GRAM4 Testing with GT 4.2.0

21
Introduction

2
Client Testing Variables
3
2.1
Client generated service load
3
2.1.1
Client Instances
3
2.2
Job Monitoring
4
2.2.1
Notifications
4
2.2.2
Polling
4
2.3
Optional Job Features
5
2.3.1
GRAM4 Credential Delegation
5
2.3.2
File Stage In
5
2.3.3
File Stage Out
5
2.3.4
File Cleanup
5
2.4
Client API
5
2.4.1
GramJob API
5
2.4.2
GT Client Stubs
6
2.5
Client Application
6
2.6
Test Duration
6
2.6.1
Time Limit
6
2.6.2
Total Jobs Processed
6
2.7
Job Termination
6
3
Service Testing Variables
6
3.1
GridFTP
6
3.1.1
Deployment
6
3.1.2
Configuration
6
3.2
RFT
7
3.2.1
Deployment
7
3.2.2
Configuration
7
3.3
GT Container Configuration
7
3.4
GRAM4
7
3.4.1
Fork LRM
7
3.4.2
Fake LRM
7
4
Client Testing Matrix
7
5
Service Testing Matrix
8
6
Known Use Cases
9
6.1
UCSD/CMS (OSG)
9
6.2
LEAD
9
7
Testing Infrastructure
9
7.1
Machines
9
7.2
Client-side Testing Software
9
7.2.1
Performance Measurements
9
7.3
Load Measurements
10
7.4
Test Harness
10

1 Introduction

Writing and automating effective performance, reliability, and scalability tests has proven to be challenging for a service as complex as GRAM4. There are many options for the types of jobs to submit, the client API used to submit them, the submission rate and concurrency, the number of client instances, etc, etc. It is virtually impossible to cover all permutations. The goal for GRAM (and any software) is to operate reliably and perform well for its’ users. In this doc, we enumerate the key GRAM testing variables and select the scenarios that are critical to understanding how to effectively interface with the GRAM service at scale. The known use cases are described and matched with the appropriate testing scenario. The goal of this testing is to provide results for performance and reliability for user scenario. Then users adhering to those scenarios will be able to realize the same results.

For each scenario, results will detail if GRAM performed reliably and at what performance. Scenarios will detail the job submission load, job type, service configuration and testing environment/hardware. After testing is done, the results will enable users to understand the boundaries of reliable for GRAM use. For example,

· GRAM can reliably process a job submission load of 250 concurrent clients for a most basic gram job. Where each client is limited to 1000 jobs at a time jobs. Run on Nimbus/TeraPort for 7 days, at a processing rate of 100 jobs per minute.

· GRAM will fail for job submission loads above 400 concurrent clients for any job type on Nimbus/TeraPort.

· GRAM can reliably process 1000 job terminate requests where each job requires LRM termination, at a processing rate of 10 terminations per minute.

· GRAM can reliably process 200 job terminate requests each job requires file staging termination, at a processing rate of 5 terminations per minute.

2 Client Testing Variables

There are many variables that affect the performance and reliability of the GRAM service. These variables are listed and attempts will be made to isolate variables in order to understand the cost and benefit to performance and scalability.

2.1 Client generated service load

There are many options for a client to generate a load on a service. It is important to be able to control and reproduce the load in order to accurately measure performance. Setting and controlling these limits will provide the means to rerun tests and compare performance between different GRAM versions.

2.1.1 Client Instances

This is the number of separate client instances. It is expected that there will be multiple clients submitting jobs simultaneously to a GRAM service. To effectively simulate the client load, multiple client instances are needed. For each client instance, setting the desired maxPendingRequests and maxSubmittedJobsPerResource will control the job submission load. See Figure 1.

2.1.1.1 maxPendingRequests

This is the maximum number of simultaneous client interactions to the service. The interactions are used to submit a job, query for job state, delegate credentials, destroy delegated credentials and terminate jobs. Since GRAM processes jobs asynchronously, maxPendingRequests by itself does not limit the overall number of jobs submitted to a service. For example, if the GRAM jobs submitted to the LRM are delayed from executing (PENDING), more and more jobs will be submitted (until some resource is depleted). This concurrency is realized by using multiple threads in the client program.

2.1.1.2 maxSubmittedJobsPerResource
This parameter controls the overall number of outstanding jobs submitted to a service. Once this limit is reached, no more jobs will be submitted to that resource until a job completes, reducing the number of outstanding jobs below the limit.

Figure1: Client Generated Service Load [image: image1.png]GT4.2 Java Container

GRAM4 4.2 Reliability & Performance Testing
Client Generated Service Load

8 :
. |
H " 2 :
§ g5 H
g a7 3 2.
§
¢ &2 g, g:
g =3 A H
T gg H g
- & 55 £ gl
3 & a¢ 2 g
H A
I § SE Eh 8
s 2 !
F '
z

Client Instance

2.2 Job Monitoring
There are 2 main methods for monitoring a jobs progress through the various GRAM states: subscribing for notifications and polling.

