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Abstract—Data-intensive applications have become increas-
ingly important in recent years, yet traditional data move-
ment approaches for scientific computation are not well suited
for such applications. The Active Message (AM) model is an
alternative communication paradigm that is better suited for
such applications by allowing computation to be dynamically
moved closer to data. Given the wide usage of MPI in scien-
tific computing, enabling an MPI-interoperable AM paradigm
would allow traditional applications to incrementally start uti-
lizing AMs in portions of their applications, thus eliminat-
ing the programming effort of rewriting entire applications.
In our previous work, we extended the MPI ACCUMULATE
and MPI GET ACCUMULATE operations in the MPI stan-
dard to support AMs. However, the semantics of accumulate-
style AMs are fundamentally restricted by the semantics of
MPI ACCUMULATE and MPI GET ACCUMULATE, which
were not designed to support the AM model. In this paper,
we present a new generalized framework for MPI-interoperable
AMs that can alleviate those restrictions, thus providing a richer
semantics to accommodate a wide variety of application compu-
tational patterns. Together with a new API, we present a detailed
description of the correctness semantics of this functionality and
a reference implementation that demonstrates how various API
choices affect the flexibility provided to the MPI implementation
and consequently its performance.

I. INTRODUCTION

In recent years, many new, data-intensive applications have
become prominent in various domains such as bioinformatics
and social network analysis. A fundamental characteristic of
these applications is that they process a large amount of
data, possibly in irregular patterns, requiring computation and
data movement to be carefully balanced for achieving high
performance. Traditional programming approaches that were
designed for environments where computation is regular and
its cost is typically significantly larger than the data movement
cost are not well suited for such applications. Alternative
programming frameworks are desirable.

The Active Messages (AM) model [1] is a parallel program-
ming paradigm that can potentially bridge this gap. It allows
a process to specify a function handler to be executed when a
particular type of message is received, thus relieving itself of
the responsibility to explicitly receive and process the message.
Such a model can be more natural to use in some, though not
necessarily all, scenarios. A combination of the traditional MPI
SEND/RECV- or PUT/GET-like model to move data and an
AM-based model to move computation, however, can provide
applications and high-level libraries with the necessary tool set
to efficiently and dynamically balance their computation and
data movement workload in order to achieve high performance.

In [2], we proposed an asynchronous and MPI-interoperable
framework for AMs by leveraging the MPI remote memory
access (RMA) model. The framework extended the MPI-3
accumulate operations to support user-defined functions at the
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target. While such a framework demonstrates the potential
of MPI-interoperable AMs, it is restricted in a number of
ways, including its ability to describe complex data layouts
on which the AM can compute, how data associated with the
AM is transmitted and staged at the remote process, what
AMs can execute concurrently, and what ordering and memory
consistency guarantees are available.

In this paper, we propose a generalized framework for MPI-
interoperable AMs. Specifically, we propose a new set of func-
tionality and semantics that no longer rely on MPI-accumulate
operations but still maintain complete compatibility with the
MPI-3 standard. The new semantics allow the implementation
to achieve better performance, for example by controlling
streaming and data usage granularity, concurrency capabilities
among AMs, and ordering semantics. In addition to the design
description, the paper presents a reference implementation of
the generalized framework and an evaluation demonstrating the
performance impact of the various semantic choices.

Recommended reading: While this paper provides some
background on the MPI RMA semantics, it is not meant to be
a comprehensive description. We highly recommend that the
reader of this paper also read through past papers and books
that more thoroughly discuss these semantics (e.g., [3], [4],
[2]) in order to better understand the subtle characteristics and
capabilities of MPI RMA on which this paper relies.

Naming Convention: We prefix all functions that are de-
fined in the MPI-3 standard with MPI , while new functions
that are proposed in this paper are prefixed with MPIX (MPI
extensions). Also, we refer to accumulate-style operations that
already exist in MPI-3 as “MPI-accumulate” operations, and
we refer to our previous work that extends these operations to
enable AMs as “AM-accumulate” operations.

II. BACKGROUND AND RELATED WORK

In this section, we discuss the AM paradigm and our
previous work on MPI-interoperable AMs.

A. Active Messages Paradigm
The AM paradigm [1] was proposed by von Eicken et al. for

Split-C in 1992. With AMs, the sender of a message specifies a
message handler to be executed at the receiver upon arrival of
the message. When the message is received, the corresponding
handler is triggered to process the data in that message. Unlike
traditional two-sided message passing, the application on the
receiver side does not need to explicitly call a function in order
to receive the message. Previous libraries that support AMs
include GASNet [5], IBM DCMF [6], IBM LAPI [7], and
IBM PAMI [8]. While popular in high-performance computing
systems, these libraries either do not maintain runtime compat-
ibility with MPI or are platform specific. Thus, existing MPI
applications cannot utilize them without necessarily duplicating
runtime resources such as internal buffers or asynchronous
progress threads.

