
Natively Supporting True One-sided Communication in MPI on

Multi-core Systems with InfiniBand∗

G. Santhanaraman1, P. Balaji2, K. Gopalakrishnan1, R. Thakur2, W. Gropp3 and D. K. Panda1

1Computer Science and Engg.,

Ohio State University,

{santhana, gopalakk, panda}@cse.ohio-state.edu

2Mathematics and Computer Science,

Argonne National Laboratory,

{balaji, thakur}@mcs.anl.gov

3Dept. of Computer Science,

University of Illinois, Urbana Champaign,

wgropp@illinois.edu

Abstract

As high-end computing systems continue to grow in scale, the per-

formance that applications can achieve on such large scale systems

depends heavily on their ability to avoid explicitly synchronized

communication with other processes in the system. Accordingly,

several modern and legacy parallel programming models (such as

MPI, UPC, Global Arrays) have provided many programming con-

structs that enable implicit communication using one-sided commu-

nication operations. While MPI is the most widely used communi-

cation model for scientific computing, the usage of one-sided com-

munication is restricted; this is mainly owing to the inefficiencies in

current MPI implementations that internally rely on synchronization

between processes even during one-sided communication, thus los-

ing the potential of such constructs.

In our previous work, we had utilized native one-sided communi-

cation primitives offered by high-speed networks such as InfiniBand

(IB) to allow for true one-sided communication in MPI. In this paper,

we extend this work to natively take advantage of one-sided atomic

operations on cache-coherent multi-core/multi-processor architec-

tures while still utilizing the benefits of networks such as IB. Specif-

ically, we present a sophisticated hybrid design that uses locks that

migrate between IB hardware atomics and multi-core CPU atom-

ics to take advantage of both. We demonstrate the capability of our

proposed design with a wide range of experiments illustrating its

benefits in performance as well as its potential to avoid explicit syn-

chronization.

1 Introduction

As we advance into an era of petascale sciences, High End

Computing (HEC) systems are continuing to meet the require-

ments of several grand challenge applications. Systems with

hundreds of thousands of cores are already available and re-

∗This work was supported in part by the Mathematical, Information, and

Computational Sciences Division subprogram of the Office of Advanced Sci-

entific Computing Research, Office of Science, U.S. Department of Energy,

under Contract DE-AC02-06CH11357, in part by #DE-FC02-06ER25749

and #DE-FC02-06ER25755; NSF grants #CNS-0403342, #CCF-0702675

and #CCF-0833169; grants from Intel, Mellanox, Cisco systems, Linux Net-

worx and Sun Microsystems;.

searchers are looking forward to systems with millions of pro-

cessors in the next decade. However, the performance that

applications can achieve on such large-scale systems depends

heavily on their ability to avoid synchronization with other

processes, thus minimizing idleness caused by process skew.

Towards this goal, scientific applications have traditionally

relied on two models for minimizing such synchronization

requirements—clique-based communication and implicit data

movement using one-sided operations.

Clique-based communication refers to the ability of applica-

tions to form small sub-groups of processes with a majority

of the communication happening within the groups. Near-

est neighbor (e.g., PDE solvers, molecular dynamics simula-

tions) and cartesian grids (e.g., FFT solvers) are popular ex-

amples of such communication [4, 12, 5]. While clique-based

communication reduces the number of processes each process

needs to synchronize with, it does not completely avoid syn-

chronization. Similarly, while the size of the clique grows

slowly as compared to the overall system size, on ultra-scale

systems, this can still be a concern. For example, in a 2-D

cartesian grid communication along a row of processes, on a

million process system, each clique can contain as many as a

thousand processes.

Implicit data movement using one-sided operations supple-

ments the benefits of clique-based communication by allow-

ing data to be moved from one process’ memory to an-

other without requiring any synchronization. Many mod-

ern and legacy parallel programming models (e.g., MPI [14],

UPC [1], Global Arrays [3]) are increasingly providing con-

structs for such one-sided communication, where a process

can read/write data from another process without necessarily

requiring participation from the remote process. While MPI

has been the de facto standard for communication on HEC

systems, its capability for such implicit one-sided communi-

cation is limited, as compared to the UPC and Global Arrays

models. This limitation is primarily due to the inefficiencies

of current MPI implementations. Specifically, current MPI

implementations internally rely on synchronization between

processes even during one-sided communication, thus limit-

ing the potential for benefiting from the asynchronous nature

of such operations.

