
Using Loop Invariants to Fight Soft Errors in
Data Caches

Sri Hari Krishna N. , Seung Woo Son, Mahmut Kandemir, Feihui Li
Department of Computer Science and Engineering

The Pennsylvania State University
{snarayan,sson,kandemir,feli}@cse.psu.edu

Abstract

Ever scaling process technology makes embedded systems more vulnerable to soft errors than in
the past. One of the generic methods used to fight soft errors is based on duplicating instructions either
in the spatial or temporal domain and then comparing the results to see whether they are different.
This full duplication based scheme, though effective, is very expensive in terms of performance, power,
and memory space. In this paper, we propose an alternate scheme based on loop invariants and present
experimental results which show that our approach catches 62% of the errors caught by full duplication,
when averaged over all benchmarks tested. In addition, it reduces the execution cycles and memory
demand of the full duplication strategy by 80% and 4%, respectively.

c©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse anycopyrighted component of this work
in other works must be obtained from the IEEE.

This work was supported in part by NSF CAREER Award 0093082.

Using Loop Invariants to Fight Soft Errors in Data Caches

Sri Hari Krishna N. , Seung Woo Son, Mahmut Kandemir, Feihui Li

Department of Computer Science and Engineering

The Pennsylvania State University

{snarayan,sson,kandemir,feli}@cse.psu.edu

Abstract – Ever scaling process technology makes embedded
systems more vulnerable to soft errors than in the past. One
of the generic methods used to fight soft errors is based on
duplicating instructions either in the spatial or temporal
domain and then comparing the results to see whether they
are different. This full duplication based scheme, though
effective, is very expensive in terms of performance, power,
and memory space. In this paper, we propose an alternate
scheme based on loop invariants and present experimental
results which show that our approach catches 62% of the
errors caught by full duplication, when averaged over all
benchmarks tested. In addition, it reduces the execution
cycles and memory demand of the full duplication strategy
by 80% and 4%, respectively.

I. INTRODUCTION

As process technology continues to scale, sizes of
semiconductor devices are decreasing and data being stored
in memory is becoming increasingly vulnerable to soft
errors. Soft errors are a form of transient errors where
radiation changes the logic value of a node by charging or
discharging it. The eventual outcome of a soft error is a bit
flip in memory or logic components of the system. There
are at least two reasons that make embedded systems more
vulnerable to soft errors as compared to their high-end
general-purpose counterparts. The first reason is that many
battery-operated embedded systems employ power-reducing
techniques that increase chances for a particle to create a bit
flip. Secondly, embedded systems are generally employed
in much harsher environments than the general-purpose
systems, exposing them to more radiation.

There exist both hardware and software solutions developed
over the years to fight soft errors and other types of
transient errors [1,2,3]. One of the generic methods is based
on duplicating instructions either in the spatial or temporal
domain. It involves executing two copies of each
instruction and comparing the results, to see whether they
are different. If so, an error is assumed and a corrective
action may be taken. This full duplication based scheme,
though effective, is very expensive in terms of performance,
power, and memory space. From the performance angle, the
extra instructions put additional pressure on limited system
resources, and if their executions cannot be overlapped with
those of the primary instructions, this can lead to an
increase in execution time. Even if the time taken by the
duplicate instructions is hidden entirely, these instructions
still contribute to the power consumption, which cannot be
hidden. In addition, memory demand is increased, which is
also undesirable for memory-constrained embedded devices.

This paper explores a technique that allows us to detect a

large portion of the soft errors that are detected by full
duplication, in a less expensive fashion. Our focus is on
loop-intensive embedded applications where a large fraction
of the execution time is spent within loops. The proposed
idea is based on exploiting loop invariants, which are
expressions that hold true in all iterations of a given loop
[4]. They are typically used to check whether the loop has
been formed correctly, i.e., as a measure against software
errors. In contrast, in this work, we employ loop invariants
to detect soft errors. Specifically, at each iteration or at
every k

th
 iteration of a loop nest, we check whether the loop

invariant holds. While if the loop invariant fails, this can
be an indication for an error anywhere in the hardware, our
focus in this study is on data cache errors; i.e., the soft
errors that occur in data caches.

Note that using loop invariants instead of duplicating the
entire loop body brings at least two benefits. Firstly,
computing loop invariants is typically less expensive than
re-computing the entire loop body from both power and
performance perspectives. Secondly, loop invariants
normally occupy less memory space than loop bodies,
which in turn reduces the memory space demand. However,
the downside is that the loop invariants may not be able to
catch all the soft errors caught by full duplication. This is
because an invariant usually touches only a subset of the
total data manipulated by the loop. In other words, just the
fact that a loop invariant holds does not mean that no data
manipulated by the loop has any soft error. This is the
tradeoff studied in this work: How many of the soft errors
that could be caught by full duplication are caught by loop
invariants, and what are the associated costs?