Some work has also been done on supporting AMs on top
of the MPI library, thus allowing existing MPI applications



to utilize the AM paradigm. Examples include AM++ [9]
and AMMPI [10]. While portable, they are restricted in a
number of ways, including lack of asynchronous progress,
inability to marshall/demarshall datatypes, and absence of ex-
plicit semantics for ordering, concurrency of AMs, and memory
consistency.

B. Accumulate-Style Active Messages
In [2], we proposed a framework for asynchronous and

MPI-interoperable AMs by extending MPI ACCUMULATE
and MPI GET ACCUMULATE to support user-defined oper-
ations. MPI allows applications to create user-defined func-
tion handlers and operations that correspond to these han-
dlers. As of MPI-3, however, user-defined operations may
only be used in collective communication functions such as
MPI REDUCE and cannot be used in MPI ACCUMULATE and
MPI GET ACCUMULATE. In our previous work, we extended
such user-defined operations to be used within MPI-accumulate
operations, thus imitating AMs in MPI. In particular, we were
able to achieve such functionality by adding one additional
function to MPI, MPIX AM WIN OP REGISTER, that collec-
tively registers the functions associated with the operation.

We also classified MPI AMs into three classes: (1) NO-
ASYNC, where asynchronous processing is not supported;
(2) THREAD-ASYNC, where asynchronous processing is
provided by using a thread above the MPI library (for example,
if the application creates a thread for incoming messages, such
usage would fall into this class); and (3) INTEGRATED-
ASYNC, where asynchronous processing is supported within
the MPI implementation transparent to the user. Our framework
belongs to the third class. We also designed various techniques
that allow the AM thread to block for network communica-
tion, while allowing shared-memory-based AMs to rely on an
“origin computes” model. In this model, the origin can view
the target window data (over shared memory) and compute
the AMs on it, thus allowing the network AM thread to sleep
when there are no AMs. While this framework allowed us
to demonstrate how an MPI-interoperable AM framework can
be designed, it has a number of usage restrictions resulting
in programming complexity and memory inefficiency, as we
demonstrate in Section III.

III. RESTRICTIONS OF ACCUMULATE-STYLE AMS

Because MPI-accumulate operations were not originally
intended for AMs, their semantics do not quite match what
AMs need. Consequently, AM-accumulate operations, which
are based on MPI-accumulate operations, have several short-
comings that we analyze in this section. Based on this analysis,
we propose a new AM model in Section IV.

A. Data Access
One restriction in using AM-accumulate stems from the

way it represent data layouts. Specifically, the user-defined
function (which was originally intended for MPI REDUCE-
like operations in MPI) accepts a single data layout (datatype
and count). Thus, both the input and output buffers must have
exactly the same layout. While this requirement is suitable for
reduction operations, where multiple input arrays are reduced
into a target array, it is too restrictive for AMs. For example,
consider an application where the data on the target process is
an array of bins of containers representing value ranges. When
the process receives an AM with an integer that falls into a
given bin, the corresponding counter is incremented. In such

a model, the AM input data contains a single integer, while
the AM handler needs access to the entire array of bins to do
the necessary processing. Such operations cannot be handled
by AM-accumulate.

A similar restriction arises with respect to the
data that is fetched back to the origin process. While
MPI GET ACCUMULATE provides such capability, its
semantics require it to return the original data at the
target before the operation was performed. Thus, the
AM cannot return any arbitrary user-specified data. One
example where such capability is needed is DNA sequence
assembly applications (e.g., SWAP [11] and Kiki [12]).
These applications rely on storing large databases of string
sequences on distributed memory. A process that needs to
search for a string sequence in the database would send the
query sequence to the target as an AM, which would then
search through its part of the database and return the matches.
Although the AM requires access to the entire data on the
target process, it does not necessarily require all of this data
to be returned to the origin. Only the matches need to be
returned. To emulate such a function, SWAP currently uses
MPI SEND/RECV with threads, potentially wasting cores
waiting for incoming requests. Kiki uses dedicated “server
processes” that only process such messages but perform no
application computation, again wasting some user-defined
number of cores for these processes. Applications in other
domains, such as MADNESS [13] (computational chemistry),
are similarly restricted and emulate AM functionality using
MPI SEND/RECV with threads.