In the recent past, the emergence of intelligent networking in-

frastructure (e.g., InfiniBand (IB) [16], Quadrics [20], Blue

Gene[2]) has opened up new avenues allowing MPI imple-

mentations to alleviate these issues. Specifically, these net-

works provide native one-sided RDMA and one-sided atomic

primitives that allow the MPI implementation to achieve true

one-sided inter-node communication. At the same time, the

rapid emergence of multi-core architectures in HEC has lead

to large amounts of intra-node communication, thus requiring

efficient support for true one-sided communication within the

node as well. However, these two goals of efficient inter-node

and intra-node communication are often contradicting—in or-

der to use network-based one-sided communication, locking

primitives provided by the network hardware need to be used

and in order to use shared-memory-based one-sided commu-

nication, CPU atomic locking primitives need to be used.

These two locks are distinct—a CPU cannot perform atomic

operations on a network lock and vice-versa.

In our previous work, we utilized network one-sided and

atomic operations allowing MPI to provide true one-sided

communication. However, in that model, all one-sided com-

munication, including that between processes on the same

node, had to go over the network. This is clearly ineffi-

cient and is expected to add more performance overhead and

network contention as the number of cores on each physi-

cal node grows. Thus, in this paper, we extend our previous

work to natively take advantage of one-sided atomic opera-

tions on cache-coherent multi-core/multi-processor architec-

tures while still utilizing the benefits of networks such as IB.

Specifically, we first design fast locks within the node using

CPU atomic operations and across nodes using IB hardware

atomic operations. Then, we utilize these locks in a hybrid

mechanism that allows dynamic migration between the CPU-

based and network-based locks based on different policies.

Our experimental evaluation shows that the hybrid design can

overcome the limitations of the existing approaches (includ-

ing our previous approach) and gives the best performance as

well as potential for asynchronous communication.

The rest of the paper is organized as follows. In Section 2, we

provide the background for our work. We describe some of

our prior work in Section 3. We describe our new design in in

Section 4. We evaluate our designs in section 5 and discuss

the related work in section 6. Conclusions and future work

are presented in section 7.

2 Background

In this section we describe MPI-2 one sided communication,

details of IB and the issues in using atomic operations.

2.1 One-sided Communication in MPI

In MPI one-sided communication (also referred to as remote

memory access or RMA), the origin process (the process that

issues the RMA operation) can access a target process’ re-

mote address space directly. In this model, the origin process

provides all the parameters needed for accessing the mem-

ory area on the target process (also referred to as window)

using an MPI Put, MPI Get or MPI Accumulate operation.

The completion of these operations is guaranteed by explicit

synchronization calls. One-sided semantics require that these

memory accesses happen within an access epoch and an ex-

posure epoch on the origin and target process, respectively.

These epochs are the period between two synchronization

calls on the origin and target processes. MPI provides two

types of synchronization modes: (i) active synchronization,

where both the origin and the target process make synchro-

nization calls. (ii) passive synchronization, where only the

origin process makes synchronization calls.

Passive synchronization is achieved through lock and unlock

calls made only by the origin process. Such synchroniza-

tion is convenient for applications utilizing these operations

on large-scale systems due to its ability to minimize the co-

ordination required between the origin and target processes,

and increasing the potential for asynchronous communica-

tion. Thus, in this paper, we only concentrate on this form

of synchronization.

2.2 Overview of InfiniBand

IB [16] is an industry standard that defines a System Area

Network (SAN) to design clusters offering low latency and

high bandwidth. It provides one-sided RDMA communica-

tion primitives as well as RDMA atomic primitives. Remote

Direct Memory Access (RDMA) [15] operations allow pro-

cesses to access the remote process’ memory without any in-

tervention from the remote CPU.

RDMA Atomic Operations: IB provides two network level

remote atomic operations, namely, fetch and add and com-

pare and swap. The network interface card (NIC) on the

remote node guarantees the atomicity of these operations.

These operations act on 64-bit values. In the atomic

fetch and add operation, the issuing process specifies the

value that needs to be added and the remote address of the 64-

bit location to which this value is to be added. In an atomic

compare and swap operation, the issuing process specifies a

‘compare value’ and a ‘new value’. The value at the remote

location is atomically compared with the ‘compare value’

specified by the issuing process. If both the values are equal,

the original remote value is swapped with the new value

which is also provided by the issuing process. If these val-

ues are not the same, swapping does not take place. In both

the cases, the original value is returned to the issuing process.

