AR Semantics in Local Resource Management Systems and Schedulers
21.
Purpose

22.
Overview over the desired LRM/Scheduler Features

22.1.
Use Cases for Reservation Tables

22.1.1.
TeraGrid Use Case

32.1.2.
NAREGI Use Case

32.1.3.
Extended NAREGI Use Case

32.1.4.
Questions around Reservation Tables

43.
Schedulers

43.1.
Catalina

43.1.1.
AR Capabilities Description

43.1.2.
Scheduler Configuration

43.1.3.
Client Semantics

53.1.4.
AR Logging behaviour

53.2.
Maui

53.2.1.
AR Capabilities Description

63.2.2.
Scheduler Configuration

73.2.3.
Client semantics

83.2.4.
AR Logging behaviour

83.2.5.
Questions

83.3.
Moab

94.
Local Resource Managers

94.1.
Condor

94.1.1.
AR Capabilities Description

94.1.2.
Scheduler Configuration

94.1.3.
Client Semantics

94.1.4.
AR Logging behaviour

94.2.
SGE

94.2.1.
AR Capabilities Description

94.2.2.
Scheduler Configuration

94.2.3.
Client Semantics

94.2.4.
AR Logging behaviour

104.3.
LoadLeveler

104.3.1.
AR Capabilities Description

104.3.2.
Scheduler Configuration

104.3.3.
Client Semantics

104.3.4.
AR Logging behaviour

104.4.
Torque

104.4.1.
AR Capabilities Description

104.4.2.
Scheduler Configuration

104.4.3.
Client Semantics

114.4.4.
AR Logging behaviour

114.5.
OpenPBS

114.5.1.
AR Capabilities Description

114.5.2.
Scheduler Configuration

114.5.3.
Client Semantics

114.5.4.
AR Logging behaviour

124.6.
PBSPro

124.6.1.
AR Capabilities Description

124.6.2.
Scheduler Configuration

134.6.3.
Client Semantics

134.6.4.
AR Logging behaviour

134.7.
LSF

134.7.1.
AR Capabilities Description

144.7.2.
Scheduler Configuration

154.7.3.
Client Semantics

164.7.4.
AR Logging behaviour

165.
Capabilities Overview

176.
Links

187.
Glossary

1. Purpose

In order to design an appropriate service interface that takes advantage of advance reservation (AR) capabilities of local resource managers (LRM), one first needs to know what the capabilities of those LRMs are. This overview is very similar to the “Advance Reservations: State of the Art“ document created by the GRAAP working group. The link to their webpage can be found in the Links section.

The main purpose of this document is to

1. Describe the different schedulers that have advance reservation capabilities

2. Provide details on how to actually configure these schedulers, if possible, in various LRMs

3. Show how clients of various LRMs/Schedulers can be used, if supported, to create and destroy compute node reservations and how reservations can be bound to jobs. Another important aspect is how the different LRMs/Schedulers expose information about existing reservations and what information can be extracted from the reservation table. Additionally use cases are outlined to clarify the needs of different groups (TeraGrid, NAREGI).

4. Give information on what advance reservation state a particular scheduler or LRM logs for purposes of monitoring the reservation.
2. Overview over the desired LRM/Scheduler Features

The following LRM/Scheduler operations are required in order to create a reasonable reservation service

· Create a reservation

· Destroy an existing reservation

· Bind a reservation to a job

· Get an overview over the reservation table

Another desired feature would be to modify an existing reservation. But this is not supported by most of the LRMs/Schedulers.

While the first three items are quite straightforward, the fourth item is important and must be evaluated carefully as it enables a client (User, Meta-Scheduler) to make decisions about future reservations. The next section describes three use cases regarding the information that should be derivable from a reservation table.

2.1. Use Cases for Reservation Tables

Yet we know about three use cases that are desirable:

2.1.1. TeraGrid Use Case

“Show me all free slots for the following reservation characteristics

· earliest start of the reservation at ...

· latest end of the reservation at ...

· duration of the reservation must be ...