B. Message Segmentation and Temporary Buffers
The MPI standard has deliberately not required the MPI

implementation to have any temporary buffers. That is, the
application cannot assume that the MPI implementation will
use internal buffers for communication and has to be correct
when no such buffers are available. For example, although most
MPI implementations use “eager buffers” (internal temporary
buffers) for communicating small messages and application
buffers through a “rendezvous” hand-shake for communicating
large messages, the MPI standard does not expose such modes
to the application. Thus MPI implementations can experiment
with different buffering techniques to improve performance.

This philosophy is also apparent in MPI-accumulate op-
erations that guarantee atomicity only at the granularity of
predefined datatypes. Thus, an MPI implementation that has no
internal buffers can segment operations into multiple smaller
operations (potentially at the granularity of one predefined
datatype per operation) and issue them separately. Since MPI-
3 allows only predefined computations to be used with MPI-
accumulate operations, the MPI implementation knows these
operations a priori and can implement them appropriately in
order to compute on segmented data.

For AM-accumulate, however, since the computation is now
defined by the user application, the MPI implementation cannot
know what an appropriate segmentation granularity would be.
Segmenting data to the granularity of a predefined datatype
might be too restrictive for the application. For example, in
the DNA assembly example given in Section III-A, if the
MPI implementation segments the input DNA string sequence
to the granularity of individual characters, the user function
cannot search for the entire string in the target database with
this limited information. At the other extreme, if the MPI
implementation had to send all the input data to the target



process, it would be required to buffer arbitrarily large input
data internally.

C. Lack of Concurrency
In AM-accumulate, concurrent execution of AMs is not

well defined. In an environment where multiple origin pro-
cesses simultaneously trigger AMs on the same target process,
or where the same origin process triggers multiple AMs on the
same target process, can the MPI implementation simultane-
ously execute the different AMs? MPI-accumulate operations
are atomic at the granularity of predefined datatypes. That
is, if two such operations target the same memory location
on the same target, the MPI implementation will ensure that
these updates do not clobber each other. With user-defined
operations, however, MPI can no longer keep track of such
atomicity. A conservative implementation of AM-accumulate
could serialize all AMs computing on overlapping memory
locations, thus forcing no concurrency in execution. However,
such an implementation would be highly penalizing for perfor-
mance. For example, for AMs that only read the target data but
do not update it, no such atomicity is required, and the lack of
concurrency can hurt performance.

D. Interoperation with Other MPI Messages
MPI-accumulate operations have well-defined interoper-

ation semantics with other MPI messages. Multiple MPI-
accumulate messages updating the same memory region are
guaranteed to leave the data in a consistent state (i.e., as if
they executed in some sequential order). However, if multiple
MPI PUT operations target the same memory location or
if MPI-accumulate operations are mixed with MPI PUT or
MPI GET, the resultant data is undefined. For AM-accumulate,
no such interoperability semantics are defined. Unlike MPI-
accumulate operations, the MPI implementation cannot keep
track of the atomicity of AM-accumulate operations. Hence,
MPI-accumulate interoperability semantics are not relevant for
AM-accumulate.

IV. GENERALIZED ACTIVE MESSAGES

In this section we present our new design for MPI-
interoperable AMs that addresses the shortcomings discussed in
Section III. The design still leverages the MPI RMA framework
but is no longer based on MPI-accumulate operations.

A. Generalized User-Defined Function Handlers
We first propose a new prototype of the user-defined

function handler, MPIX AM USER FUNCTION, that would
execute when an AM arrives at a target (Figure 1), referred
to here on as the “AM handler”.

In the high-level working model the user defines a func-
tion handler with the MPIX AM USER FUNCTION proto-
type and creates an MPI operation (MPI OP) with that han-
dler, using MPIX AM OP CREATE. Once an MPI opera-
tion is created, the user collectively registers the operation
across a group of processes where every process provides
a functionally equivalent function handler.1 Thus, the MPI
operation represents a group of functionally equivalent han-
dlers distributed across processes. For such collective regis-
tration, in our previous work, we had proposed the function

1Two handlers are functionally equivalent, if one can be executed instead
of the other to get an equivalent result. For architectures that use different
byte-widths or byte-ordering for datatypes, the MPI implementation will need
to do the necessary data transformation before executing the handler.

MPIX AM WIN OP REGISTER, which we reuse here. The
functional equivalence of the handlers makes it valid for the
MPI implementation to replace one handler with another. For
example, instead of transmitting the AM to the target process,
the MPI implementation can fetch the target data locally and
execute the AM using the local equivalent handler. Such an
approach is particularly useful for shared-memory systems
where the “remote data” might be directly visible to the process
through shared memory.

