
Practical Model-Checking Method for Verifying
Correctness of MPI Programs

Salman Pervez1, Ganesh Gopalakrishnan1, Robert M. Kirby1, Robert Palmer1,
Rajeev Thakur2, and William Gropp2

1 School of Computing
University of Utah

Salt Lake City, UT 84112, USA

2 Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA

Abstract. Formal program verification often requires creating a model
of the program and running it through a model-checking tool. However,
this model-creation step is itself error prone, tedious, and difficult for
someone not familiar with formal verification. In this paper, we describe
a tool for verifying correctness of MPI programs that does not require
the creation of a model and instead works directly on the MPI program.
Our tool uses the MPI profiling interface, PMPI, to trap MPI calls and
hand over control of the MPI function execution to a scheduler. The
scheduler verifies correctness of the program by executing all “relevant”
interleavings of the program. The scheduler records an initial trace and
replays its interleaving variants by using dynamic partial-order reduction.
We describe the design and implementation of the tool and compare it
with our previous work based on model checking.

1 Introduction

Parallel programs are notoriously difficult to debug, and MPI programs, partic-
ularly those that have intricate control flow or employ relatively new features
such as one-sided communication, are no exception. Tools such as MARMOT
[7], MPI-CHECK [8], Umpire [16], and Intel Message Checker [2] can detect
many errors in MPI programs but do not guarantee that all interleavings of
the processes in the program being tested have been systematically examined.
While there are an exponential number of such interleavings, partial-order re-
duction [1, Chapter 10]—a class of methods belonging to the area known as
model checking [1]—offers specific approaches to examine only some (usually a
small fraction) of these interleavings and declare that the effect of examining all
the interleavings has been achieved. Partial-order methods are commonly used
to verify models of parallel programs. For MPI programs, this approach would
require that programmers build, either manually or automatically, a model (de-
scription) of their protocol in a language such as Promela [6], MPI-SPIN [13],
or Zing [9]. This model-creation step is known to be tedious and error prone.

We take the in situ approach to model checking, previously demonstrated in
the context of many languages, including C programs in tools such as [5, 18] and
Java programs in tools such as [17]. During in situ model checking, programs
written in the target language (usually with some obvious simplifications such
as data-range reduction) are directly model checked, without first creating a
model. In this paper, we describe our tool that performs in situ model checking
of MPI programs that use one-sided communication. We use a dynamic version
of partial-order reduction (DPOR, [3]) to reduce the number of interleavings,
thus being able to, in effect, exhaustively examine all traces of small (but intri-
cate) MPI programs. We call our tool in situ dynamic partial order, or ISP. ISP
handles many standard MPI communication functions, including MPI_Barrier,
various flavors of MPI_Send and MPI_Recv, and some MPI one-sided functions.
In this paper we focus on one-sided functions, partly because of the inherent
intricacies of handling one-sided communication under in situ scheduling. The
complex nature of MPI one-sided communication also forces us to use infor-
mation specific to the underlying library, MPICH2 in this case. One restriction
placed by MPICH2 is that for passive-target one-sided communication, the tar-
get process needs to be inside the MPI progress engine in order to process lock
requests. We account for this restriction in ISP as described in Section 2. ISP
can easily be extended to efficiently handle other MPI implementations.

To motivate the ISP approach, consider the simple MPI
0: MPI_Init

1: MPI_Win_lock

2: MPI_Accumulate

3: MPI_Win_unlock

4: MPI_Barrier

5: MPI_Finalize

Fig. 1. Simple MPI
program

program given in Figure 1, executed by two processes P0
and P1. Figure 2 shows how ISP examines two different
interleavings of this program. ISP employs the MPI pro-
filing interface, PMPI, to trap MPI calls and hand over
control of the MPI function execution to a scheduling
process. This scheduler can dictate the order in which
each process makes MPI calls. We define the block of
code starting from the beginning of an MPI call, going
forward in the code path including C program state-
ments, and ending at the beginning of the next MPI

call to be a transition (in our current example, there are no intervening C pro-
gram statements). We assume that no transition executes infinitely (MPI calls
always complete and the intervening C statements have no infinite loops). We
also assume that the MPI program is well formed in accordance with the MPI
Standard 2.0. The errors detected by ISP are safety properties [1], including
deadlocks, violations of assert statements placed by the user, and exceptions
thrown at runtime.