· N nodes are needed”

The output upon such a request could be (T = Point in Time within the desired time interval, N,M = nonnegative integer)

	T1 – T2
	N nodes available

	T3 – T4
	M nodes available

	…
	…

The focus of this use case is on getting free slots instead of an overview over existing reservations. That’s probably the most important information for a user.

2.1.2. NAREGI Use Case

“Show me all reservations and include the name of the hosts that are planned to be used by the reservations.”

The following table could be created from the answer upon such a request (T = Point in Time, R = reservation, id = reservation id):

	Host 1
	R1(T1-T2, id), R2 (T3-T4,id), …

	Host 2
	R3(T5-T6,id), R4(T7-T8,id), ...

	…
	…

The focus of this use case is on getting a complete overview over the existing reservations and all involved hosts.

This may lack some information as hosts that are not planned to be used by reservations are not mentioned here.

2.1.3. Extended NAREGI Use Case

 “Give me a list of all hosts and a list of all reservations on each host”.

Compared to the NAREGI use case also hosts that do not hold reservations are specified in the response.

The following table could be created from the answer upon such a request (T = Point in Time, R = reservation, id = reservation id):

	Host 1
	R1(T1-T2, id), R2 (T3-T4,id), …

	Host 2
	

	…
	…

	Host N
	R3 (T5-T6,id), …

The focus of this use case is on getting a complete overview over the existing reservations and all hosts even if they don’t hold a reservation. Free slots could be derived from such a table.
2.1.4. Questions around Reservation Tables

Since the following questions are not LRM/Scheduler specific they are listed here and not in the sections describing the different LRMs/Scheduler.

· What information is available from your LRM/Scheduler: Can we get the information described in the use cases above: information about all hosts, used slots and free slots?

· What kind of policies are used with AR?

Do free slots in a reservation table requested by user A automatically imply that user A can make reservations using these free slots or could there be policies that prohibit a user to reserve those free slots?

If there are policies, can reservation tables be requested in a user-specific manner, i.e. contain information that will fit exactly to a user in terms of free slots?

· What are the use cases for AR clients / Meta-Scheduler:

Are there any experiences about what a client typically wants to know?

Do clients normally care about specific hosts/nodes in the context of reservations?

What information do they get from your LRM/Scheduler in order to make decisions?

· How can a client keep up to date with LRM/Scheduler information about reservation tables?

Is a full query of the reservation table necessary all the time?

3. Schedulers

3.1. Catalina
The Catalina scheduler was developed to serve as a maintainable, extendable external scheduler for LoadLeveler and other resource managers. Support of the GridForum Advance Reservation API was one of the goals of the development effort. Python was chosen as the development language, to encourage readability.

3.1.1. AR Capabilities Description

Catalina support to

· Create a reservation, specifying earliest start, latest end, duration and number of nodes. The reservation is "active" upon creation. Upon the successful creation of a reservation request the reservation id is written to stdout/stderr
· Modify a reservation, changing earliest start, latest end, duration and/or number of nodes, retaining the old reservation if the new one is not possible. (needs to be tested).

· Bind a job to a reservation. Some time after the reservation has been created, this specifies a job to be run within the reservation.

· Cancel a reservation.
· Catalina also provides 'lookahead' advance reservation query. This provides a snapshot of whether a specific advance reservation is possible at the time of query, without actually making the reservation.
Some Advance Reservation API features are not supported:
· Two-phase commit
· Claim a reservation.
· Register callback function.
3.1.2. Scheduler Configuration

Configuration of Catalina:
Catalina is configured during installation where the name, the include path and the library path of the LRM must be provided.