Our experimental analysis shows that our loop invariant
based approach catches 62% of the soft errors caught by full
duplication, when averaged over all benchmarks tested, and
that it reduces the execution cycles and memory demand of
the full duplication strategy by 80% and 4%, respectively.

The remainder of the paper is organized as follows. Section
II discusses related work. Section III presents how
invariants are detected. Section IV gives an example and
presents a classification of invariants. Section V presents
experimental evaluation, and we conclude in Section VI.

II. RELATED WORK

Traditional approaches to protect against soft errors have
been to use radiation-hardened technologies or to include an
error detection and correction mechanism [1,2,3] using
spatial redundancy, or repeating the execution on the same
processor, i.e., temporal redundancy.

PIV-20

0-7803-8736-8/05/$20.00 ©2005 IEEE. 1317 ASP-DAC 2005

Pure software-based techniques to overcome transient errors
are based on the replication of code either manually or
automatically by the compiler; or on the insertion of
control code into the source code. One of code duplication
methods is error detection by duplicated instructions
(EDDI) [3]. Similar to the hardware, these methods are
also costly, i.e., they typically double the static code size
and execution time [5]. Examples of the control code based
methods include assertions [6], algorithm based fault
tolerance [7], and code flow checking [8].

for (…) {

}

Loop

Body

Checker

 Code

Invariant

Detector

Code

Modifier

for (…)

{

}

Loop

Body

Invariant
Invariant

Invariant
Invariant

Invariant

Invariant
Invariant

Invariant
Invariant

Invariant

Filter

Fig. 1. Overview of our approach.

III. DETECTING LOOP INVARIANTS

The loop invariant is a value or property that does not
change during the execution of different iterations of the
same loop. For example, a property of the ‘for loop’ is that
the value of the loop index is bounded by the lower and
upper loop bound of the loop, assuming that the loop code
does not itself explicitly change this value. There exist
several publicly-available tools that can extract loop
invariants for a large class of programs. Daikon is a
dynamic invariant detector that detects likely invariants
over the program’s data structures [9]. In this work, we
used Daikon to detect the invariants present in the loops.

Algorithm bubble-sort(sequence):
Input: sequence of integers stored in sequence
Post-condition: sequence is sorted and contains the same
integers as the original sequence
length = length of sequence
for i = 0 to length - 1 do
 for j = 0 to length - i -2 do
 if jth element of sequence >(j+1)th element of sequence
 then
 swap jth and (j+1)th element of sequence

Fig. 2. Bubble-sort algorithm.

IV. APPROACH DETAILS AND EXAMPLE

Fig. 1 depicts an overview of our approach. We process the
loop nests of the application being optimized one by one.
This figure shows the scenario for one loop nest. We use
Daikon to detect the invariants and then filter them to
select the ones to be embedded in the code. Then we
generate "checker code" using these selected invariants and
embed them into the original loop code.

To explain our method in detail, we first consider a simple
bubble-sort program. Fig. 2 shows the bubble-sort
algorithm. The following loop invariants must be satisfied
during the execution of each of the loop iterations.

- Outer Loop: Last i elements of the sequence are sorted
and are all greater than or equal to the other elements of
the sequence.

- Inner Loop: Same as outer loop and the j
th
 element of

the sequence is greater than or equal to the first j-1
elements of the sequence.

A sample of the invariants detected by Daikon is listed in
Fig. 3. It should be observed that not all the invariants
detected by Daikon are useful for our purposes. For
example, if an invariant does not touch much data, it is
unlikely that it will catch any soft errors in the data cache.
On the other hand, the invariant to be used should not be
very complex either since such an invariant will not help us
significantly reduce the power, performance, and memory
space overheads of the full duplication scheme. Therefore, a
balance must be struck in selecting the invariants to
employ in checking the errors.

Based on this discussion, we classify the invariants into
three groups: “easy”, “medium”, and “difficult”. The easy
invariants are the ones easy to compute but since they do
not touch too much data, we do not use them in our
checker code. The difficult invariants would be useful to
employ for checking for soft errors; however, they are
expensive to compute. Therefore, as far as the overheads are
concerned, they are not any better than full duplication.
Hence, we do not use them either within the checker code.
The only type of invariants we employ then are the
medium invariants, and these are the ones that help us
study the tradeoffs between error coverage and associated
overheads. However, even in this category, we do not use
all the invariants detected; instead, we employ only a
subset of them. To sum up, in our invariant filtering step,
we select a subset of the medium invariants to be used in
building the checker code.

