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Abstract—The I/O bottleneck issue has been acknowledged
as one of main performance issues of high performance com-
puting (HPC) systems for data-intensive scientific applications,
and has attracted intensive studies in recent years. With the
enlarging gap between the computing bandwidth and I/O band-
width in projected next-generation HPC systems, this issue will
become even worse. In this paper, we present a novel decoupled
I/O to address the fundamental I/O bottleneck issue. The
decoupled I/O is a software stack including MPI extensions,
compiler improvements, and runtime library support, based on
a decoupled HPC system architecture. It allows users to treat
the computing of data-intensive operations and the traditional
I/O operation as an ensemble and offload them into dedicated
data nodes, which are near to the data source, to reduce the
overhead of data movement and improve the I/O bandwidth
usage. The decoupled I/O is user-friendly and requires little
changes in application codes. Experiments were conducted to
evaluate the performance of the decoupled I/O, and the results
show that it outperforms existing solutions (such as active
storage I/O) and provides an attractive I/O solution for data-
intensive high performance computing.

Keywords-Decoupled I/O, data-intensive computing, high
performance computing, parallel I/O, storage

I. INTRODUCTION

Many scientific applications nowadays tend to be highly
data-intensive. These applications are intended to read/write
terabytes or even petabytes of data in a single simulation
run. For instance, the output volume of the Arctic Sys-
tems Reanalysis (ASR), which aims to study the climate
change during the period from 2000 to 2010 (11 years),
is nearly 23.14TB [19]. To achieve better understandings
of scientific phenomenon, the data volume generated by
scientific simulations keeps increasing year by year because
of finer resolution requirements, and is projected to be
around hundreds of petabytes for a single simulation run on
the coming exascale systems (projected to be implemented
by 2018∼2020). Compared with existing petascale systems,
the computational power of the exascale systems will be
improved by 1000 times with exploring billion-way concur-
rency (with O(1M) nodes and O(1K) cores within a node),
whereas the I/O bandwidth will only be improved around
10-30 times. This increasing performance gap between the

computing bandwidth and I/O bandwidth has made the I/O
subsystem become a critical bottleneck of HPC systems.
Moving hundreds of petabytes datasets among storage nodes
and compute nodes is not wise and will seriously limit the
application performance in the exascale era. It is also not
energy efficient because of the overhead of data movements,
whereas a fixed power consumption envelope is another
critical design factor for exascale systems. Reducing the data
movement unarguably is a critical challenge to be addressed
for the coming exascale I/O systems.

Previous studies have shown that moving computations
near to the data is a promising solution for I/O bottleneck
issue. It can efficiently reduce the data movement and the
power consumption, through offloading data-intensive oper-
ations near to data and transferring reduced results between
storage nodes and compute nodes. Active storage, Fast-
Forward I/O (including burst buffer) and active disk/flash
are among the most important approaches, and attracting
intensive studies.
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Figure 1: I/O Software Stack of High Performance Comput-
ing Systems

In this paper, we study a new way of moving computations
near to data to minimize the data movement with a decou-
pled I/O approach to address the I/O bottleneck issue for



data-intensive applications. Decoupled I/O is a runtime sys-
tem designed for our previous decoupled execution paradigm
(DEP) proposed in [6]. It allows users to combine the
computation from data-intensive operations and traditional
I/O operations as an ensemble and offload them to the data
nodes. A user-friendly interface is provided for programmers
to port existing applications to the decoupled I/O system
without significant code changes. The programmers can
flexibly implement and offload codes to the data nodes
by implementing them as offloaded objects. The current
prototype and evaluations have shown a promising potential.

The rest of paper is organized as follows. Section II dis-
cusses background and motivations of this research. Section
III and Section IV present the design of the decoupled I/O
and its evaluations respectively. Section V discusses the
existing related work, and Section VI concludes this study.

II. BACKGROUND

The decoupled execution paradigm (DEP), introduced in
our previous work [6], can address the resource contention
issue by using dedicated data nodes for data processing. The
architecture of DEP is illustrated in Figure 2. This new ar-
chitecture decouples nodes into compute nodes and data pro-
cessing nodes (also called data nodes). These nodes are de-
signed to be mapped with computation-intensive operations
and data-intensive operations respectively. Computation-
intensive operations are executed on massive compute nodes,
while data-intensive operations are executed on dedicated
data nodes. Physically, the data nodes are further divided
into compute-side data nodes and storage-side data nodes.
They are closely connected (for example, with direct links or
high-speed interconnection switches) to data sources through
a high-speed network.