Configuration of the LRM:
N/A
3.1.3. Client Semantics
Create a reservation: user_set_res

./user_set_res \

 --account=<account> \

 --nodes=<number of nodes> \

 --duration=<seconds duration> \

 --earliest_start=<earliest start HH:MM_mm/dd/yyyy or epoch seconds> \

 --latest_end=<latest end HH:MM_mm/dd/yyyy or epoch seconds> \

 --email=<email address user@domain>

Delete a reservation: user_cancel_res

./user_cancel_res <reservation id>

Show the reservation table: show_res

show_res

Bind jobs to a reservation: user_bind_res

./user_bind_res <reservation id> <comma-delimited list of jobs>

Unbind jobs from a reservation: user_unbind_res

./user_unbind_res <reservation id> <comma-delimited list of jobs>

Tell a job to only run within a specific list of reservations (with LRM commands):

For LoadLeveler: In the job command file, use the comment line

#@ comment = Catalina_res_bind=<comma-delimited list of reservations>;

For PBS: In the job command file, set the environment variable:

Catalina_res_bind = <comma-delimited list of reservations>

3.1.4. AR Logging behaviour
N/A

3.2. Maui

3.2.1. AR Capabilities Description

An advance reservation is the mechanism by which Maui guarantees the availability of a set of resources at a particular time. Every reservation consists of 3 major components, a list of resources, a timeframe, and an access control list. It is the job of the scheduler to make certain that the access control list is not violated during the reservation's lifetime (i.e., its timeframe) on the resources listed. For example, a reservation may specify that node002 is reserved for user Tom on Friday. The scheduler will thus be constrained to make certain that only Tom's jobs can use node002 at any time on Friday.

Advance reservation technology enables many features including backfill, deadline based scheduling, QOS support, and meta scheduling.

The setres command allows an arbitrary block of resources to be reserved for use by jobs which meet the specified access constraints. The timeframe covered by the reservation can be specified on either an absolute or relative basis. Only jobs with credentials listed in the reservation ACL (i.e., USERLIST, GROUPLIST, ...) can utilize the reserved resources. However, these jobs still have the freedom to utilize resources outside of the reservation. The reservation will be assigned a name derived from the ACL specified. If no reservation ACL is specified, the reservation is created as a system reservation and no jobs will be allowed access to the resources during the specified timeframe (valuable for system maintenance, etc).
The output of a successful reservation request is a reservation id that can either be added to the job description or the command of the LRM (TORQUE, PBS, ...) to submit a job.

The way the reservation id is passed to the job varies from LRM to LRM as they are all different. The Maui documentation provides an overview how this can be done in the various LRMs.

Some properties of Maui regarding advance reservations:

· Existing reservations can’t be modified.

· Reservations can't be negotiated or altered in a two-phase commit (although the GRAAP webpage says so).

· In order to run a job within the context of a reservation a wallclock time shorter than the duration of the reservation must be provided additionally to the reservation-ID when the job is submitted. How much shorter must that exactly be?

· If a reservation is destroyed by a client, a bound and already running job will not be destroyed but will keep on running until the job exceeds the wallclock time that was specified during job submission.

· If a reservation is destroyed by the client, a bound and not yet running job will be removed from the reservation table when the scheduled start time is reached. But it keeps staying in the queue in state “Queued” (forever?) and will not start.

· A submitted job which binds to a reservation that does not exist will be queued (forever?) but will not be started.

· On requesting the reservation table a non-privileged user is only allowed to see the reservations he can access. Only Maui admins are allowed to see all reservations.

· More than one job can be bound to a reservation.

This information had been obtained from the online documentation and from tests with Maui v. 3.2.6p16-snap.1157560841.
3.2.2. Scheduler Configuration
Configuration of Maui

Configuring Maui to act as the scheduler of an LRM is quite easy. Before compilation the path to the LRM installation must be added in the configure-command of Maui:

Example: Torque as LRM

./configure --with-pbs=<path to LRM installation>

Maui can act as scheduler for the following LRMs:

SGE, LSF, PBS, TORQUE, LoadLeveler, Wiki, Bamboo, SSS

and the following Allocation Manager: QBank, Gold, SSS

There's an option in the Maui configuration file which is set automatically using the declarations in the configure-command and which shows which LRM is used:

Example: RMCFG[] TYPE=PBS
For some of these LRMs additional settings are required.
Configuration of the LRM

To make an LRM use Maui as its scheduler requires different actions depending on the LRM . Details can be found in the Link section in the Maui integration guides links.