Given these assumptions, at Step 1, ISP would find processes P0 and P1 to
be runnable (Options). Assume that ISP randomly chooses P1, executing the
instruction shown against P1.1, which is an MPI_Win_lock. At Step 2, P0 and P1
are both runnable again; ISP picks P1, executing MPI_Accumulate. Proceeding
in this manner, we reach Step 4, where P1 executes MPI_Barrier. At this point,
the only runnable process would be P0, forcing Steps 5 through 8. The execution
of MPI_Barrier by P0 results in both processes becoming runnable once again.

First Second

Step Proc. Inter- Trace due to Inter- Trace due to

No. Options leaving First Interleaving leaving Second Interleaving

---- ------- ------- -------------------- ------- -------------------

1: P0 P1 P1 P1.1: MPI_Win_lock P1 P1.1: MPI_Win_lock

2: P0 P1 P1 P1.2: MPI_Accumulate P1 P1.2: MPI_Accumulate

3: P0 P1 P1 P1.3: MPI_Win_unlock P1 P1.3: MPI_Win_unlock

4: P0 P1 P1 P1.4: MPI_Barrier P1 P1.4: MPI_Barrier

5: P0 P0 P0.1: MPI_Win_lock P0 P0.1: MPI_Win_lock

6: P0 P0 P0.2: MPI_Accumulate P0 P0.2: MPI_Accumulate

7: P0 P0 P0.3: MPI_Win_unlock P0 P0.3: MPI_Win_unlock

8: P0 P0 P0.4: MPI_Barrier P0 P0.4: MPI_Barrier

9: P0 P1 P1 P1.5: MPI_Finalize P0 P0.5: MPI_Finalize

10: P0 P0 P0.5: MPI_Finalize P1 P1.5: MPI_Finalize

Fig. 2. Interleavings explored for the example in Figure 1

Now ISP picks P1, followed by P0, generating the first interleaving (the last two
actions being MPI_Finalize).

A näıve implementation of ISP would now backtrack to the decision point at
Step 9, picking P0 instead of P1, as shown by the second interleaving. We say
this is “näıve” because we know that the order in which MPI_Finalize is invoked
is immaterial. This is precisely what partial-order reduction does: it computes
which actions are commuting actions, meaning that their interleavings do not
produce any semantically observable changes in program outcome. Another com-
muting pair in the above program would be the two MPI_Barrier invocations.
Under a näıve approach, an N -way barrier can generate all N ! interleavings of
the order in which processes encounter the barriers; under partial-order reduc-
tion, we can simply generate one interleaving and claim complete coverage.

If our current example is run with MPICH2 with the MPI_Win_lock opera-
tion specifying an exclusive lock, the only actions that require interleaving are
the MPI_Win_unlock calls within which shared variable updates take place. For a
process accessing the MPI window remotely, only its MPI_Win_unlock call modi-
fies the communication window, posting all the accumulated updates within that
particular epoch. For this example, the ISP tool would generate two interleav-
ings as opposed to 504 interleavings3 if we were to use only the in situ feature
without DPOR. Since the theory of partial-order reduction is vast, we simply
present our assumptions as a table of commuting MPI operations (Figure 6),
citing past references [10] based on which such tables can be created. The table
can be adjusted to correspond to any MPI implementation of choice, or even to
suppress certain interleavings for quicker bug hunting. Also, as opposed to static
partial-order reduction where the commuting nature of the two MPI_Finalize
invocations would have been determined while going forward during the first
interleaving, we instead follow the dynamic approach to partial-order reduction,

3 2× (10!/(5!)2)

in which we fully generate the first interleaving and walk up the stack trace and
mark places where interleavings can be added. Space does not permit a fuller
description of DPOR; we note only that it exploits run-time information to effect
better reduction (e.g., wildcard communication, as described in [10]).

2 Basics of Scheduling and In Situ Model Checking

In situ model checking lets a scheduler control the transitions of the given
MPI program. The scheduler opens an array of communication channels (via
TCP sockets) through which it receives appeals from each process. The pseu-
docode in Figure 3 captures how the MPI call of a process (generically called
Generic_Func) is processed. Basically, the MPI function call is intercepted
by the profiling library. It then conveys the process id (pID), the call type
(Generic_Func), and the remaining arguments to the scheduler through the
sendToSocket call. In reply, the scheduler provides either a “go-ahead” or a
“loop” to the appealing processes. A loop signal indicates that the appealing
process must make an MPI_Iprobe call, a side-effect-free mechanism that causes
control to enter the MPI progress engine to process all queued-up events within
it. MPI_Iprobe is needed with MPICH2 in order to cause progress to occur on
communication with other processes, because MPICH2 does not use an asyn-
chronous progress thread in its progress engine.4 When the appealing process
receives “go-ahead,” it issues PMPI_Generic_Func, which then enters the MPI
library.