In our design, the atomic compare and swap operations are

used to implement efficient locking.

2.3 Issues with coordinating network and

shared-memory locks

Most processor architectures provide fast atomic locks based

on few CPU instructions. These can be used to imple-

ment locks efficiently across processes within the same node.

As described above, networks such as IB provide network

atomic operations that can be used to implement locks across

nodes in an efficient and truly one-sided fashion. However,

these two forms of locks are not interoperable. Specifi-

cally, network-based atomic operations achieve their atomic-

ity through serialization at the network adapter. That is, the

network adapter orders accesses to the atomic variable in the

order in which it receives requests, thus guaranteeing that the

variable is always in a consistent state. CPU-based atomic op-

erations, on the other hand, do not pass through the network

adapter at all, and are handled fully in the processor cache.

If both the CPU and the network try to work on the same lock,

it is possible that the CPU fetches the variable to cache to

perform an operation on it. At the same time, the network can

trigger a cache flush through the chipset, forcing the variable

to be in an inconsistent state.

In short, the CPU and the network need to work on different

locks leading to several challenges in achieving lock coher-

ence in a one-sided manner, that we will address in this work.

3 Prior Work

As described in the previous section the performance of

lock/unlock operations is crucial to the performance of one-

sided communication. One existing approach for lock/unlock

is to use two-sided communication for implementing passive

synchronization. In this approach the locking is implemented

using a lock manager. As illustrated in Figure 1, every pro-

cess has a lock manager to handle the incoming lock/unlock

requests for its window. The lock manager queues the re-

quests in a request queue and appropriately grants the lock.

This results in target process involvement through the lock

manager for every lock/unlock request leading to poor per-

formance. In our previous work, we explored the use of IB

atomic operations to design one-sided passive synchroniza-

tion in MPI [21]. This work mainly targeted inter-node com-

munication. In particular, the aim was to reduce the target

involvement in one-sided communication. For every window

on a target process we maintain a 64-bit global lock state that

is registered with the network interface card (NIC) to support

remote atomic operations.

This variable is initialized to the unlocked state during win-

dow creation. In order to acquire a lock, a network based

atomic compare-and-swap operation is performed on this

variable as shown in Figure 2. If the compare-and-swap op-

Figure 1: Two-sided Based locks

eration is successful, the lock is obtained and the global state

variable is set to the process rank of the origin process to in-

dicate that it currently holds the lock. During the unlock op-

eration, this value is set back to the default value. Other pro-

cesses trying to acquire a lock at the same time would fail and

would keep trying till the lock owner relinquishes the lock.

There is no involvement of the target process.

Another aspect that was achieved in this work was to high-

light how the computation and communication overlap could

be improved using truly one-sided passive synchronization.

When two-sided approaches are used, the communication op-

erations are often delayed to the synchronization phase and in

some cases combined with an unlock synchronization call. In

order to improve progress, which in turn leads to better over-

lap, the one-sided operations within the passive synchroniza-

tion epoch are issued immediately using RDMA Write and

RDMA Read operations. The completion of these operations

is handled in the unlock operation. We demonstrated signifi-

cant improvement using this approach for overlap on both the

origin as well as the target side as compared to the two-sided

based design. Henceforth, we will refer to this approach as

‘one-sided’ approach.

However, as mentioned earlier in this section, this work

mainly targeted inter-node communication. With the increas-

ing trend of more and more cores per node, intra-node com-

munication assumes more significance. In this work, we ad-

dress the issues of extending the previous design to handle

both inter-node and intra-node communication efficiently.

4 Migrating Locks for Multi-cores and

High-speed Networks

While using IB network atomic operations for one-sided com-

munication allows for truly one-sided passive synchroniza-

tion, this approach might not be the best in light of the in-

creasing number of multi-core systems and the number of

cores on each system. Specifically, using network operations

to synchronize even between processes on the same node can

Acquired
Lock

MPI_Put

MPI_Get

Network Lock

 1

Origin Process Target Process

Lock

Released

MPI_Win_lock

MPI_Win_unlock

Process 1 (Node 1)

Network Lock

None

Compare

and

and

Swap

Compare

Process 2 (Node 2)

Swap

Figure 2: Network Based One-sided locks

have performance implications (since all the data has to tra-

verse down to the network adapter and back) as well as net-

work contention issues (since the network adapter is shared

between all the cores). Thus, in this section, we propose a

new hybrid design that utilizes CPU-based atomic operations

in conjunction with network atomic operations to take advan-

tage of both.