Example: Torque as LRM:

The only thing that must be done here is not to start the default scheduler of Torque, but Maui.
Reservation configuration parameters in Maui:
RESCTLPOLICY: specifies who can create admin reservations (values: ANY, ADMINONLY)
RESDEPTH: specifies the maximum number of reservations which can be on any single node

…

Overview over all parameters: see the Configuration parameters link in the Link section.
3.2.3. Client semantics

This section provides an overview over Maui commands to handle reservations and is meant to be comprehensive. More details can be found in the Maui documentation.

Create a reservation: setres

Using the username(who later wants to use the reservation),

starttime, duration and the number of processors (n)

setres -u <user-id> \

 -s [HH[:MM[:SS]]][_MO[/DD[/YY]]] \

 -d [[[DD:]HH:]MM:]SS \

 TASKS==n

using terminationTime instead of Duration

setres -u <user-id> \

 -s [HH[:MM[:SS]]][_MO[/DD[/YY]]] \

 -e [HH[:MM[:SS]]][_MO[/DD[/YY]]] \

 TASKS==n

allowing more that one user to use a reservation

setres -u <user-id1>:...:<user-idn> \

 -s [HH[:MM[:SS]]][_MO[/DD[/YY]]] \

 -d [[[DD:]HH:]MM:]SS \

 TASKS==n

allowing a group to use a reservation

setres -g <group-id> \

 -s [HH[:MM[:SS]]][_MO[/DD[/YY]]] \

 -d [[[DD:]HH:]MM:]SS \

 TASKS==n

 For more details see http://www.clusterresources.com/products/maui/docs/commands/setres.shtml

Output of a successful reservation request:

reservation created

reservation 'martin.0' created on 1 node (1 tasks)

lappi:1

Delete a reservation: releasres

releaseres <reservation-id>

Show the reservation table: showres

showres

A user only is only able to see those reservations he can access. Only admin users of Maui see all reservations.
3.2.4. AR Logging behaviour
Each entry of the Maui logfile starts with the date and time of the logging entry. In my installation (maui-3.2.6p16) the date information does not contain the year and I didn't find a configuration option to enable the displaying the year. This could be critical for the Scheduler Event Generator (SEG). It's quite easy to change the code to have the year in the logging entries.

Maui logs the creation and the destruction of a reservation. AFAIK there's no logging entry if a job is bound to the reservation or unbound from a reservation.

The default interval of the scheduler for checking whether reservations must be activated or destroyed is 30 seconds. This can be changed in the configuration file.
3.2.5. Questions

· Are there plans for the future to provide a way to modify existing reservations in terms of start time, termination time, ACL?

· Are there plans for the future to provide a negotiating mechanism for the creation and modification of reservations (two-phase commit)

· Will it be possible in the future to have information about the year for each entry in the log-file?

· In order to run a job within the context of a reservation a wallclock time shorter than the duration of the reservation must be provided additionally to the reservation-ID when the job is submitted. How much shorter must that exactly be?
· Will it be possible in the future that the wallclock time need not to be specified when a job is bound to a reservation?

· Is it intended that a running job that binds to a reservation continues running when the reservation is cancelled before its termination time is reached?

Will it be possible in the future to have a parameter in the configuration file that offers an alternative behaviour: Jobs which are bound to a reservation will automatically be destroyed by Maui when the reservation is cancelled.

· Is it intended that a reserved but not yet running job keeps being queued even after the scheduled termination time is reached when the corresponding reservation is cancelled before its termination time?

· Is it intended that a job that refers to a reservation which does not exist will be queued but will not be started?

· Are there differences between reservation capabilities in Maui and Moab?

3.3. Moab

Moab provides the same AR features and logging behaviour as Maui. See the Maui section.
4. Local Resource Managers

4.1. Condor

4.1.1. AR Capabilities Description

Condor has no notion of Advance Reservation and has no plans to support it in the future.
4.1.2. Scheduler Configuration

N/A

4.1.3. Client Semantics

N/A

4.1.4. AR Logging behaviour
N/A

4.2. SGE
4.2.1. AR Capabilities Description
Sun Grid Engine (SGE) has some support for Advance Reservation in version 6 but it’s an approach where resources will be reserved as soon as possible, without the notion of an exact start time.