In situ model checking de-
MPI_Generic_Func(arg1, arg2...argN) {

sendToSocket(pID, Generic_Func, arg1,...,argN);

while(recvFromSocket(pID) != go-ahead)

MPI_Iprobe(MPI_ANY_SOURCE, 0, MPI_COMM_WORLD...);

return PMPI_Generic_Func(arg1, arg2...argN); }

Fig. 3. PMPI instrumentation pseudocode

pends on the designer’s
understanding of how a
given MPI library han-
dles each MPI call in terms
of the latitude allowed in
the MPI standard. For ex-
ample, MPICH2 treats a
MPI_Win_lock operation

issued from a remote (nontarget) process as a “no operation.” However, an
MPI_Win_lock issued by the target process may cause a lock on the one-sided
communication window to be acquired. Let us denote the MPI_Win_lock issued
from a target as MPI_Win_lock_T, from a nontarget as MPI_Win_lock_NT, and
use the altered names Win_unlock_T and Win_unlock_NT assuming the same
conventions. In our framework, these functions are used to indicate when the
“trapped control” comes to the MPI_Generic_Func associated with these calls.
We also use the notation PMPI_Win_lock_T to indicate the PMPI call coming after
the “trapped” MPI_Win_lock call issued by the target, and we similarly use the
notations PMPI_Win_lock_NT, PMPI_Win_unlock_T, and PMPI_Win_unlock_NT.
These PMPI calls signal the point at which the MPI system first knows that
these MPI calls are being made. We now present some of the scheduling deci-
4 MPI Iprobe does not have a version corresponding to MPI Generic Func; otherwise,

it would cause an infinite loop when these MPI Iprobes are trapped.

sions made by ISP. We explain these with the aid of Figure 1. We rely on the
following conventions:
• Because of the assumptions made in Section 1 about transitions, we know that
each time the scheduler will be handling up to N appeals of the form
sendToSocket(pID, Generic_Func, arg1,...,argN) (it would be N appeals
unless some process has executed a blocking operation).
• The scheduler also keeps track of the lock state of each MPI one-sided window.
We will use the terms window locked and window unlocked.

Consider P0 to be the owner of the window. We call the owner the target
because that is where all decisions about locking and unlocking the one-sided
MPI window are made. Consider the program in Figure 1 run using processes P0
and P1. Specifically, consider the scheduler actions with respect to the following
interleaving:
• P0 does MPI_Win_lock_T. The scheduler records that the window is locked,
and issues a go-ahead, permitting the PMPI_Win_lock_T call to be made.
• P1 does MPI_Win_lock_NT. The scheduler treats this as a ‘no op’ (reasons in
Section 1) and gives the go-ahead, allowing P1 to make the PMPI_Win_lock_NT
call.
• P1 does MPI_Accumulate. The scheduler gives the go-ahead, allowing P1 to
make the PMPI_Acccumulate call.
• P1 does MPI_Win_unlock_NT. Noting that the window is locked, the scheduler
gives the go-ahead, allowing P1 to make the PMPI_Win_unlock call. It records
that P1 is blocked.
• P0 does its MPI_Accumulate, receiving a go-ahead.
• P0 does its MPI_Win_unlock_T. Clearly, the scheduler must issue a go-ahead
to P0, causing PMPI_Win_unlock_T to occur, thus freeing up the window. Note
that P1 has already made its PMPI_Win_unlock_NT call. However the following
race condition could occur: P0 could hurry through the MPI progress engine
upon issuing PMPI_Win_unlock_T. Suppose P1’s lock request reaches P0 only
after P0’s PMPI_Win_unlock_T call has returned. However, since the MPICH2
progress engine has no separate thread to grant locks, P1’s successful acquisition
of the window is at the mercy of P0 entering the progress engine again, which
happens when P0 executes its PMPI_Barrier call.
• For simplicity, our scheduler is implemented in so that it moves only one
process at a time—in the current example, after we let go P1, we await P1 to
make its next MPI command appeal before entertaining any other process.
• However, if we keep P0’s appeal in abeyance, the following deadlock might
occur: The PMPI_Win_unlock_NT can cause an event to be placed in the target’s
event queue. These events are processed only when the progress engine is en-
tered. Since we have kept P0 in abeyance, however, the progress engine won’t
be entered.
• Instead of keeping P0 in abeyance, we keep sending “loop” to P0, which causes
the IProbe’s to be issued. This ensures that P1’s event will be processed, causing
P1 to reach its next MPI command, at which point we can stop sending “loop”
to P0.