4.1 Proposed Design

Simultaneously utilizing both CPU-based atomic operations

as well as network atomic operations is not trivial because of

interoperability issues between these two operations as dis-

cussed in Section 2.3. Thus, there has to be a coordination

mechanism between the network based locks and the CPU

based locks. Our proposed solution to the problem is to mi-

grate between the two locking mechanisms (network locks

and CPU locks) when required. Since the locking is per-

window based, different windows on the same process could

be in a different locking mode depending upon the nature of

the lock requests for that window.

Every node maintains the following state variables: (i) lock-

ing mode (network or CPU based), (ii) CPU lock and (iii) 64

bit global network lock. The locking mode variable and CPU

lock variable are placed in shared memory so that other pro-

cesses on that node can access it. The network lock can have

the following values: (i) a value of 0 to (MPI Comm size - 1)

indicates that the lock is in network mode and the actual value

denotes the process that holds the network lock, (ii) a value of

MPI Comm size indicates that it is unlocked, and (iii) a value

ofMPI Comm size + 1 indicates that the lock is in CPU mode.

In the network lock mode described in Figure 3, all the locks

use IB atomic operations to obtain the network lock. In the

CPU lock mode described in Figure 4, the intra-node locks

use fast CPU based locks and the inter-node locks use a two-

sided approach of sending the lock request to the lock man-

ager (step 1) which then obtains the CPU lock on its behalf

(step 2) and responds with lock granted (step 3).

By default, the lock is preset to one of the above two-modes,

for example CPU based mode. When the mode needs to be

migrated, a two-sided message is sent to the lock manager

which acquires both the network as well as CPU lock, modi-

fies the locking mode to ’network’, and then grants the lock.

Any further locking now happens through IB atomic opera-

tions in a completely one-sided manner. The lock migration

from a CPU mode to network mode is illustrated in Figure 5.

When a remote process wants to acquire a lock, it performs

a compare and swap with the network lock state (step 1). If

the remote process discovers that the lock is in CPU mode,

and it wants to migrate the lock to network mode, it sends a

two-sided message to the lock manager requesting migration

to network mode (step 2). The lock manager acquires both

the network lock and the CPU lock (step 3), modifies the lock

mechanism to CPU mode (step 4), and sends the lock granted

packet to the remote process (step 5). A similar approach is

done to reset the lock to CPU based. In this way, the locks

can be migrated from one mechanism to other.

Thus, in summary, intra-node locks are completely one-sided

as long as the lock is in CPU-mode and inter-node locks are

completely one-sided as long as the lock is in network mode.

If the lock is not in the appropriate mode, a two-sided syn-

chronization is needed to migrate the lock to the appropriate

mode. Henceforth we will refer to this approach as ‘Hybrid’.

Figure 3: Locking Mechanisms: Network Lock

4.2 Migration Policies

Migration of locks could be based on various criteria. It could

be based on (i) communication pattern, (ii) history, (iii) pri-

ority, (iv) native hardware capabilities and so on. The criteria

used to migrate the locks is not the focus of this paper, and

could be part of follow up work. In all the evaluations in this

paper, the lock is preset to CPU mode for simplicity. Any re-

mote node process lock request migrates the lock to network

mode and any future intra-node lock request migrates the lock

Figure 4: Locking Mechanisms: CPU Lock

Figure 5: Locking Mechanisms: Lock Migration

to CPU mode.

5 Experimental Results and Analysis

In this section we evaluate the performance of our migrating

locks based ‘hybrid’ design with the purely ‘two-sided’ based

and the network based ‘one-sided’ approaches described in

Section 3. We evaluate the performance for a wide range

of scenarios. First, we evaluate and analyze the performance

when the lock/unlock operations occur within the same node

(intra-node) among the different cores. Then we show the per-

formance when the operations are purely inter-node. Finally,

we evaluate the performance for a combination of inter-node

and intra-node operations. We also measure the overhead in-

volved when the locks are migrated.