Maui can be used as an external scheduler for the SGE v5.3 source distribution. In this configuration, SGE manages the job queue and the compute resources while Maui queries the SGE Server to obtain up to date job, node, and configuration information. Using this information, Maui directs SGE to manage jobs in accordance with specified Maui policies, priorities, and reservations.

This however does not work in version 6.

There are indications that extended AR capabilities are planned in the future.

The following is valid only for SGE v5.3.
4.2.2. Scheduler Configuration
Configuration of the own scheduler:

Disable default SGE scheduler (edit $SGE_ROOT/default/common/rcsge and comment out the line starting sge_schedd.)
Details: see the Maui-SGE integration guide in the Link section
Configuration of Maui:
See the Maui section and the Maui-SGE integration guide in the Links section.
4.2.3. Client Semantics
Create a reservation: setres (see the Maui section)
Delete a reservation: releaseres (see the Maui section)
Show the reservation table: showres (see the Maui section)
Bind a reservation to a job: N/A
4.2.4. AR Logging behaviour

Using Maui as scheduler: See the Maui section.

4.3. LoadLeveler

4.3.1. AR Capabilities Description

LoadLeveler does not support AR out of the box, but in combination with Maui.

Maui can be used as an external scheduler for LoadLeveler. In this configuration, LoadLeveler manages the job queue and the compute resources while maui queries the LoadLeveler negotiator via the LoadLeveler data API to obtain up to date job and node information. Using this information, maui directs LoadLeveler to manage jobs in accordance with specified maui policies, priorities, and reservations.

Maui drives LoadLeveler via the LoadLeveler scheduling API. To enable this api and thus the external scheduler some steps must be taken.
4.3.2. Scheduler Configuration
Configuration of the own scheduler:

N/A
Configuration of Maui:
See the Maui section and the Maui-LoadLeveler integration guide in the Link section.
4.3.3. Client Semantics
Reservation management: See the Maui section.

Binding a reservation to a job: N/A
4.3.4. AR Logging behaviour
Using Maui as scheduler: See the Maui section
4.4. Torque
4.4.1. AR Capabilities Description

Torque does not support AR out of the box, but in combination with Maui.

Maui can be used as an external scheduler for the Torque resource management system. In this configuration, Torque manages the job queue and the compute resources while Maui queries the Torque Server and the Torque MOM's to obtain up to date job and node information. Using this information, Maui directs PBS to manage jobs in accordance with specified Maui policies, priorities, and reservations.
4.4.2. Scheduler Configuration
Configuration of the own scheduler:
The only thing that must be done here is not to start the default scheduler of Torque, but Maui.

Configuration of Maui:
See the Maui section and the Maui-PBS integration guide in the Link section.
4.4.3. Client Semantics
Create a reservation: setres (see the Maui section)
Delete a reservation: releaseres (see the Maui section)
Show the reservation table: showres (see the Maui section)
Bind a reservation to a job:
There are two methods:

1. provide the necessary information using qsub

qsub -l walltime=[HH:MM:SS] \

 -W x="FLAGS:ADVRES:<reservation-id>" \

 <job to be run>

2. add the necessary information as comments in the job description

#PBS -l walltime=[HH:MM:SS]

#PBS -W x="FLAGS:ADVRES:<reservation-id>"

 <job to be run>

In any case a walltime shorter than the reservation time must be provided. How much shorter is not clear from experiments.
4.4.4. AR Logging behaviour

Using Maui as scheduler: See the Maui section
4.5. OpenPBS
4.5.1. AR Capabilities Description
OpenPBS does not support AR out of the box, but in combination with Maui.

Maui can be used as an external scheduler for the PBS resource management system. In this configuration, PBS manages the job queue and the compute resources while Maui queries the PBS Server and the PBS MOM's to obtain up to date job and node information. Using this information, Maui directs PBS to manage jobs in accordance with specified Maui policies, priorities, and reservations.

Following the Maui documentation OpenPBS must be patched to enable interaction with Maui and the use of its QoS capabilities.