1 S.add_last (<0...n-1>) /* randomly choose a proc to run at each depth */
2 backtrack.add_last(<n-1>)
3 done.add_last(<n-1>)
4 if(!fork ()) execlp(MPI program) /* run the given MPI program */
5 make all server connections
6 while(backtrack.size() > 0) {
7 current choice = pick randomly from backtrack
8 get readable envelopes for all runnable processes
9 current envelope = envelope for current choice

10 servers[current choice] << goahead /* the chosen MPI process may execute */
11 update block/unblock info for all processes based on current envelope
12 if(chosen process executed MPI_Finalize) {
13 specify that current choice is DONE
14 close(servers[current choice])
15 decrement active procsses }
16 if(active processes != 0) { /* backtrack shows no runnable procs. */
17 if(depth+1 >= backtrack.size ()) {
18 rprocs = <all currently runnable processes >
19 if(rprocs.size() == 0) /* POSSIBLE DEADLOCK */
20 close all socket connections
21 report deadlock and print trace}
22 else { /* current interleaving can be explored further */
23 S.add_last(<all runnable procs >)
24 backtrack.add_last(<S.last.last >) /* randomly choose a proc */
25 done.add_last(<empty >) } }
26 depth++ }
27 else {
28 /* we have gone through one interleaving of the program. Remove all
29 choices from S as well as backtrack until the last decision point.
30 This is where we had more than 1 choice of MPI processes. */
31 while(backtrack.size() > 0 && backtrack.last.size() == 1) {
32 updateBacktrackInfo ()
33 S.remove_last ()
34 backtrack.remove_last ()
35 done.remove_last () }
36 if(backtrack.size() > 0) { /* make sure search is not over */
37 remove most recent choice from backtrack at current depth
38 /* the next interleaving will be forced to take an alternate route */
39 reset checker state for next interleaving
40 if(!fork ()) execlp(MPI program)
41 make all server connections
42 depth = 0
43 active procs = n } } }

Fig. 4. DPOR-based scheduling algorithm

3 In Situ Model Checking with Dynamic Partial-Order
Reduction

The algorithm of Figure 4 shows how ISP exhaustively explores all relevant inter-
leavings of the given MPI process as determined by DPOR. The first interleaving
is chosen at random by following a standard depth-first search. It is then simply
a matter of traversing up the stack, having DPOR identify points where adding
interleavings might be useful, and carrying on the search.

The following data structures are used by ISP: S contains the set of processes
that are able to run at each depth; backtrack contains the set of processes that
are allowed to run at each depth; done contains the set of processes that have
been explored at each depth; servers is the set of n server connections, one with

S backtrack First Interleaving S’ backtrack’ S’’ backtrack’’

------ -------- ------------------- ------- --------- ------ ----------

P0 P1 P1 P1.1: MPI_Win_lock P0 P1 P1 P0 P1 P1

P0 P1 P1 P1.2: MPI_Accumulate P0 P1 P1 P0 P1 P1

P0 P1 P1 P1.3: MPI_Win_unlock P0 P1 P0 P1 P0 P1 P0

P0 P1 P1 P1.4: MPI_Barrier P0 P1 P1

P1 P0 P0.1: MPI_Win_lock P1 P0

P1 P0 P0.2: MPI_Accumulate P1 P0

P1 P0 P0.3: MPI_Win_unlock

P1 P0 P0.4: MPI_Barrier

P0 P1 P1 P1.5: MPI_Finalize

P1 P0 P0.5: MPI_Finalize

Fig. 5. DPOR algorithm applied to Example 1

each MPI process; and active processes is initialized to the number of MPI
processes n. The most interesting is the backtrack set. Readers may view it as
a set of sets that keeps track of meaningful interleavings at each depth. The
sets S and backtrack are almost identical except that S contains the meaningless
interleavings as well. Hence, a näıve implementation of ISP would simply discard
the backtrack set and refer only to S. We now explain how this algorithm works
by referring to the interleavings shown in Figure 5. Note that these interleavings
correspond to the MPI program of Figure 1.