The handler executes in user context (as opposed to an
interrupt or signal context) and has access to three buffers:
input, persistent, and output. Data in the input buffer
is provided by the origin; data in the output buffer is created
during the AM handler and is returned to the origin at the
completion of the AM. Both the input and output buffers
are private to the AM handler and are temporary. That is,
neither the buffer nor its content is valid outside of the AM
function handler. The MPI implementation can stage such data
in temporary buffers and discard the buffers or the data in those
buffers at the end of the AM handler. The persistent buffer
points to the part of the target window that the AM handler
has access to and is persistent across AMs. That is, the buffer
is available and valid outside of the AM handler as well. The
AM handler can update the data in the persistent buffer.

B. Active Message Triggers
We propose a new routine for issuing AMs, MPIX AM

(Figure 2), that manages the data and computation associated
with an AM. This section describes the data associated with
the AM. The computational function handler is represented by
am_op and was described in Section IV-A.

MPIX AM describes the computation to be performed on
the data but does not specify where the computation actually
occurs. Specifically, the AM origin and target only describe
the locality of the data. The MPI implementation can choose
to execute the computation on the target, origin, or any
other location. While forcing the computation to always occur
at the target would allow applications to better control the
computational resource usage, it would take away the MPI
implementation’s capability to trade computational locality for
less data movement, for example by moving the target data to
the origin process and computing on it locally. Unfortunately,
there is no clear winner between the two options. In our design,
we allowed the MPI implementation to have more flexibility
at the cost of fewer guarantees on the computational locality,
but the alternative choice is also reasonable.

MPIX AM allows the user to control parameters associ-
ated with three buffers: input, output, and persistent.
The input buffer represents data that would be transmit-
ted to the AM handler as input data. origin_input_addr
provides the origin local buffer associated with the
input data, while origin_input_segment_count and
origin_input_segment_datatype represent the data lay-
out. When the data is transferred to the target process, we
allow the data representation to be modified to a different lay-
out as represented by target_input_segment_datatype.
This capability is useful for applications that use sparse
data layouts on the origin for the input buffer (e.g., ele-
ments on the nonleading dimension of a matrix), but can
represent them in a more space-concise format at the target
(such as a contiguous list of elements). Note that the type
signature of origin_input_segment_datatype does not



MPIX_AM_USER_FUNCTION(input_addr, input_segment_count, input_segment_datatype, persistent_addr,

persistent_count, persistent_datatype, output_addr, output_segment_count,

output_segment_datatype, num_segments, segment_offset)

IN input_addr address of input buffer (choice)

IN input_segment_count number of elements in one input segment (non-negative integer)

IN input_segment_datatype datatype of each entry in input segment (handle)

INOUT persistent_addr address of persistent buffer (choice)

INOUT persistent_count number of elements in persistent buffer (non-negative integer)

INOUT persistent_datatype datatype of each entry persistent buffer (handle)

OUT output_addr address of output buffer (choice)

OUT output_segment_count number of elements in one output segment (non-negative integer)

OUT output_segment_datatype datatype of each entry in output segment (handle)

IN num_segments number of segments in input and output buffers (non-negative integer)

IN segment_offset current segment offset in input and output buffers (non-negative integer)

Fig. 1: Prototype of AM user-defined function

MPIX_AM(origin_input_addr, origin_input_segment_count, origin_input_segment_datatype, origin_output_addr,

origin_output_segment_count, origin_output_segment_datatype, num_segments, target_rank,

target_input_segment_datatype, target_persistent_disp, target_persistent_count, target_persistent_datatype,

target_output_segment_datatype, am_op, win)

IN origin_input_addr initial address of origin input buffer (choice)

IN origin_input_segment_count number of entries in each segment in origin input buffer (non-negative integer)

IN origin_input_segment_datatype datatype of each entry in origin input buffer (handle)

OUT origin_output_addr initial address of origin output buffer (choice)

IN origin_output_segment_count number of entries in each segment in origin output buffer (non-negative integer)

IN origin_output_segment_datatype datatype of each entry in origin output buffer (handle)

IN num_segments number of segments in origin input and output buffers (non-negative integer)

IN target_rank rank of target process (non-negative integer)

IN target_input_segment_datatype datatype of each entry in target input buffer (handle)

IN target_persistent_disp window offset to target persistent buffer (non-negative integer)

IN target_persistent_count number of entries in target persistent buffer (non-negative integer)

IN target_persistent_datatype datatype of each entry in target persistent buffer (handle)

IN target_output_segment_datatype datatype of each entry in target output buffer (handle)

IN am_op user-defined operation for the AMs (handle)

IN win window object used for communication (handle)

Fig. 2: Prototype of AM trigger routine
need to match that of target_input_segment_datatype.
However, there must exist a non-negative integer ‘N’,
where the type signature of origin_input_segment_count
× origin_input_segment_datatype should match that
of N × target_input_segment_datatype. In other
words, the runtime system should be able to repre-
sent the data in each segment using a collection of
target_input_segment_datatype elements. ‘N’ is inter-
nally calculated by the MPI implementation.