One critical challenge involved in the DEP architecture
is to decouple the data-intensive operations (codes) of an
application to the dedicated data nodes without requiring
significant changes for programmers. In this research, we
propose a decoupled I/O to help users to easily program
for DEP architecture. Currently, the proposed solution in
this paper mainly focuses on addressing storage-side data
nodes. The decoupled I/O provides programmers an easy
way to offload data-intensive operations to minimize data
movements through a set of APIs. The next section details
the design and implementation of the proposed decoupled
I/O.

III. DECOUPLED I/O

A. Overview of Decoupled I/O

The decoupled I/O is designed as an extension of the
existing MPI library. It improves the MPI library to manage
the compute nodes and data nodes as an ensemble, as shown
in Figure 3. The decoupled I/O, however, internally splits
them into two different groups: compute group and data
group. The compute group runs the normal applications,
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Figure 2: Decoupled High Performance Computing System
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Figure 3: A High-level View of Decoupled I/O

while the data group executes the offloaded data-intensive
operations. Both of them share the same MPI library.

For programmers, the decoupled I/O provides a user-
friendly interface to enable them to offload data-intensive
operations to minimize data movements. They can use
the designed APIs to migrate their codes to a decoupled
execution platform without significant changes. Table I il-
lustrates the differences between a traditional code and the
decoupled I/O code through an example. The only change
for the decoupled I/O code is that the programmer needs to
implement the code as a function and invoke it through a
provided API.

The decoupled I/O involves three improvements to exist-
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Figure 4: Decoupled I/O at Runtime

ing MPI library. Despite a set of decoupled I/O APIs, which
is designed as an extension to the MPI-IO library, the MPI
compiler (mpicc) is also improved to automatically generate
the code for data processes. These processes are completely
hidden from users except for having hints that can be
supplied by users. In addition, the MPI process manager
(hydra) is improved to manage the compute processes and
data processes. Figure 4 demonstrates how the decoupled
I/O works. The system manages the compute nodes and data
nodes as two groups, with each group conducting different
tasks. The compute group conducts the computation of
applications, and the data group conducts data processing for
reducing data movements. From the view of programmers,
the decoupled I/O provides a set of I/O APIs to combine the
data and computation together, and instruct data-intensive
operations to be offloaded to data nodes. The new APIs do
not involve any changes to programming logic. In addition,
there is no change for programmers to construct the code
architecture, except enclosing the offloaded code with a
function (an offloaded object) and instructing that. The users
only need to use additional arguments for mpirun/mpiexec
to invoke appropriate processes on compute/data nodes. For
instance, a runtime command $ mpirun -np 8 -dp 4 -f hostfile
./app instructs to launch the application with 8 processes in
total with 4 processes used as data processing processes.
The decoupled I/O is designed and implemented with a
minimal intervention from programmers/users to minimize
data movements.

B. API Design and Implementation

In general, a data-intensive operation can be considered
with two phases including a traditional I/O operation and
a data processing operation. Applications retrieve the data
from storage and then apply the processing operations on
the data to get the final results for further computations (or
generate a buffer of data using a simulation kernel and then

Table I. Comparison between a Traditional Code and a
Decoupled I/O Code

/* Traditional Code */
... int buf;
MPI File read(fh, buf, ...);
for(i = 0; i < bufsize; i++) {

sum += buf[i];
}
/* the code using decoupled I/O, user implement the operation */
int sum op(buf, bufsize) {

for (i = 0; i < bufsize; i++ )
sum += buf[i];

}
....
MPI op myop;
MPI Op create(myop, sum op);
MPI File decoupled read(fh, sum, myop, ....);
....

write the data to storage). The decoupled I/O treats these
two phases as an ensemble that would be decoupled and
executed at data nodes to significantly reduce the overheads
of data movement and improve the I/O bandwidth usage for
applications. For the convenience of programmers, a set of
decoupled I/O APIs are provided as shown in Table II.

