

<wsdl:definition name="AdvanceReservation"

 targetNamespace="http://schemas.globus.org/ar/2006/09/ar"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:ar="http://schemas.globus.org/ar/2006/09/ar"

 xmlns:wsa=“http://schemas.xmlsoap.org/ws/2004/03/addressing”

 xmlns:wsbf=“http://docs/oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd”

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>

 <wsdl:types>

 <xsd:schema

 attributeFormDefault="unqualified"

 elementFormDefault="qualified"

 targetNamespace=" http://schemas.globus.org/ar/2006/09/ar">

 <xsd:import

 namespace="http://schemas.xmlsoap.org/ws/2004/03/addressing"

 schemaLocation="../../ws/addressing/WS-Addressing.xsd"/>

 <xsd:import

 namespace="http://docs/oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd"

 schemaLocation="../../wsrf/faults/WS-BaseFaults.xsd"/>

<!-- Message Types -->

 <xsd:complexType name=“ModifyType”>

 <xsd:sequence>

 <xsd:element ref="jsdl:Resources"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name=“ModifyResponseType”/>

<!-- Message Elements -->

 <xsd:element name="Modify" type=“ar:ModifyType”/>

 <xsd:element name="ModifyResponse" type="ar:ModifyResponseType"/>

 <xsd:element name=“ReservationReference” type=“wsa:EndointReferenceType”/>

 </xsd:schema>

 </wsdl:types>

<!-- Fault Messages -->

 <wsdl:message name="NotAuthorizedFaultMessage">

 <wsdl:part name="fault" element="wsbf:BaseFault "/>

 </wsdl:message>

 <wsdl:message name="UnacceptableReservationRequestFaultMessage">

 <wsdl:part name="fault" element="wsbf:BaseFault "/>

 </wsdl:message>

 <wsdl:message name="UnsupportedFeatureFaultMessage">

 <wsdl:part name="fault" element="wsbf:BaseFault "/>

 </wsdl:message>

<!-- Messages -->

 <wsdl:message name="ModifyMessage">

 <wsdl:part name="parameters" element="ar:Modify"/>

 </wsdl:message>

 <wsdl:message name="ModifyResponseMessage">

 <wsdl:part name="parameters" element="ar:ModifyResponse"/>

 </wsdl:message>

<!-- Port Type -->

 <wsdl:portType name="AdvanceReservationPortType">

 <wsdl:operation name="Modify">

 <wsdl:input message="ar:ModifyMessage"

wsa:Action=“http://schemas.globus.org/ar/2006/09/ar/AdvanceReservationPortType/Modify”/>

 <wsdl:output message="ar:ModifyResponseMessage"

wsa:Action=“http://schemas.globus.org/ar/2006/09/ar/AdvanceReservationPortType/ModifyResponse”/>

 <wsdl:fault name="NotAuthorizedFault"

message="ar:NotAuthorizedFaultMessage"/>

 <wsdl:fault name="UnacceptableReservationRequestFault"

message="ar:NotAuthorizedFaultMessage"/>

 <wsdl:fault name="UnsupportedFeatureFault"

message="ar:UnsupportedFeatureFaultMessage"/>

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

1