4.5.2. Scheduler Configuration

Configuration of the own scheduler:

N/A

Configuration of Maui:
See the Maui section and the Maui-PBS integration guide in the Link section
4.5.3. Client Semantics
Create a reservation: setres (see the Maui section)
Delete a reservation: releaseres (see the Maui section)
Show the reservation table: showres (see the Maui section)
Bind a reservation to a job: see the Torque section
4.5.4. AR Logging behaviour
Using Maui as scheduler: See the Maui section
4.6. PBSPro
4.6.1. AR Capabilities Description
An Advance Reservation is a set of resources with availability limited to a specific user (or group of users), a specific start time, and a specified duration. Advance Reservations are implemented in PBS by a user submitting a reservation with the pbs_rsub command. PBS will then confirm that the reservation can be met (or else reject the request). Once the scheduler has confirmed the reservation, the queue that was created to support this reservation will be enabled, allowing jobs to be submitted to it. The queue will have an user level access control list set to the user who submitted the reservation and any other users the owner specified. The queue will accept jobs in the same manner as normal queues.

When the reservation start time is reached, the queue will be started. Once the reservation is complete, any jobs remaining in the queue (running or not) will be deleted, and the reservation removed from the Server.

When a reservation is requested and confirmed, it means that a check was made to see if the reservation would conflict with currently running jobs, other confirmed reservations, and dedicated time. A reservation request that fails this check is denied by the Scheduler.

If the submitter did not indicate that the submission command should wait for confirmation or rejection, he will have to periodically query the Server about the status of the reservation or wait for a mail message regarding its denial or confirmation.

Important: Hosts/nodes that have been configured to accept jobs only from a specific queue (node-queue restrictions) cannot be used for advance reservations.

If a reservation request is granted, PBS provides for the requested resources to be available for use during the specified future time interval. A queue is dynamically allocated to service a confirmed reservation.
Users who are listed as being allowed to run jobs using the resources of this reservation will submit their jobs to this queue via the standard qsub command. Although a confirmed resources reservation will accept jobs into its queue at any time, the scheduler is not allowed to schedule jobs from the queue before the reservation period arrives. Once the reservation period arrives, these jobs will begin to run but they will not in aggregate use up more resources than the reservation requested.

The pbs_rsub command returns an ID string to use in referencing the reservation and an

indication of its current status.

The status of all the reservations on the PBS Server can be asked for by users. There are three different output formats: brief, short (default), and long.

Additionally, Maui can be used as an external scheduler for the PBS resource management system. In this configuration, PBS manages the job queue and the compute resources while Maui queries the PBS Server and the PBS MOM's to obtain up to date job and node information. Using this information, Maui directs PBS to manage jobs in accordance with specified Maui policies, priorities, and reservations.
4.6.2. Scheduler Configuration
Configuration of the own scheduler:

N/A

Configuration of Maui:
See the Maui section and the Maui-PBS integration guide in the Link section
4.6.3. Client Semantics
Create a reservation: pbs_rsub

The following example shows the submission of a reservation asking

for 1 node, 30 minutes of wall-clock time, and a start time (-R).

Note that since an end time is not specified, PBS will calculate the

end time based on the reservation start time and duration (-D).

pbs_rsub -l nodes=N \

 -R [[[[CC]YY]MM]DD]hhmm[.SS] \

 -D [HH:]MM:SS

=> R226.south UNCONFIRMED

Note that the reservation is currently unconfirmed. Email will be sent to the reservation

owner either confirming the reservation, or rejecting it.

Using Maui as scheduler: See the Maui section.
Delete a reservation: pbs_rdel

pbs_rdel <reservation-id>

Using Maui as scheduler: See the Maui section.
Show the reservation table: pbs_rstat

pbs_rstat
Using Maui as scheduler: See the Maui section.
Bind a reservation to a job:
Using the PBS scheduler:

bsub -U <reservation-id> <job>

Using Maui as scheduler: probably like in the Torque section
4.6.4. AR Logging behaviour
Using the PBS scheduler: N/A

Using Maui as scheduler: See the Maui section

4.7. LSF
4.7.1. AR Capabilities Description

Advance reservations ensure access to specific hosts during specified times. An advance reservation is essentially a lock on a number of processors. Each reservation consists of the number of processors to reserve, a list of hosts for the reservation, a start time, an end time, and an owner.