2.2.1 Notifications
In this method, the client monitors the job state of all jobs by subscribing for and consuming job state notifications for each job.

2.2.2 Polling

In this method, the client monitors all jobs by periodically querying the GRAM4 service for the job status of each job.

2.3 Optional Job Features

Not all users require the use of all features provided in the GRAM4 service. Tests will be devised in order to understand the affect of each.

2.3.1 GRAM4 Credential Delegation

There are three options to credential delegation. However, delegation is required for jobs that use GRAM’s file staging or file/directory cleanup. Additionally, it is needed if the user’s application will attempt to authorize with other grid services. Shared is used by default in Condor-G.

· None: No credential is delegated.

· Shared: A single credential is delegated and used (shared) by each job. The best option for user’s submitting many jobs that require delegation.

· Per Job: A separate credential is delegated for each job.

2.3.2 File Stage In

GRAM4 uses RFT to process all file stage in tasks. As well as file stage out and cleanup. Paramount for GRAM4 is to interface with RFT in an efficient, scalable and reliable way. There are many file transfer options available to clients in RFT that can affect the file transfer performance. The default options will be used. Also, varying file sizes can be staged, but only a few file sizes will be tested. It is not the goal of this GRAM4 testing effort to tests all RFT options and file sizes available to clients.

For a more in depth analysis of the RFT and GridFTP optimizations, GRAM will refer to the performance testing reports of those components.

2.3.3 File Stage Out

File Stage Out uses the same components as File Stage In (above)

2.3.4 File Cleanup

File Cleanup uses the same components as File Stage In (above).

2.4 Client API

There are a few GRAM client API options. Typically, clients used the GramJob API or CoG’s job submission API. In 4.2, java ws core can cache and reuse https connections. This could be important for GRAM4 users doing repetitive actions to the same service (submitting many jobs). For this reason, it is important to test and measure the performance ramifications of the connection caching. GRAM4 clients can then make decisions about which client API to use. There are no plans to test CoG at this time.

2.4.1 GramJob API

This API uses a number of GT stubs and hides these details from the user. This makes submitting a single job simple, but can be inefficient when submitting large number of jobs.

2.4.2 GT Client Stubs

The GT client stubs are the lowest level of client APIs. Multiple of them are required to submit and process a single job and can be complex for clients, but provide the most flexibility. Only the job submission (createManagedJob) can make use of the http connection caching. Other operations; notifications, job status polling, job termination, require a unique stub object per action, since each action operates on a unique WSRF job resource.

2.5 Client Application
For understanding the GRAM service performance, it is not important what resources are consumed by the client application. For tests requiring short duration, non-impact user applications, /bin/true will be used. For simulating longer running applications, /bin/sleep will be used.

2.6 Test Duration

2.6.1 Time Limit

Typically, shorter tests that last less than 60 minutes are sufficient for measuring performance and scalability limitations. This provides a means to compare various test permutations. Longer tests, on the order to days, are sometimes required to ensure service reliability.

2.6.2 Total Jobs Processed

This is an alternate way of specifying the duration of a test. Sometime the total number of jobs to be processed is a more convenient means of limiting a test.

2.7 Job Termination

For GRAM4 jobs, termination is a necessary action for each job. It removes the WSRF job resource (job state/metadata). Under normal operation, where a job has been completely processed, the termination is of little consequence. But it is more costly when a job is being processed by GRAM (e.g. Stage In, Out, ACTIVE - user application is running). For this reason, termination scalability tests are needed.
3 Service Testing Variables
3.1 GridFTP
3.1.1 Deployment

GRAM4 can be configured to operate with a GridFTP server deployed on any host that shares a file system with the compute nodes. Often, the GridFTP server is deployed on the same host as the GRAM4 service. Both of these configurations should be tested for the file staging use cases to understand the impact.

3.1.2 Configuration

The default configuration will be used at first and then adjusted as needed.

3.2 RFT

3.2.1 Deployment

GRAM4 can be configured to operate with an RFT service deployed on any host (even completely separate from the compute resource). However, GRAM was enhanced to operate with RFT using local method invocations when deployed in the same container as the GRAM4 service. Therefore, RFT will be deployed with GRAM4 and local method invocations will be used for all tests.

3.2.2 Configuration

The default configuration will be used at first and then adjusted as needed.

3.3 GT Container Configuration

The default container configuration will be used with the exception of setting the minThreads=20 and maxThreads=20

3.4 GRAM4

The default configuration will be used. Type local resource manager types are needed to cover all use cases.
3.4.1 Fork LRM

The various GRAM LRMs can add a significant delay in queuing, scheduling and executing the user application. The Fork LRM avoids the traditional batch LRM delays, making it ideal for baseline performance and scalability testing. But since Fork executes the user application on the GRAM service host, only short running, non-impact applications (e.g. /bin/true) make sense.