The output buffer represents data that is
returned to the origin once the AM handler
completes. origin_output_addr provides the
origin local buffer associated with the output
data, while origin_output_segment_count and
origin_output_segment_datatype represent the data
layout. Like the origin buffer, the data layout used at the
target process can be different from that returned to the origin
process, as represented by target_output_datatype. Each
segment can be viewed as a unit of work to be executed in
the AM. The input and output segment datatypes and their
counts represent the data associated with each unit of work.

The persistent buffer represents data that
already exists at the target process and is used
within the AM. target_persistent_datatype and
target_persistent_count represent the portion of the
data that is accessed by the AM. While the AM can represent
the entire target memory window using these parameters, an

accurate representation of the required target data can allow
the MPI implementation to optimize data movement in some
cases (e.g., where the target data is smaller than the origin
data, by fetching the target data and computing on it locally)
or better identify opportunities for concurrency or out-of-order
execution of AMs.

C. Data Streaming in Active Messages
Each AM comprises multiple segments as represented by

the num_segments parameter. The MPI implementation is
allowed to split an AM at any system-dependent size at the
granularity of one segment. Such capability is useful, for
example, when the user or the MPI implementation does not
have enough temporary buffers to stage the entire input and
output data specified by the user. Even when enough temporary
buffer space is available, the MPI implementation can choose to
pipeline the data transfer with the AM computation to improve
performance. One noteworthy difference compared with MPI-
accumulate operations is the granularity of segmentation. As
described in Section III, in MPI-accumulate operations, the
MPI implementation is permitted to segment a message at
the granularity of predefined datatypes. With MPIX AM, the
minimum granularity of segmentation is user-defined.

D. Data Buffering Requirements
As described in Section IV-A, each AM handler is associ-

ated with a temporary input and output buffer that are valid
only within the AM handler. An important question is who



is responsible for allocating and maintaining such temporary
buffers. Most previous AM frameworks assume that the runtime
system (in this case, MPI) would allocate and maintain such
buffers. However, given that there is no upper bound on how
much memory an AM would require, that is not a reasonable
assumption and must be carefully defined.

To this end, we propose two new routines:
MPIX AM WIN BUFFER ATTACH and BUFFER DETACH.
BUFFER ATTACH allows the user to provide temporary buffer
space to the MPI implementation to accommodate incoming
AMs. BUFFER DETACH reclaims the buffer from the MPI
implementation. While the MPI implementation might also
internally allocate additional temporary buffers, the application
cannot assume the availability of such internal buffers.

The size of the user-provided buffer must be large enough
to accommodate input and output buffers corresponding to at
least one AM segment. Also, the user buffer is shared by
AMs from all origins. Thus, the origin MPI implementation
might need to perform appropriate synchronization with the
target to “reserve” a part of the user-provided buffer before
it can send the AM data. Furthermore, the user-provided
temporary buffer must be large enough to accommodate the
target input and output buffers in the user-described, po-
tentially sparse, data layout. In other words, the temporary
buffer should be at least the MPI true extent of the target
input and output datatype counts (i.e., the extent returned by
MPI TYPE GET TRUE EXTENT). While the interface allows
sparse datatypes which have a small size but a large extent to
be used in the AM handler, such datatypes are discouraged in
practice because of the large memory usage they encompass.

E. Correctness Semantics
1) Ordering: We define three types of ordering: (1) between

AMs with the same operation; (2) between AMs with different
operations; and (3) between segments within one AM. By
default, our framework imposes strict ordering for all three
types from the same origin to the same target on the same
window with overlapping target buffers. For all other cases,
there is no ordering. The default strict ordering allows appli-
cations to reason about the state of the target window buffer
when multiple AMs update it. The application is assured that
a later AM is guaranteed to see the changes made by previous
AMs. However, such strict ordering requirements also place a
performance penalty on the MPI implementation. For example,
if an AM is blocked because of lack of sufficient buffer space
or any other issue, a future AM might also need to block.

To alleviate this issue, we allow the user to control the
ordering of AMs using the MPI info hint am ordering that
is set on the MPI window during window creation. The
value is a comma-separated list of the required ordering with
permitted values sameop, diffop, and sameam, for the three
cited types of ordering, respectively. The default value for
am ordering is “sameop,diffop,sameam,” which imposes strict
ordering for all three types. Any subset of these three orderings,
or a value “none” can be specified in order to relax strict
orderings. Reduced ordering guarantees can be beneficial for
some applications, for example those which use AMs that only
read the target data but do not update it. For such applications,
the more relaxed semantics can allow the MPI implementation
to reorder operations for better performance. We note that AMs
are completely unordered relative to other MPI operations.