You can also specify a resource requirement string instead of or in addition to a list of hosts.

During the time the reservation is active, only users or groups associated with the reservation have access to start new jobs on the reserved hosts. The reservation is active only within the time frame specified, and any given host may have several reservations in place, some of which may be active at the same time.

When an advance reservation becomes active, LSF attempts to start all jobs that reference the reservation. By default, jobs that are already running on the hosts may continue, even though they do not reference the reservation. However, if a job that references a reservation is pending because the host has reached its job slot limit, LSF frees up a job slot on the host by suspending one of the jobs that does not reference the reservation. This is the only case where advance reservation overrides another LSF job scheduling policy.

Reservations can also be created for system maintenance. If a system reservation is active, no other jobs can use the reserved hosts, and LSF does not dispatch jobs to the specified hosts while the reservation is active.

By default, only LSF administrators or root can add or delete advance reservations. To allow other users to create and delete advance reservations policies can be configured for users. Any LSF user can view existing advance reservations.

Jobs referencing a reservation are killed when the reservation expires.

LSF administrators can prevent running jobs from being killed when the reservation expires by changing the termination time of the job using the reservation before the reservation window closes.

There are three types of reservations: one-time reservation, recurring reservation, open reservations.
Open advance reservations allow jobs to run even after the associated reservation expires. A job with the open advance reservation will only be treated as an advance reservation job during the reservation window, after which it becomes a normal job. This prevents the job from being killed and ensures that LSF does not prevent any previously suspended jobs from running or interfere with any existing scheduling policies.

Administrators can bind a once bound job to another reservation. Administrators also can also change the job termination time before the reservation window closes, This prevents the job from being killed when the reservation expires; it does not extend the actual reservation window and works only for non-pending jobs.
The output of a successful reservation request is a reservation id which is written to stdout.

Additionally, Maui can be used as an external scheduler for LSF. In this configuration, LSF manages the job queue and the compute resources while Maui queries the LSF daemons via the LSF scheduling API (only available in LSF 5.1 and higher) to obtain up to date job and node information. Using this information, Maui directs LSF to manage jobs in accordance with specified Maui policies, priorities, and reservations.
4.7.2. Scheduler Configuration
Configuration of the own scheduler:
To enable advance reservation in a cluster the advance reservation scheduling plugin must be configured. To allow AR operations for users the ResourceReservation section of lsb.resources

must be configured.

A ResourceReservation section specifies:

· Users or user groups that can create reservations
· Hosts that can be used for the reservation
· Time window when reservations can be created

Examples can be found in the "Advance Reservation" section of the "Administering Platform LSF" document in the Link section
Configuration of Maui:

Maui can be used as an external scheduler for LSF. In this configuration, LSF manages the job queue and the compute resources while Maui queries the LSF daemons via the LSF scheduling API (only available in LSF 5.1 and higher) to obtain up to date job and node information. Using this information, Maui directs LSF to manage jobs in accordance with specified Maui policies, priorities, and reservations.
To build Maui with LSF, first source the LSF env file 'lsf.conf' and then follow the instructions in the Maui section. To allow the LSF scheduling API to properly function, the LSF env file 'lsf.conf'

must be sourced into the environment before running Maui.
4.7.3. Client Semantics
Create a reservation: brsvadd

one-time reservation:
The following command creates a one-time advance reservation for N

processors on a host of any type for user <user-id> between starttime

(-b) and terminationtime (-e)

brsvadd -n N \

-R "type==any"\

-u <userid> \

-b [[[year:]month:]day:]hour:minute \

-e [[[year:]month:]day:]hour:minute

=> Reservation "user1#1" is created

recurring reservations:

The following command creates an advance reservation for 10 processors

on two hosts hostA and hostB for user group groupA every <day> in a

given time interval

brsvadd -n 10 \

-m "hostA hostB"

-g groupA

-t "day:hour:minute-day:hour:minute"

Reservation "groupA#0" is created

open reservations:

The following command creates a one-time open advance reservation for N

processors on a host of any type for user <user-id> between starttime

(-b) and terminationtime (-e)

brsvadd -o \

-n 10 \

-R "type==any" \

-u user1 \

-b [[[year:]month:]day:]hour:minute \

-e [[[year:]month:]day:]hour:minute

Reservation "user1#1" is created

Using Maui as scheduler: See the Maui section.
Delete a reservation: brsvdel

brsvdel <reservation-id>

Using Maui as scheduler: See the Maui section.
Show the reservation table: brsvs

brsvs

brvs can be called with arguments which determine what informations to be displayed.