As the name indicates, a decoupled I/O API,
MPI File decouple xxx, completes the same I/O
operation as implied by MPI File xxx defined in
the MPI standard. The decoupled I/O API, however, is
associated with an “offloaded object” that is decoupled
from the original code to be executed on the data
nodes. For example, MPI File decouple open will
open a file for following decoupled I/O operation, and
MPI File decoupled read will read a portion (count)
of data with type data type from the file and then process
it with assigned operation (data op) on data nodes, with
returning the processed results (filled in buf ) to the compute
nodes. Similarly, MPI File decouple write will execute
the operation data op on the data nodes to generate a
set of data, and then write to storage (from data nodes
to storage, instead of from compute nodes to storage in
a traditional case). The buf is used to store any initial
parameters required by data op operation.

With the decoupled I/O, data access requests from com-
pute processes are collected and sent to the data nodes.
All of the actual I/O operations are carried out on data
nodes. This mechanism is similar to a client-server remote-
procedure call (RPC) framework. Figure 5 depicts the details
of this mechanism. The request from each compute process
is defined as a task in Table III. These tasks from the same
API will be gathered together at a master process of the
compute group, and then sent to a master process of the data
group. The master process of the data group will distribute
the tasks to each member, collect the processed results and
return them to the compute group.



Table II. Decoupled I/O APIs

MPI File decouple open(MPI Decoupled File fh, char * filename, MPI Comm comm);
MPI File decouple close(MPI Decoupled File fh, MPI Comm comm);
MPI File decouple read (MPI Decoupled File fh, void *buf, int count, MPI Datatype data type, MPI Op data op, MPI Comm comm );
MPI File decouple write(MPI Decoupled File fh, void *buf, int count, MPI Datatype data type, MPI Op data op, MPI Comm comm );
MPI File decouple set view(MPI Decoupled File fh, MPI Offset disp, MPI Datatype etype, MPI Datatype filetype, char * datarep, MPI Info info,
MPI Comm comm);
MPI File decouple seek(MPI Decoupled File fh, MPI Offset offset, int whence, MPI Comm comm);

Table III. Decoupled Task

t y p e d e f s t r u c t {
MPI Decoupled Fi le fh ; / / f i l e ha nd l e
i n t r ank ; / / P r o c e s s rank i n compute group
enum {READ, WRITE , READ ALL, WRITE ALL} i o op ;
MPI Op op ; / / d e c o u p l e d o p e r a t i o n
MPI Datatype d a t a t y p e ; / / da ta t y p e o f each e l e m e n t
i n t c o u n t ; / / da ta s i z e o f each o p e r a t i o n
} D e c o u p l e t a s k ;
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Figure 5: Decoupled I/O Implementation

C. Process/Node Management

Instead of a hierarchical structure design that separates
the compute nodes and data nodes at different levels,
the decoupled I/O improves the MPI library to manage
the data nodes and compute nodes at the same level
with two groups. When a user launches an application
with a command like “mpirun -np n -dp m -f hostfile
./app”, the Process Manager will automatically invoke n
compute processes and m data processes, on compute
nodes and data nodes, respectively. The size of each
group (compute group size and data group size) will be
exported to the MPI runtime. In our prototype, all of
the processes, including compute processes and data pro-
cesses, belong to the MPI COMM WORLD communi-
cator with distinguished rank (we call world rank). At the
same time, each process has its own group communicator
MPI COMM LOCAL as an intra-communicator, and
an MPI COMM INTER communicator as a group-to-
group inter-communicator between the compute processes
group and data processes group. All of these works are done
at the MPI Init stage.

D. Code Decoupling & Compiler Improvement

How to offload the user-implemented codes to data nodes
is another challenge for the decoupled I/O, as our system
is a distributed memory system and the address space is
separated on different nodes. In this study, we introduce
an easy-to-use method to address this issue. The proposed
method relies on both Process Manager and MPI compiler
to complete the decoupled operations. As both compute
processes and data processes belong to the same global
communicator: MPI COMM WORLD, the world rank
of each process is used to identify the process type (compute
process or data process) to execute different codes. This
design is similar to a master-slave processing framework,
where the rank is used to assign different tasks to each
process when MPI applications are coded. In the decoupled
I/O, the data processing code is automatically transformed
by the enhanced MPI compiler, and users only need to write
compute process code. Table IV illustrates an example of
the user implemented code and the code translated by the
compiler. In generating the code, the compiler relies on
hints from users to identify the codes that run on compute
nodes. The code between MPI DECOUPLE START
and MPI DECOUPLE END is defined to be the com-
pute process code. MPI Op is used to define user offloaded
functions. All of these operations have to be registered at the
MPI runtime before MPI DECOUPLE START macro
is executed.