2) Concurrency: When one or more origin issues multiple
AMs on the same target, the target can either serialize these

messages or execute them concurrently. While concurrent ex-
ecution has an obvious performance potential with respect to
the amount of computational resources used, it is restrictive
for applications since the AM handler has to be careful with
respect to its data accesses and rely on atomic operations or
locks in order to not conflict with other concurrent AMs. For
some applications, such a model might not even be feasible. To
handle this issue, by default, we require the MPI implementa-
tion to behave as-if the AMs are executed in some sequential
order. An MPI implementation is free to apply AM operations
concurrently for cases where concurrency is inconsequential.
For example, if the implementation can prove to itself that
the target data is nonoverlapping (on the granularity that
it cares about), then it can execute them concurrently. For
cases where the MPI implementation cannot easily identify
whether such concurrency would be inconsequential, the MPI
implementation might need to serialize the AMs at the target.

For applications that can handle concurrent AMs, the user
can further provide a hint to the MPI implementation using an
epoch start-time assertion, MPIX MODE CONCURRENT AM,
that would specify to the MPI implementation that within this
epoch the AMs are concurrency-safe. For example, applications
whose AMs do not overwrite each other’s changes or only read
data from the target window can provide such an assertion.
If such an assertion is passed, AMs that are within the same
epoch and are not separated by MPI WIN FLUSH operation
(or other flush-style operations) may be executed concurrently
on a window at the same target. AMs from the same origin or
from different origins may be executed concurrently.

We note that an MPI implementation might not be able
to control the ordering of concurrent AMs. Thus, if the user
requests strict ordering but provides an assertion to specify
that the AMs are concurrency-safe, an MPI implementation
might still have to disable concurrency to meet the ordering
requirement. We also note that concurrency of AMs or the lack
thereof does not restrict AMs from executing concurrently with
other RMA operations.

3) Atomicity: Our framework does not guarantee atomicity
of updates between concurrent AMs or between AMs and
other RMA operations. Thus, if two AMs update the same
memory byte on a target, the resultant value is undefined.
Similarly, if an AM accesses the same memory region as
another RMA operation, the resultant value is again undefined.
An exception to this rule is read-only accesses; if multiple AMs
read from the same location, or if an AM and another RMA
operation read from the same location, such accesses would
return the actual value at the target memory. We note that the
atomicity requirements described above are valid only for the
persistent buffer used in the AM and do not impact the
input and output buffers that are private to each AM.

4) Memory Consistency: MPI RMA defines two memory
models: UNIFIED and SEPARATE. In the SEPARATE model,
the MPI process can be viewed as having two copies of the
window: the public window that is addressable by all processes
and the private window that is local to each process. In
the UNIFIED model, there is a single copy of the window.
In practice, the SEPARATE model is more natural for non-
cache-coherent architectures where the consistency of the cache
with respect to memory has to be handled in software by
the MPI implementation, while the UNIFIED model is more
natural for cache-coherent architectures where such consistency
is managed in hardware. RMA operations access the public



window, and local loads/stores access the private window.
One primary difference between AMs and traditional RMA
operations is that AM handlers access the private window
rather than the public window. The reason is that operations
involved in the user function are local loads/stores invoked by
the target process and are not puts/gets/accumulates invoked by
the origin process. Furthermore, concurrent AMs at the same
target might each have a separate private window.

This difference between AMs and traditional RMA raises
several subtle interoperability issues. For example, in the
SEPARATE model, if an AM and a regular RMA operation
update the same window, the state of the data in that window
is undefined even if these operations update nonoverlapping
memory regions. The reason is that during an AM, if the target
process fetches a block of data to cache and an RMA operation
updates another nonoverlapping variable on same cache line,
such an update would be lost when the cache line is written
back to memory. MPI cannot keep track of such accesses.
Similarly, if two concurrent AMs access nonoverlapping re-
gions on the same target window, they both might have two
different copies of the private window, and can thus overwrite
each other’s changes to the window memory. Further, in both
memory models, each AM has to ensure that it sees updates
issued by previous RMA operations and leaves the window
in a consistent state for future RMA operations. Since the
AM handler function computes on the private memory region,
in the SEPARATE model, the MPI implementation will need
to flush the cache back to memory before returning the AM
completion notification to the origin. In the UNIFIED model,
while the status of the cache is managed by hardware, the MPI
implementation will still need to perform a full memory barrier
before and after the AM function handler executes, in order to
ensure that future reads from the window memory return the
updated data.