5.1 Experimental Testbed

Each node of our testbed has 16 AMD Opteron 1.95 GHz pro-

cessors with 512 KB L2 cache. Each node also has 16 Giga-

byte memory and PCI-Express bus. They are equipped with

MT25418 HCAs with PCI-Ex interfaces. A 24-port Mellanox

switch is used to connect all the nodes. The operating system

used is RedHat Enterprise Linux Server 5.

5.2 Intra-node Performance

In this section, we first evaluate the performance of our new

design for intra-node operations on a single node. Figure 6

shows the performance of lock/unlock operation comparing

the three approaches. As expected our new hybrid design

performs the best, since the lock/unlock operations within a

node are basically few CPU instructions. In the two-sided ap-

proach, a lock request packet is sent to the lock manager of

the target process. The lock manager responds with the lock

granted packet. These lock requests and lock granted pack-

ets go over shared memory since the target is on the same

node. In the one-sided based approach, the lock operation is

achieved through an IB loop-back atomic fetch and add oper-

ation. Since the loop-back operation is expensive, it has the

lowest performance for a single lock/unlock operation.

Figure 6: Lock/Unlock Performance

5.3 Intra-node Performance with Remote Com-

putation

Next we evaluate the performance of the three approaches in

the presence of computation on remote/target process. Min-

imal remote/target process involvement is important for one-

sided passive synchronization calls so that the target can pro-

ceed with its computation. In this benchmark, the origin pro-

cess acquires the lock and unlock operation on target pro-

cess while computation is performed on the target process.

The computation is a dummy loop that is executed on the re-

mote/target process. In this experiment the performance of

the three schemes is measured for varied amounts of dummy

loop computation. The results are shown in Figure 7. Here the

one-sided approaches (network based, one-sided and hybrid

approach) is not affected with increasing amounts of compu-

tation on the target process, since it is not dependent on the

target process to progress. Whereas, the performance of the

two-sided scheme degrades with increasing amount of com-

putation. This is expected because the two-sided approach re-

quires target process involvement. In the presence of compu-

tation, it takes longer to respond to the lock/unlock requests.

Figure 7: Lock/Unlock Performance with Remote Computa-

tion

5.4 Concurrency and Contention

Next we evaluate the performance of the different ap-

proaches when several lock/unlock operations occur concur-

rently. These experiments are conducted on a single node.

5.4.1 Network Contention

In the first micro-benchmark, each process locks its neighbor-

ing process (rank+1) on the same node. Thus in this bench-

mark, there are as many lock/unlock operations happening

concurrently as the number of cores for which the benchmark

is run. We measure the average latency of lock/unlock op-

eration in this scenario. The results are shown in Figure 8.

We observe that the two-sided performance is not degraded

since the lock/unlock requests messages are sent over shared

memory and there is no network contention. However the

one-sided scheme using loop-back suffers degradation due to

network contention since all the lock/unlock operations re-

sult in network transactions. In this scenario also, the hybrid

scheme performs the best since the CPU based locks do not

result in network contention.

5.4.2 Lock Contention

The next benchmark shows the performance of the three ap-

proaches when several processes are contending for a lock on

the same window. The results are shown in Fig. 9. The hybrid

scheme performs the best for up to three lock contentions. Be-

yond four contentions, the two-sided approach performs bet-

ter than the hybrid scheme. The one-sided approach performs

the least. This is expected since there would be lots of net-

work transactions in the presence of contention.

Figure 8: Lock/Unlock Performance with Network Con-

tention

Figure 9: Lock/Unlock Performance with Lock Contention

5.5 Inter-node Performance

In this section, we compare the performance of the three ap-

proaches when the operations are purely inter-node. We use

a micro-benchmark to demonstrate the benefits of one-sided

approaches in the presence of computation and skew. We used

Testbed B for this experiment, since we had more number of

nodes to understand the inter-node performance. The exper-

imental testbed (Testbed B) used for this benchmark is a 64

node Intel cluster. Each node of the testbed is a dual processor

(2.33 GHz quad-core) system with 4GB main memory.