The data processes running on data nodes take care of I/O
operations collectively, including opening a file and reading
or writing data. To keep the logic view of compute processes
as the way programmers expect, the data processes create
a file handle and a file descriptor for each compute process
(they are also required to open a file). Both file handle and
the process rank of its local group are used to index the true
file descriptor as shown in Figure 6.

IV. EVALUATION

To evaluate the potential of the decoupled I/O, a set of
experiments was conducted on two computing platforms.
Three schemes, including the decoupled I/O (denoted as
DEPIO), the state-of-the-art active storage I/O (denoted as
AS), and a traditional storage I/O (without decoupled I/O
or active storage I/O, denoted as TS), were evaluated in our
experiments. In the decoupled I/O scheme, a set of data
nodes are dedicated for serving data-intensive operations. In



Table IV. Decoupled I/O Code Sample

/* User Implemented Code: main.c */

i n t sum ( i n t buf [ ] , i n t b u f s i z e ) {
/ / u s e r imp lemen ted data−i n t e n s i v e code

. . .
}
i n t main ( )
{

M P I I n i t (& argc , &argv ) ;
MPI op myop ;
MPI Op create ( myop , sum ) ;
/∗ o f f l o a d e d o p e r a t i o n s have t o be
∗ r e g i s t e r e d b e f o r e t h i s macro
∗ /

MPI DECOUPLE START ;
MPI Comm rank (MPI COMM LOCAL, &rank ) ;
MPI Comm size (MPI COMM LOCAL, &s i z e ) ;
. . . . . .
M P I F i l e d e c o u p l e d r e a d ( fh , . . . ) ;
. . . . . .

MPI DECOUPLE END ;
M P I F i n a l i z e ( ) ;
re turn 0 ;

}

/* MPICC translated code: main.c */

i n t sum ( i n t buf [ ] , i n t b u f s i z e ) {
. . . . . .

}
i n t main ( )
{

M P I I n i t (& argc , &argv ) ;
MPI op myop ;
MPI Op create ( myop , sum ) ;
i f ( w rank < c o m p u t e g r o u p s i z e ) {

/∗ c o m p u t a t i o n code ∗ /
MPI Comm rank (MPI COMM LOCAL, &rank ) ;
MPI Comm size (MPI COMM LOCAL, &s i z e ) ;
. . . . . .
M P I F i l e d e c o u p l e d r e a d ( fh , . . . ) ;
. . . . . .

} e l s e { / / code f o r da ta p r o c e s s e s
MPI Comm rank (MPI COMM LOCAL, &rank ) ;
MPI Comm size (MPI COMM LOCAL, &s i z e ) ;
whi le ( 1 ) {

i f ( r ank == 0) {
/∗ l i s t e n & d i s t r i b u t e t h e
∗ r e q u e s t s t o each member ∗ /

}
sw i t ch ( io op ) {

case READ:
MPI F i l e r ead ( fh , . . . ) ;
my op−>f unc ( ) ;
break ;

case WRITE :
my op−>f unc ( ) ;
M P I F i l e w r i t e ( fh , . . . ) ;
break ;
. . . . . .

} } }
M P I F i n a l i z e ( ) ;
re turn 0 ;

}
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Figure 6: File Descriptors and File Pointers Management in
Data Processes

the active storage scheme, the data-intensive operations were
executed on storage nodes. In this section, we present our
evaluation platform and results.

A. Experimental Platform

Experimental evaluations were performed on the DIS-
CFarm (Data-Intensive Scalable Computing Farm) cluster
and Hrothgar Cluater at Texas Tech University. Prototyping
evaluations were performed on the DISCFarm cluster, and
a large-scale emulation evaluation was performed on the
Hrothager cluster (as the Hrothager cluster is a production
system and we couldn’t deploy the entire decoupled I/O
system for evaluations).

The DISCFarm cluster is composed of one Dell Pow-
erEdge R515 rack server node and 15 Dell PowerEdge R415
nodes, with a total of 32 processors and 128 cores. In our
prototyping evaluations, 2 nodes were configured as PVFS2
storage nodes, 4 nodes were configured as data nodes, and
8 nodes were configured as compute nodes. The Hrothgar
cluster consists of 640 nodes, and each node is equipped
with Intel Xeon 2.8GHz CPUs (12 cores per node) and 24GB
memory. It has 600TB Lustre parallel file system storage.