As an example, consider some of the invariants (Fig. 3)
extracted from the bubble-sort program in detail. In this
example, we have four “easy” invariants and two “medium”
invariants. An easy invariant is the one that would require
checking the value of a scalar, or a single array element. A
medium one would be one that involves a simple check of
many of the array values. A more complicated one would
involve a complex check on the array values or on the
address locations, etc. As we can see, in this particular
example, the invariants that fall into easy category are just
loop bound conditions or simple comparisons between
array elements and loop index. These kinds of invariants
are easy to check at runtime as checking needs only one or
two if statements; however as mentioned earlier, they are
not very useful for our purposes. Next, we have two
medium invariants. These invariants exactly describe the
condition at the i

th
 loop iteration. At first, these conditions

look very complex to embed in a checker code. However, a
closer look reveals that we can easily check these

1318

In entering the bubble-sort routine:

sequence[] != null ! easy

length of sequence[] =10 ! easy

At the beginning of the kth iteration of the outer loop:

∀i : 0 # i # k sequence[] sorted by > ! medium

k∃1 ! easy

k # (length of sequence[] –1) ! easy

At the end of the kth iteration of the outer loop:

∀i: length-k+1 # i # length sequence[] sorted by <

 ! medium

conditions using an additional loop iteration.

Fig. 3. Invariants detected by Daikon for bubble-sort.

Once the invariants to be used in the checker code are
determined, the next step is to build the checker code.
Basically, the selected invariants are embedded into the
loop body and their value checked at each (or every k

th
)

loop iteration. When an error is detected, we jump to a
routine called error(), where we may take a corrective
action. If no correction is implemented, the error() routine
can contain a stop statement that terminates the application
by printing an error message. The augmented code thus
obtained for the bubble-sort program is shown in Fig. 4.
Due to space constraints, difficult invariants are not shown.

V. EXPERIMENTAL RESULTS

In this section, we present an experimental evaluation of
our approach, and compare it to a full duplication based
scheme, where the entire loop body is duplicated. To
implement our fault injection mechanism, we modified
SimpleScalar v3.0d [10] to inject faults and obtain
statistics on the faults injected. Due to space limitations
the details are not discussed here.

We tested our loop invariant based approach and full
duplication using a set of five benchmark programs.: iter-
merge (iterative merge program), adi (alternate direction
integration application), heap-sort , bubble-sort , and mxm.

We focus on three metrics. The first one is the percentage
error detection rate, i.e., the percentage of soft errors
detected by any scheme. Clearly, one can expect close to
100% detection rates from the full duplication based
scheme (missing perhaps only the errors that could occur in
unduplicated parts of the code such as loop headers etc).
We want to check how close our approach comes to the full
duplication scheme. The second metric we are interested in
is the percentage increase in code size (executable size) as a
result of the extra instructions added for error protection
purposes. We want this percentage to be as small as
possible since most embedded systems are memory
constrained. The last metric we measure is the percentage
increase in execution cycles due to enhanced reliability.

Algorithm new-bubble-sort(sequence):
Post-condition: sequence is sorted and contains the
 same integers as the original sequence
length = length of sequence
for i = 0 to length - 1 do
 for j = 0 to length - i -2 do
 if jth element of sequence >(j+1)th element of sequence
 then
 swap jth and (j+1)th element of sequence
 for k = length - i to length do
 if jth element of sequence >(j+1)th element of sequence
 then
 error()

Fig. 4. The bubble-sort code with the “checker-code”.

The graph in Fig. 5 gives the percentage error detection
rates for our scheme and full duplication (i.e., what
percentage of the injected soft errors are detected?). We see
that the average error detection rates are 40% and 75% for
our approach and the full duplication based scheme,
respectively. We see that while our approach performs very
well in some benchmarks (e.g., bubble-sort and adi), it is
not as successful in benchmarks such as mxm. This can be
explained as follows. Our approach depends heavily on the
availability of invariants to detect the occurrence of errors
in the results generated by the application. Codes such as
mxm do not contain very useful invariants. Therefore, the
ability to check for errors is constrained, and consequently
the detection rate is not as high as, say, that in bubble sort.