F. Other Considerations
One additional aspect to consider is whether an AM handler

can call other MPI functions. Two factors must be considered in
this regard. First, an AM handler might be executed by the MPI
implementation while it is making progress for another MPI
function (e.g., while it is waiting for a request to complete). In
this case, allowing the AM handler to execute an MPI function
would result in the execution reentering the MPI stack, thus
requiring the MPI routines to be reentrant safe. Second, since
an AM might execute concurrently with the main application
thread, calling MPI routines within an AM would require MPI
to be initialized in a thread-safe manner. Since the application
does not know whether the MPI implementation would execute
the AM concurrently with the application thread, the applica-
tion would always need to initialize MPI with a higher thread-
level than it would otherwise require. Alternatively, since the
MPI implementation would not know whether the application
is planning to make MPI calls within the AM handler or not,
it would automatically have to promote the thread-level to a
higher value than what the application would otherwise require.
To avoid these issues, in our current model we do not allow
AM handlers to call other MPI functions.

V. EVALUATION

For our evaluation, we used a 310-node system, with each
compute node consisting of 16 cores (total of 4,960 cores). The
nodes are connected with QLogic QDR InfiniBand Interconnect
(fat-tree topology). Our implementation is based on MPICH-

3.0.2. We implemented two common operations using AMs.
The first operation is a remote search operation, where the
origin initiates AMs with string sequences (20 characters)
to the target to search for matching strings and return them
to the origin. The second operation is a remote compute
of the summation of absolute values of two arrays. In the
first operation each segment has 20 characters as input and
20 characters as output, while in the second operation each
segment has 100 integers as input and 100 integers as output.
All experiments use an internal system buffer of 8 KB per peer
process, except Figures 4 and 5 which vary the buffer size.

A. Streaming Active Messages
As discussed in Section IV, MPIX AM is designed to allow

the MPI implementation to split an AM into smaller segments
for better pipelining or to limit memory usage for temporary
buffers. Here, we analyze the impact of such streaming (or
pipelining) of segments within an AM. Figure 3(a) illustrates
an experiment with the search operation, where we measure
the latency of performing a single AM within an epoch. When
the epoch ends, the AM has completed and a completion
notification has been sent to the origin process. The AM
consists of 100 segments, each segment requiring 20 bytes for
each of the input and output buffers. The MPI implementation
uses an internal buffer of 8 KB per peer process; thus, with a
single AM within the epoch, we are guaranteed that the MPI
internal buffer can accommodate the entire AM and the user
buffer is never used.

We notice a continuous drop in latency as we increase the
size of each pipeline unit (legend “latency”). With a pipeline
unit of 10 segments the latency of each AM is 115µs, while
with a pipeline unit of 20 segments the latency drops to 95µs,
a 17% reduction. Further increasing the pipeline unit drops the
latency by another 16%. To analyze this behavior, we profiled
the execution by measuring the cost of just the computation
without the overhead of AM data transfers and synchronization
(legend “function call time”). The drop in computation time
with increasing pipeline unit size is due to the reduction in
the number of function calls. When each pipeline unit is 10
segments long, the AM handler is invoked 10 times, each
with 10 segments to compute. When each pipeline unit is 100
segments long, the AM handler is invoked just once with 100
segments to compute. While the total amount of computation in
both cases is the same, the former has a 10-fold larger number
of function invocations. We also notice that the time to execute
the computation itself closely follows the trend of the AM
latency. The additional overhead compared to the computation
time is attributed to the AM data transfer and synchronization.

Figure 3(b) illustrates a similar experiment with the search
operation, where we measure the throughput of an AM by
performing 100,000 AMs within an epoch. Each AM consists
of 100 segments and each segment requires 20 bytes for each
of the input and output buffers. The MPI implementation uses
an internal buffer of 8 KB per peer process; thus AMs use
the internal buffers when available and fall back to the user
buffer when internal buffers are in use. We can seen that when
the pipeline unit is 40 segments, the highest throughput is
achieved. To analyze this behavior, we profiled the number
of segments that utilize the MPI internal buffers vs. the user
buffers (also Figure 3(b)). As we increase the pipeline unit, an
increasingly large fraction of the segments uses the user buffer,
thus requiring additional synchronization with the target. At
the same time, for very small pipeline unit sizes, the number
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(a) Remote search, latency test 
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(b) Remote search, throughput test 
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(d) Absolute value, latency test 
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(b) Absolute value, throughput test 
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Fig. 3: Communication latency and operation throughput with different numbers of segments per AM packet

of function calls can add a high overhead, as illustrated in
Figure 3(a). Consequently, we expect the best throughput to
be somewhere in between. For the search operation, a pipeline
unit of 40 segments happened to be the sweet spot, although
this value depends on the computational operation and other
system characteristics.