B. Evaluated Operations

Four operations, including data assimilation, a flow-
routing operation, summation, and lookup, were used to
evaluate and compare the decoupled I/O, state-of-the-art
active storage I/O, and the traditional I/O.

Data assimilation is a widely used operation in climate
sciences. The climate scientists use it to generate reliable
climate data sets. This operation needs to read and write
a large volume of data from or to storage systems. Several
assimilation algorithms are commonly used, and the Ensem-
ble Kalman Filter (EnKF) [12] is one of notable algorithms.
In this study, the EnKf data assimilation was used for
evaluations. It consists of 6 matrix multiplications, 1 matrix
addition, and 1 matrix substitution on data retrieved [12].
The flow-routing operation is a commonly used operation
to compute the direction where fluids flow to, such as in
dynamics fluids simulations and geographical information
systems (GIS). The summation (SUM) and lookup opera-
tions are simpler as compared with the data assimilation and



flow-routing operations. Both of them are widely used in
climate data analysis applications and many other scientific
computing applications. A SUM operation calculates the
total value of all specified data elements, and the lookup
operation searches for and returns all elements that meet
given criteria from a large volume of data sets.

C. Performance of the Decoupled I/O
In this set of tests, we evaluated the performance of

the decoupled I/O against the state-of-the-art active storage
I/O. Both of these two schemes were configured with 2
storage nodes. To keep the same computation resources,
the decoupled I/O was configured with 4 data nodes and 8
compute nodes, while the active storage I/O was configured
with 12 compute nodes. The EnKF operation was evalu-
ated. Its required computations are dominated by 6 matrix
multiplications (the entire operation consists of 6 matrix
multiplications, 1 matrix addition, and 1 matrix substitution).

Figure 9 shows that the decoupled I/O achieved better
performance than the active storage I/O consistently. This
performance achievement mainly comes from the decoupled
I/O associated with data nodes, which provides more com-
puting power for offloaded operations than that provided
by storage nodes. Figure 10 further illustrates the advan-
tage of the decoupled I/O by comparing the performance
improvement against the active storage I/O under different
CPU usages of each storage node. The decoupled I/O
achieved performance improvement under different CPU
usages, while the active storage I/O performed even worse
than the traditional storage I/O for these cases.
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The benefits of the decoupled I/O came from two aspects:
more computational and balanced resources for offloaded
data-intensive operations than the active storage I/O, and
also less data movements and network congestion than the
traditional storage I/O. If the interconnection among data
nodes and storage nodes in our test bed was high-speed
networks such as InfiniBand or Myrinet, the performance
of the decoupled I/O is expected to be even better.
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D. Emulation Results and Analysis

In this subsection, we present emulation experiments
conducted on the production 640-node Hrothgar cluster to
evaluate the performance of decoupled I/O for large-scale
computing by comparing it with the traditional storage I/O.
The observed performance improvement pattern was similar
for various operations and we present the performance result
of the flow-routing operation evaluated. In this set of tests,
60GB data is processed. As shown in Figure 11, the decou-
pled I/O was able to reduce around 25% execution time for
the flow-routing operation. Figure 12 plots the achieved I/O
bandwidth for the decoupled I/O and traditional storage I/O.
Similarly, compared with traditional storage system, there
was around 23% improvement for the decoupled I/O. All of
these achievements come from the decoupled I/O associated
with data nodes for data-intensive operations with reduced
data movements.
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Figure 9: Emulation Performance of the Decoupled I/O

E. Overhead of the Decoupled I/O

As mentioned in previous sections, when data processes
conduct the decoupled I/O, all of the decoupled tasks are
gathered by a master process in the compute group, and
then sent to the master process of the data group. After that,
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the master process of data group will further distribute the
tasks to its members, and then collect the results and return
them back to compute processes. The primary overhead
of the decoupled I/O is the communication involved in
this process. In this subsection, we focus on evaluating
this overhead of the decoupled I/O. In this experiment, we
executed 60 compute process and 6 data processes. Figure 13
plots the result with the SUM operation evaluated, which
depicts that the communication overhead is limited to a
small portion of the total execution time. As the data size
of each I/O request increases, this overhead will decrease
steadily. Therefore, the communication overhead is unlikely
to become the bottleneck in our design.
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V. RELATED WORK

High performance I/O has attracted intensive attentions
and research studies in recent years. In this section, we
briefly review notable solutions and compare with our study.