Using Maui as scheduler: See the Maui section.
Bind a reservation to a job:
Using the LSF scheduler:

bsub -U <reservation-id> <job>

Using Maui as scheduler: N/A

4.7.4. AR Logging behaviour

Using the LSF scheduler: N/A

Using Maui as scheduler: See the Maui section

5. Capabilities Overview

	LRM
	AR Out-of-box
	AR w/External Scheduler
	No AR Support

	Condor
	
	
	X

	LSF
	X
	X
	

	LoadLeveler
	
	X
	

	OpenPBS
	
	X (w/patches)
	

	PBSPro
	X
	X
	

	SGE
	
	X (5.3 with Maui)

X (6.0 limited)
	

	Torque
	
	X
	

The following table shows only those LRMs/Scheduler supporting AR. Red text means that the GRAAP working group says differently.

	Capabilities
	LSF
	PBSPro
	Catalina
	Maui/Moab

	AR by normal users
	y
	y
	y
	y

	Resource reservation
	y
	y
	y
	y

	AR has queue
	n
	y
	n
	n

	Returns reservation id on command line on successful creation
	y
	y
	y
	y

	ACLs for use of AR
	y
	y
	N/A
	y

	Can alter booked AR
	n
	n
	y
	n

	Can alter active AR
	n
	n
	N/A
	n

	Can bind more than one job to a reservation
	y
	y
	y
	y

	Bound jobs are deleted when the reservation is deleted
	y
	y
	N/A
	n

	Can get the complete reservation table as normal user
	y
	y
	N/A
	n

	Can get the complete reservation table as LRM/scheduler admin
	Y
	y
	N/A
	y

	AR can be negotiated (2-phas-commit)
	N
	n
	n
	n

	Booked AR can be renegotiated (2-phase-commit)
	N
	n
	N/A
	n

	Active AR can be renegotiated (2-phase-commit)
	N
	n
	N/A
	n

6. Links

Advance Reservations: State of the Art (GRAAP-WG):

http://www.fz-juelich.de/zam/RD/coop/ggf/graap/sched-graap-2.0.html
Catalina:

http://www.sdsc.edu/user_services/datastar/docs/catalina.html
http://www.sdsc.edu/catalina/
Maui:

AR concepts: http://www.clusterresources.com/products/mwm/docs/7.1advancereservations.shtml
Configuration parameters: http://clures.com/products/maui/docs/a.fparameters.shtml
Maui LRM integration guides:

PBS/TORQUE: http://www.clusterresources.com/products/maui/docs/pbsintegration.shtml
LSF: http://www.clusterresources.com/products/maui/docs/lsfintegration.shtml

LoadLeveler: http://www.clusterresources.com/products/maui/docs/llintegration.shtml
SGE: http://www.clusterresources.com/products/maui/docs/sgeintegration.shtml
LSF:
http://www.platform.com/services/support/docs_home.asp

PBSPro v7:

PDF download from http://meta.cesnet.cz/cms/opencms/en/docs/software/system/pbs.html
LoadLeveler:
http://www.sdsc.edu/user_services/datastar/docs/ll_usg_and_admin_v3r2.pdf
SGE: http://gridengine.sunsource.net/nonav/source/browse/~checkout~/gridengine/doc/devel/rfe/resource_reservation.txt
7. Glossary

	AR
	Advance Reservation

	LRM
	Local Resource Manager

	SGE
	Sun GridEngine

	PBS
	Portable Batch System

	LSF
	Load Sharing Facility

	SEG
	Scheduler Event Generator

PAGE
18