3.4.2 Fake LRM

Fork is not adequate to simulate the GRAM service scalability for interfacing with a large compute cluster. Fork is limited by the number of jobs that can be executed at the same time on the service host. In order to simulate long running jobs, to avoid the arbitrary delay of a real LRM and the need for a real compute cluster, a simulated (fake) LRM will be developed. This Fake-LRM will act like an LRM, but not actually run the user application. After a configurable delay, the job will be to marked as DONE.

4 Client Testing Matrix

	
	Job Submission Load
	
	Optional Job Features
	
	
	

	#
	Clients
	Max

Pend

Reqs
	Max

Jobs

Sub
	
	Job

Mon

	Deleg
	FS

In
	FS

Out
	Clean

Up
	API
	Stub

Reuse
	Dur

Hour

	1
	5
	50
	1000
	
	Poll
	None
	N
	N
	N
	Stubs
	Y
	1

	2
	5
	50
	1000
	
	Poll
	None
	N
	N
	N
	Stubs
	N
	1

	3
	5
	50
	1000
	
	Notif
	None
	N
	N
	N
	Stubs
	N
	1

	4
	5
	50
	1000
	
	Notif
	Shared
	N
	N
	N
	Stubs
	N
	1

	5
	5
	50
	1000
	
	Notif
	Per Job
	N
	N
	N
	Stubs
	N
	1

	6
	5
	50
	1000
	
	Notif
	Shared
	Y1
	N
	N
	Stubs
	N
	1

	7
	5
	50
	1000
	
	Notif
	Shared
	Y2
	N
	N
	Stubs
	N
	1

	8
	5
	50
	1000
	
	Notif
	Shared
	N
	N
	N
	GJob
	N/A
	1

	9
	5
	50
	1000
	
	Notif
	Shared
	Y3
	Y1
	Y4
	Stubs
	N
	1

	10
	5
	50
	1000
	
	Notif
	Shared
	Y3
	Y1
	Y4
	Stubs
	N
	168

	
	
	
	
	
	
	
	
	
	
	
	
	

	
Termination Tests (client terminates all jobs when duration has expired)

	11
	5
	50
	1000
	
	Notif
	Shared
	Y3
	Y1
	Y4
	Stubs
	N
	.5

	
	
	
	
	
	
	
	
	
	
	
	
	

Y1 – A single file transfer request of a 1 byte file

Y2 – A single file transfer request of a 1 Gigabyte file
Y3 – A unique directory creation and a single file transfer request of a 1 byte file

Y4 – The removal of a directory containing a 1 byte file.

5 Service Testing Matrix

	#
	GridFTP
	RFT
	GRAM
	Core

	LRM

	1
	Default
	Default
	Local RFT
	Container threads: 20
	Fork

	2
	Default
	Default
	Local RFT
	Container threads: 20
	Fake

6 Known Use Cases
6.1 UCSD/CMS (OSG)
A test used to evaluate GRAM4 by Terrence Martin UCSD/CMS admin was to execute 10000 jobs using 2-3 condor-g clients under 2-3 user accounts targeting a single GRAM4 service. Running test #9,10, and 11 from the client test matrix will simulate this use case well.
6.2 LEAD

LEAD’s use of GRAM4 did not include file staging or delegation, but they do subscribe for job state notifications. Client test # 8 is a good simulation of their use case. LEAD uses CoG, which uses GramJob API. If results differ between real and this simulation, then that would indicate inefficiencies in the CoG API’s use of GramJob.

7 Testing Infrastructure

7.1 Machines

Server and client will be run on the University of Chicago science cloud Nimbus, which is currently deployed on 16 nodes of the University of Chicago cluster TeraPort. Each node has two 2.2 GHz AMD64 processors, 4 GB RAM, and 80 GB local disk. For more information see http://teraport.uchicago.edu/.

7.2 Client-side Testing Software

GRAM4’s throughput-tester will be used to generate the client-side testing load. It is configurable for the number of client threads, test duration, stub reuse, … in order to test all selected use case simulations.

7.2.1 Performance Measurements

Each test run will execute for a set amount of time. Once the test duration has past, no more jobs will be submitted. The test program will wait until all jobs have been completely processed by the service (drain time). A successful test run will consist of all jobs terminating successfully. Time measurements will be taken at the start of a test and then again after all clients have terminated successfully (test duration + drain time).

7.2.1.1 Throughput

The throughput, jobs/minute, will be calculated using the total number of jobs submitted by all clients divided by the overall processing time, (test duration + drain time) / processing time.

7.2.1.2 Average Job Processing Time

The time to process each individual job will be collected. The average time will be calculated from that.

7.3 Load Measurements

In order to properly provision a client or service host for reliable and robust executin of a GRAM service, the impact on the host during various scenario testing must be measured. We’ll start without providing system load information for the tests. At a later point we want to use Ganglia/Gkrell to get CPU, memory, and network measurements for both the client and service machines.

7.4 Test Harness

Testing of the various scenarios can be time consuming and error prone. After an initial set of results has been produced, automation for running scenarios and gathering measurements will be explored. Tom Howe is currently writing a test harness that allows running a series of tests, synchronizing server and clients on different machines in an automated way.

PAGE
1