Active disk and active storage are two of the most notable
approaches that move computations near to data to improve
the I/O performance and have gained intensive attentions.
Active disk [2, 9, 15, 23] reduces the data movement
between the disk and memory by utilizing the computing
power of the embedded CPU on the disks. Riedel et.

al. [23] presented a detailed analysis of active disks for scan-
intensive applications. However, the limited computation of
embedded processor makes it difficult to have significant im-
pact on petascale data-intensive applications. Active storage
[10, 22, 24, 25, 30] shares a similar idea with active disk. It
explores the computation resources of storage nodes. Felix
et. al.[10] presented the first real implementation of active
storage on the Lustre file system. Woo et. al. [29] improved
the design for Parallel Virtual File System (PVFS). These
studies have clearly presented the promise of approaches that
move computation near to data. However, all these systems
were designed without considering the resource contention
issue [5]. The recent Blue Gene active storage [11] is
introduced with dedicated data nodes. This study is an
improvement to Blue Gene active storage. We proposed
an easy-to-use software stack to flexibly utilize computing
resources of both data nodes and compute nodes.

There also have been significant amount of research
efforts in optimizing data-access performance using runtime
libraries, such as collective I/O [8, 14, 26], data sieving,
server-directed I/O, disk-directed I/O, lightweight I/O [20],
partitioned collective I/O [31], layout-aware collective I/O
[8], ADIOS library [16], and resonant I/O [32]. These
strategies collect and aggregate small requests into larger
ones at the I/O client/middleware/server level. This study
naturally complements these solutions. With the decoupled
I/O, these strategies can be leveraged on data nodes, and the
decoupled I/O advantages are additions.

Many caching, buffering, staging, and prefetching opti-
mization strategies exist at runtime as well, such as collective
caching [13], collective buffering [18], active buffering [17],
discretionary caching [28], SpecHint prefetching [4], trans-
parent informed prefetching (TIP) [21], adaptive prefetching
based on time series modeling [27], multiple-level caching
and prefetching for Blue Gene systems [3]. Abbasi et.
al. proposed a DataStager framework with data staging
services that move output data to dedicated staging or I/O
nodes prior to storage, which has been proven effective in
reducing the I/O overheads and interference on compute
nodes [1]. Zheng et. al. proposed a preparatory data analytics
(PreDatA) to prepare and characterizing scientific data when
generated (e.g. data reorganization and metadata annotation)
to speedup subsequent data access [33]. These approaches
have shown considerable performance improvement with
dedicated output staging services and preparatory analysis. A
decoupled I/O studied in this research leverages dedicated
nodes as well, but is different in the sense that dedicated
data processing nodes work for both reads and writes.
These data nodes can provide buffering or staging too,
but more importantly on data reduction. The notion of the
decoupled I/O and data processing nodes is a rethinking of
HPC system to provide balanced computational and data-
access capability. The decoupled I/O considers to address
the fundamental data movement bottleneck issue for data-



intensive applications.

VI. CONCLUSION AND FUTURE WORK

Undoubtedly, scientific discoveries and innovations can
benefit considerably from large-volume data sets generated
or analyzed by scientific applications. However, the large-
volume data sets have also brought up an important question
with regard to data movements to the high performance com-
puting research and development community. The massive
amount of data movement and long access delay for access-
ing these data sets can significantly limit the productivity of
data-intensive sciences.

In this study, we present a new high performance I/O
solution, named decouple I/O, to reduce the data movement
and improve the I/O bandwidth usage for data-intensive
applications. The decoupled I/O provides a set of APIs
for programmers to map computation-intensive and data-
intensive operations to conventional compute nodes and
dedicated data nodes respectively. We have conducted the
prototyping evaluations and emulations on a production HPC
system to verify the idea and the potential. The results,
compared to the state-of-the-art active storage I/O, have
confirmed a promising potential of such a decoupled I/O
system.

While this study is one step to build better HPC systems
for data-intensive applications, the current results are encour-
aging. The current study confirms that a decoupled I/O has
its potential and usefulness in reducing data movements for
data-intensive applications. With the growing importance of
supporting data-intensive sciences and big data applications,
the decoupled I/O can have an impact. It can be potentially
built in the next-generation exascale HPC systems to better
support data-intensive sciences. In the near future, we plan
to continue the research investigation and to integrate the de-
sign and development of a MapReduce-style data processing
into the decoupled I/O system.
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