The benchmark simulates a ring type of communication

wherein each process locks the window of its successor, puts

some data in the target window and updates a tag indicating

completion of the data transfer to that window. The target pro-

cess then makes sure that the data is available in its window,

then performs the same operation on its successor. The com-

munication terminates when the message traverses through

the complete ring. Simultaneously all the nodes are also per-

forming computation in the form of a dummy loop. For the

sake of simplicity, a fixed amount of computation is being

performed by all the nodes. This benchmark evaluates the

capability to overlap computation and communication. The

results are shown in Figure 10. The one-sided and the hy-

brid approach outperforms the two-sided approach. This is

due to the ability of the one-sided and hybrid approach to per-

form the lock/unlock operations in a truly one-sided fashion,

whereas the two-sided approach requires remote host involve-

ment to make progress. This results in delay for the target

process in responding to lock requests. Since this benchmark

is a ring type of communication, this could manifest itself as

skew for the other processes further in the ring resulting in a

cascading effect. In this scenario, the hybrid scheme remains

in the network locking mode exclusively and hence its perfor-

mance is similar to that of the one-sided approach.

Figure 10: Inter-node Performance

5.6 Lock Migration

In this section, we try to evaluate the overhead incurred due

to lock migration. The benchmark measures the average time

taken for an intra-node lock/unlock operation and an inter-

node lock/unlock operation in the presence of migration of the

lock mechanism from network mode to CPU mode and vice-

versa. The experiment is a two node experiment in which

a process P1 acquires a lock/unlock on a process P0 on the

same node 1000 times. During this duration, a process P2

on the second node tries to obtain the lock on P0 for x times

triggering a migration each time.

The intra-node line in Figure 11 shows the latency of the

lock/unlock operation happening on the same node with in-

creasing percentage of migrations. We observe that for small

percentage of migrations, the overhead is not very high as

compared to case when no migrations occur. The inter-node

line similarly shows the latency of the lock/unlock operation

happening across nodes with increasing percentage of migra-

tions. For smaller number of migrations, the overhead in-

curred is quite less. Large number of migrations lead to some

overhead. However it is to be noted that, the biggest ben-

efit achieved by this approach is to be able to maintain the

truly one-sided nature of the locks once the migration has

been achieved and thus provide greater potential for asyn-

chronous communication as well as higher computation com-

munication overlap. Also the migration policy described in

Section 4.2 can be used appropriately to minimize the num-

ber of migrations.

Figure 11: Lock Migration Overhead

5.7 Hierarchical Task Sharing Communication

Pattern Micro-benchmark

Finally, we evaluate the performance for a combination of

inter-node and intra-node operations with lock migrations by

simulating a benchmark that performs task sharing and redis-

tribution. The details of the benchmark is described below.

The experiment is run on 4 nodes with 16 cores on each node

for a maximum total of 64 cores. A hierarchy of leaders is cre-

ated with one leader process designated on each node. First,

the leader on every node performs 1000 Lock-Put-Unlock on

every other local process on the same node. Then, the leader

performs 1000 Lock-Put-Unlock on the leader of every other

node. Finally, the leader on every node performs 1000 Lock-

Put-Unlock on every local process again. The benchmark tries

to simulate a scenario in which a leader process tries to get

data/work from close neighbors, then gets data from remote

neighbors in a cycle. The resulting communication pattern is

a clique-based communication described in earlier sections.

The results are shown in Figure 12. The communication pat-

tern described above has lot more intra-node operations than

inter-node operations. The hybrid scheme performs the best

because it uses the fast CPU locks for the intra-node opera-

tions, and when the operations are inter node, it migrates to

network mode. Thus it provides the best performance for such

a communication scenario and we also observe that the per-

formance gap is sustained for increasing number of processes.

6 Related Work

There are several studies regarding implementing one-sided

communication in MPI-2. Some of the MPI-2 implementa-

tions that support one-sided communication are MPICH2 [6],

OpenMPI [7],WMPI [17], NEC [22], SUN-MPI [9]. In Open-

MPI, the library uses the two-sided approach for passive syn-

chronization currently and depends on the target process mak-

ing MPI calls to make progress. Besides MPI, there are

Figure 12: Hierarchical Task Sharing Communication Pattern

other programming models that use one-sided communica-

tion. ARMCI [19], GASNET [8] and BSP [13] are some ex-

amples of this model.

Researchers in [11] have proposed distributed queue based

DLM using RDMA operations. Though this work exploits

the benefits of RDMA operations for locking services, their

design can only support exclusive mode locking. Researchers

in [10] have studied efficient implementation of locks using

NIC based atomic operations on Myrinet. Further, prior re-

search in [18] extensively utilizes IB’s remote atomic oper-

ations for shared and exclusive mode locking, however, the

main focus in their work is not in the context of MPI-2 one-

sided synchronization but rather as a system-wide distributed

locking service typically used in data-centers.