S is initialized so that its first element contains both P0 and P1. The first
element of backtrack contains only P1, chosen at random; depth is initialized to
0. In lines 12–14 we choose a process randomly from backtrack at depth 0. Note
that for the entire first interleaving, there will only be one possible choice at each
depth. We then indicate to P1 that it may make its MPI call MPI_Win_unlock, by
answering its appeal with a go-ahead token. ISP must now update its internal
bookkeeping information. It does so in line 19 by noting which processes are
blocked/unblocked as a result of executing the chosen MPI process. We have
now reached a point where backtrack will indicate no possible choices in the
next step. Line 29 is responsible for calculating the runnable processes so they
can be added to the backtrack set. Again, both P0 and P1 will be added to S as
runnable processes. The last step is to increment depth and continue our random
depth-first-search algorithm.

The first significant digression from this pattern occurs when P0 calls
MPI_Finalize. At this point, since both processes have called MPI_Finalize,
we execute the else clause of line 45. The idea is to remove all the choices
already made, so that in the next execution of the loop, a different interleav-
ing can be explored. Thus, we remove the MPI_Finalize executed by P0. The
updateBacktrackInfo function then is called on line 51. This function traverses
up the set S and identifies any transitions that may need to be interleaved with
the MPI_Finalize just removed. If any such transitions are identified, the cor-
responding MPI process is added to the backtrack set.

Following our DPOR assumptions, no change results to the backtrack set. We
continue to remove choices until we reach the P0.3: MPI_Win_unlock call. This
time, the function updateBacktrackInfo updates the backtrack set to look like
backtrack’ in Figure 5. This indicates that the MPI_Win_unlock functions of P0
and P1 must be interleaved in order to get a different, meaningful interleaving.
We continue removing all choices that have already been taken until the back-
track set looks like backtrack”. At this point, we are ready to start our search
from the beginning.

The DPOR-based algorithm MPIFunctions Dependence

MPI Init None

MPI Send MPI Send, MPI Ssend, MPI Recv

MPI Ssend MPI Send, MPI Ssend, MPI Recv

MPI Recv MPI Send, MPI Ssend

MPI Barrier None

MPI Win lock None

MPI Win unlock MPI Win unlock

MPI Win free None

MPI Finalize None

Fig. 6. Supported MPI functions

of Figure 4 identifies all such
meaningful interleavings and
terminates the search either
when it encounters a deadlock
scenario on line 30 or the search
is completed. The commuting
MPI operations assumed by
ISP are given in Figure 6.

4 Case Study:
Byte-Range Locking

Our work in [11] described how we model checked the byte-range-locking protocol
presented in [15]. This uncovered a subtle but crucial deadlock bug that had gone
unnoticed during testing. With the help of ISP, we successfully caught this bug
in the source code of this protocol. We note that no modeling effort and no
changes to the source code were required. The results are presented in Figure 7.
ISP has been tested on other smaller protocols and has worked as expected. It
can be viewed as an exhaustive testing facility that gives the effect of examining
all interleavings of small but intricate MPI programs.

The most striking
Program #procs interleavings interleavings

w/o DPOR with DPOR
byterange

reduced depth 2 2289 119
byterange

full depth 2 - 1522

Fig. 7. Experimental results

feature of these results
is that ISP was un-
able to find this bug
without using DPOR.
The search algorithm
was aborted after it
did not finish within
24 hours. Our knowl-
edge of the algorithm

allowed us to reduce the search depth and find the bug more quickly. By en-
abling DPOR within ISP, however, we were able to reproduce the deadlock sce-
nario without having to reduce the search depth. While a hand-written model
of the same protocol using SPIN could find the same bug without partial-order
reduction [11], with ISP we have eliminated the nontrivial task of modeling MPI
programs in Promela. The ISP approach is especially beneficial if the interven-

ing C statements between MPI calls cannot easily be modeled in Promela, the
actual MPI library in use cannot faithfully be modeled, or the error is triggered
by a bug in the MPI library.

All our experiments consisted of test programs up to a depth of 20. In other
words, they each had fewer than 20 MPI function invocations. Model checking
such programs can take anywhere from half an hour to an hour on a single 1 GHz
processor with 1 GB of memory.