Having presented our error detection rates, we now turn our
attention to the percentage increases in code sizes, which
are illustrated in Fig. 6. We see that the average percentage
increase due to our method and full duplication is 3% and
8%, respectively, showing that our approach incurs less
overhead. The differences in code size overheads incurred
by the different benchmarks are due to the nature of the
invariants used to detect the errors. For example, adi has
more error checking code embedded in it than bubble-sort;
thus, the overhead in adi is much higher than that of
bubble-sort.

The percentage increases in the original execution cycles are
given in Fig. 7. As in the case of code sizes, we see that
our approach is much better than the full duplication based
scheme as far as this metric is concerned. It is to be noted
that, the largest increases occur with mxm and iter-merge.
This is because the relative size of the checker code added
to the original application code is larger in the case of mxm
and iter-merge when compared to, say, bubble-sort.

In our final set of experiments, we measure the sensitivity
of our approach to the error injection rate. The default
injection rate used thus far in our experiments was 1e-08.
Fig. 8 gives the percentage error detection rates for our
approach with different error injection rates. We see that the
error detection rate remains generally stable with changes in
the injection rates. This is mainly because the invariant
method used is independent of the error injection rates.

1319

0%

20%

40%

60%

80%

100%

ite
r-
m

er
ge ad

i

he
ap

-s
or

t

bu
bb

le
-s

or
t

m
xm

E
rr

o
r

D
e
te

c
ti
o
n
 R

a
te

Our approach

Full duplication

Figure 5. Error detection rates.

Fig. 6. Percentage code size increases.

Fig. 7. Percentage increases in execution times.

VI. CONCLUSION

Soft errors are becoming increasingly important as process
technology continues to scale down. Current methods to
detect soft errors are based on either spatially redundant or
temporally redundant computation, and are generally
expensive from power, performance, and memory space
perspectives. In this paper, we propose to use loop
invariants to detect soft errors in data caches. We show,
through an experimental analysis, that loop invariants can
catch a large fraction of the errors that would be caught by
an alternate scheme that adopts duplicate execution of

instructions, and achieve this in a less expensive way as
compared to the latter.

0%

20%

40%

60%

80%

100%

e-08 e-09 e-10 e-11
Error Injection Rate

E
rr

o
r

D
e
te

c
ti
o
n
 R

a
te

adi

bubble-sort

Fig. 8. Error detection rates with varying injection rates.

ACKNOWLEDGEMENTS

This work was supported in part by NSF CAREER Award
#0093082.

REFERENCES

[1] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I.
Pomeranz, Transient-fault recovery for chip
multiprocessors. In Proceedings of the International
Symposium on Computer Architecture, June 2003.

[2] N. Oh, S. Mitra, and E. J. McCluskey, Error detection by
duplicated instructions in Super-scalar processors. IEEE
Transactions on Reliability, Vol. 51, Issue 1, Mar. 2002.

[3] B. Nicolescu, R. Velazco, Detecting soft errors by a purely
software approach: method, tools and experimental
results. In Proceedings of DATE, 2003.

[4] A.V.Aho, J.D. Ullman, Principles of Compiler Design,
Addison-Wesley Publishing Company Inc, USA

[5] M. Rebaudengo, et al .Soft-error detection through
software fault-tolerance techniques. In Proceedings of
the International Symposium on Defect and Fault
Tolerance in VLSI Systems, Nov. 1999, pp. 210-218.

[6] M. Zenha Rela, H. Madeira, J. G. Silva, Experimental
Evaluation of the Fail-Silent Behavior in Programs with
Consistency Checks, Proc. FTCS-26, 1996, pp. 394-403.

[7] K. H. Huang, J. A. Abraham, Algorithm-Based Fault
Tolerance for Matrix Operations.In IEEE Trans.
Computers, vol. 33, Dec 1984, pp. 518-528.

[8] S. Yau, F. Chen, An Approach to Concurrent Control Flow
Checking, IEEE Transactions on Software Engineering,
Vol. SE-6, No. 2, March 1980, pp. 126-137.

[9] MIT, The Daikon Invariant Detector User Manual, Apr.
2004.

[10] D. Burger, and T. M. Austin, The SimpleScalar Tool Set,
Version 2.0. In University of Wisconsin-Madison CS
Department Technical Report #1342, Jun. 1997.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

ite
r-
m
er
ge ad

i

he
ap
-s
or
t

bu
bb
le
-s
or
t

m
xm

C
o
d
e
 S

iz
e
 I
n
c
re

a
s
e

Our approach
Full duplication

0%

50%

100%

150%

200%

250%

300%

ite
r-
m

er
ge ad

i

he
ap

-s
or

t

bu
bb

le
-s

or
t

m
xm

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
c
re

a
s
e Our approach

Full duplication

1320