7 Conclusions and Future Work

While MPI is the de-facto standard for communication in

scientific applications, the usage of one-sided communica-

tion is restricted mainly owing to the inefficiencies in current

MPI implementations. Specifically, current MPI implemen-

tations internally rely on synchronization between processes

even during one-sided communication. This model is inher-

ently susceptible to process skew, which consequently limits

its ability to scale to large-scale systems. In this paper, we

extended our previous work by proposing a hybrid model that

dynamically migrates between hardware locks on networks

such as IB and CPU-based atomic locks on multi-core archi-

tectures, to benefit from both. We presented our detailed de-

sign as well as experimental evaluation that showed signif-

icant performance improvement on a wide range of evalua-

tions.

For future work we plan to extend our design to other net-

works such as the Blue Gene, and also evaluate the effec-

tiveness of our design on various applications including the

mpiBLAST bioinformatics application.

References

[1] Berkeley Unified Parallel C (UPC) Project. http://upc.lbl.gov/.

[2] Blue Gene System Architecture Overview.

http://www.research.ibm.com/journal/rd/492/gara.html.

[3] Global Arrays. http://www.emsl.pnl.gov/docs/global/.

[4] GROMACS. http://www.gromacs.org/.

[5] PETSc. http://www-unix.mcs.anl.gov/petsc/.

[6] Argonne National Laboratory. MPICH2. http://www-

unix.mcs.anl.gov/mpi/mpich2/.

[7] B. W. Barrett, G. M. Shipman, and A. Lumsdaine. Analysis of Im-

plementation Options for MPI-2 One-Sided. In Proceedings, Euro

PVM/MPI, Paris, France, October 2007.

[8] D. Bonachea. GASNet Specification, v1.1. Technical Report

UCB/CSD-02-1207, Computer Science Division, University of Cali-

fornia at Berkeley, October 2002.

[9] S. Booth and F. E. Mourao. Single Sided MPI Implementations for

SUN MPI. In Supercomputing, 2000.

[10] D. Buntinas, D. K. Panda, and W. Gropp. NIC-Based Atomic Remote

Memory Operations in Myrinet/GM. Workshop on Novel Uses of Sys-

tem Area Networks (SAN-1), February 2002.

[11] A. Devulapalli and P. Wyckoff. Distributed Queue Based Locking Us-

ing Advanced Network Features. In ICPP, 2005.

[12] M. Frigo and S.G. Johnson. The Design and Implementation of

FFTW3. Proceedings of the IEEE, 2005.

[13] M. Goudreau, K. Lang, S. B. Rao, T. Suel, and T. Tsantilas. Portable

and Effcient Parallel Computing Using the BSP Model. IEEE Transac-

tions on Computers, pages 670–689, 1999.

[14] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel

Programming with the Message Passing Interface, 2nd edition. MIT

Press, Cambridge, MA, 1999.

[15] J. Hilland, P. Culley, J. Pinkerton, and R. Recio. RDMA Protocol

Verbs Specification (Version 1.0). Technical report, RDMA Consor-

tium, April 2003.

[16] InfiniBand Trade Association. InfiniBand Architecture Specification,

Release 1.0, October 24 2000.

[17] F. E. Mourao and J. G. Silva. Implementing MPI’s One-Sided Commu-

nications for WMPI. In EuroPVM/MPI, September 1999.

[18] S. Narravula, A. Mamidala, A. Vishnu, K. Vaidyanathan, and D. K.

Panda. High Performance Distributed Lock Management Services us-

ing Network-based Remote Atomic Operations. CCGrid, 2007.

[19] J. Nieplocha and B. Carpenter. ARMCI: A Portable Remote Memory

Copy Library for Distributed Array Libraries and Compiler Run-Time

Systems. Lecture Notes in Computer Science, 1586, 1999.

[20] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Ei-

tan Frachtenberg. The quadrics network (qsnet): High-performance

clustering technology. In In HotI 01, pages 125–130, 2001.

[21] G. Santhanaraman, S. Narravula, and D. K. Panda. Designing Pas-

sive Synchronization for MPI-2 One-Sided Communication to Maxi-

mize Overlap. In IPDPS, 2008.

[22] J. Traff, H. Ritzdorf, and R. Hempel. The Implementation of MPI-2

One-Sided Communication for the NEC SX. In Proceedings of Super-

computing, 2000.