5 Related Work and Conclusions

Model checking has been used for verifying MPI programs by Siegel et al. in
[13, 14]. The closest related work to ours is [18], where distributed in situ model
checking for Pthreads programs has been presented.

In our experience with the byte-range-locking algorithm, the initial program
presented in [15] exhibited no discernible bugs, even with conventional testing.
However, porting the same program to a laptop caused deadlock. This prompted
us to model the protocol in Promela, revealing the bugs reported in [11]. This
paper thus comes full circle, and shows that the same bugs can be detected at
the C program level without model extraction.

Clearly, restarting ISP from MPI_Init in order to explore each new inter-
leaving requires a huge overhead, even with partial-order reduction dramatically
reducing the number of interleavings. To reduce the overhead, we plan to explore
three ideas: (i) divide the program using MPI barriers, and interleave only the
code between two subsequent barriers, cutting down the extent of interleavings
and also helping to localize errors; (ii) use MPI checkpointing systems (e.g., [4])
to see whether we can checkpoint intermediate states and restart from there as
opposed to restarting the search from MPI_Init; and (iii) use distributed ISP.
We hope to research these topics in the context of ISP.

We would also like to make ISP compatible with all MPI library implemen-
tations, not just MPICH2. One issue is that the MPI standard gives too much
freedom to implementors. For example, the blocking semantics of MPI_Send and
some of the one-sided functions are far from being well defined. However, with
ISP it is possible to force the underlying MPI library to follow a stricter inter-
pretation of the MPI standard. This approach will allow ISP to be used with any
MPI library that conforms to the MPI standard. The code of ISP is available at
[12].

Acknowledgments

This work was supported by NSF award CNS-0509379, by the Microsoft HPC
Institutes program, and by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357.

References

1. Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Cambridge, MA, 1999.

2. Jayant DeSouza, Bob Kuhn, Bronis R. de Supinski, Victor Samofalov, Sergey Zhel-
tov, and Stanislav Bratanov. Automated, scalable debugging of MPI programs with
Intel Message Checker. In SE-HPCS ’05, pages 78–82, 2005.

3. Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In POPL, pages 110–121, 2005.

4. Q. Gao, W. Yu, W. Huang, and D. K. Panda. Application-transparent check-
point/restart for MPI programs over InfiniBand. In ICPP, August 2006.

5. P. Godefroid. Model checking for programming languages using Verisoft. In POPL
97: Principles of Programming Languages, pages 174–186, 1997.

6. Gerard J. Holzmann. The Spin Model Checker. Addison-Wesley, 2003.
7. Bettina Krammer and Michael M. Resch. Correctness checking of MPI one-

sided communication using MARMOT. In EuroPVM/MPI 2006, pages 105–114,
September 2006. LNCS 4192.

8. G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva, and Y. Zou. MPI-CHECK:
A tool for checking Fortran 90 MPI programs. Concurrency and Computation:
Practice and Experience, 15:93–100, 2003.

9. Robert Palmer, Steve Barrus, Yu Yang, Ganesh Gopalakrishnan, and Robert M.
Kirby. Gauss: A framework for verifying scientific computing software. In Workshop
on Software Model Checking, 2005. ENTCS 953.

10. Robert Palmer, Ganesh Gopalakrishnan, and Robert M. Kirby. Semantics driven
dynamic partial-order reduction of MPI-based parallel programs. In PADTAD,
2007.

11. Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby, Rajeev Thakur, and
William Gropp. Formal verification of programs that use MPI one-sided commu-
nication. In EuroPVM/MPI, pages 30–39, 2006.

12. Preliminary release of the ISP software at
http://www.cs.utah.edu/formal verification/isp.tar.gz.

13. Stephen F. Siegel. Model checking nonblocking MPI programs. In Verification,
Model Checking, and Abstract Interpretation (VMCAI), January 2007.

14. Stephen F. Siegel and George S. Avrunin. Verification of MPI-based software for
scientific computation. In SPIN Workshop, pages 286–303, April 2004.

15. Rajeev Thakur, Robert Ross, and Robert Latham. Implementing byte-range locks
using MPI one-sided communication. In EuroPVM/MPI, pages 120–129, Septem-
ber 2005.

16. Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic software testing of MPI
applications with Umpire. In Proc. of SC2000, pages 70–79, 2000.

17. Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model
checking programs. In ASE, September 2000.

18. Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby. Dis-
tributed dynamic partial order reduction based verification of threaded software.
In Workshop on Model Checking Software (SPIN 2007), July 2007.