Figures 3(c) and (d) show the results of experiments similar
to those above but for the absolute value computation. The
performance trends are similar to those in Figures 3(a) and 3(b)
except that in Figure 3(c) the AM latency reaches its lowest
at a pipeline unit size of 40 segments and increases after that.
The reason is that, unlike the search computation, the absolute
value computation is more input data intensive, requiring a
larger amount of data to be transferred between the origin and
target. Thus, the pipeline size makes a significant difference in
how well the computation is overlapped with data movement.

B. Impact of Internal Buffers
The user is required to attach temporary buffers that can

be used by the MPI implementation to stage AM input and
output data. However, the MPI implementation can choose
to allocate additional internal buffers to improve performance
in some cases. In our implementation, the target allocates a
small amount of buffer space statically assigned to each origin
process (total internal buffer size would be this size times
the number of processes in the system). In this section, we
evaluate the impact of such internal temporary buffers on the
performance of AMs.

Figure 4 demonstrates the impact of increasing internal
buffer size on the throughput of AMs. We used the search
benchmark for our experiments, with each AM containing 100
segments and each epoch issuing 100,000 AMs. We notice that
the throughput of the AMs generally increases with increasing
internal buffer size up to a point and then levels off. The
reason for the performance increase is straightforward: when
more internal buffer space is available, the MPI implementation
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Fig. 4: Throughput: Impact of System Buffer Size
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can directly use the internal buffer instead of performing a
handshake with the target to get access to the shared user buffer.
With increasing internal buffer space, the number of times
such a handshake occurs reduces, improving performance.
The reason for the leveling off of the performance for very
large internal buffer sizes is subtle: the amount of internal
buffer size that a series of AMs can utilize is limited. As the
MPI implementation continues to issue more AMs, previously
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Fig. 6: Throughput: Impact of Ordering

issued AMs complete execution, thus freeing up buffers. Even
with a large number of AMs, the runtime system can reach a
steady-state where the data transmission and AM computation
would match up and more temporary buffer space would not
result in a performance increase.

Figure 5 demonstrates the impact of the internal buffer
size when multiple origins issue AMs to the same target. This
experiment is similar to the previous experiment except that
a large number of origins issue AMs to the same target. We
notice that for a small number of origins, the internal buffer size
(different lines on the graph) does not make much difference.
However, as the number of processes grows, we notice as much
as a 1.7 times difference in performance.

C. Impact of Ordering
In this section, we analyze the impact of ordering between

AMs on performance. In our experiment, we issue a number
of AMs within a single epoch alternating between ones that
requires a large temporary buffer space and ones that require
a small temporary buffer space. When the user requires strict
ordering between the AMs, the MPI implementation is required
to finish all previous AMs before issuing the next one. More
specifically, if an AM is blocked waiting for more memory than
what the MPI internal buffer can offer (thus requiring the user
buffer), all future AMs will also be blocked even if they can fit
into the MPI internal buffers. When the user does not require
such ordering, we can issue later AMs early, while waiting for
the larger user buffer to be available. Figure 6 illustrates the
performance difference achievable by such lack of ordering.
Removing strict ordering requirements can provide close to
25% improvement in performance. On architectures such as
Blue Gene, where multiple paths exist between the origin and
target, the ability to issue AMs out of order can also allow the
MPI implementation to use multiple paths for the operations,
thus further improving performance.

D. Concurrent Active Messages
In this section, we analyze the impact of executing AMs

concurrently. In our experiment, we have a number of origins
issuing AMs on a common target on the same physical node.
When there is no concurrency in the AMs, all AMs are
forwarded to the target and executed. However, when the user
allows for AM concurrency, each origin can take advantage of
the fact that the window data is shared across processes and
compute directly at the origin process itself. Figure 7 illustrates
the performance achievable through concurrency on an 16-core
system. Without concurrency, when number of processes is
16, the aggregated throughput achieved by the AMs can be
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Fig. 7: Throughput: Impact of Concurrency

more than nine-fold worse than with concurrency enabled. With
larger numbers of cores, we expect this difference to grow.

VI. CONCLUSIONS

We presented MPI-interoperable generalized AMs. We an-
alyzed usage restrictions and performance disadvantages when
extending MPI accumulate operations to support AMs, in-
cluding limitations on data layouts, data access, and memory
inefficiency issues. Based on the analysis, we proposed a new
design for MPI-interoperable AMs to provide a more flexible
and general usage model.
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