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Abstract

Massively parallel computersare increasingly being
usedto solvelarge, /O intensiveapplicationsin manydif-
ferent fields. For sud applications,the I/O requirrments
quite often presenta significant obstaclein the way of
achieving goodperformanceandanimportantareaof cur-
rent reseach is the developmentof techniquesby which
thesecostscan be reduced. One such approad is collec-
tive /0O, whee the processorgoopentivelydevelopan I/O
strategy that reduceghe numberandincreaseghe size,of

I/O requestsmakinga mud betteruseofthel/O subsystem.

Collectivel/O hasbeenshownto significantlyreducethe
costof performingl/O in manylarge,parallel applications,
andfor thisreasonservesasanimportantbaseuponwhich
we canexplore othermetanismswhich canfurther reduce
thesecosts. One promisingapproad is to usethreadsto
performthecollectivel/O in thebadkgroundwhile themain
threadcontinueswith othercomputatiorin the foreground.

In this paper we explore the issuesassociatedvith im-
plementingcollectivel/O in the badkgroundusingthreads.
The mostnatural approadc is to simply spawnoff an I/O
threadto performthecollectivel/O in thebadkgroundwhile
the main thread continueswith other computation. How-
ever our reseach demonstatesthat this approad is fre-
guentlythe worstimplementatioroption, oftenperforming
mud more poorly than just executingcollectivel/O com-
pletelyin the foreground. To improvethe performanceof
thread-basedollectivel/O, we developedan alternateap-
proach wheee part of the collective /O opeiation is per
formedin thebadground,andpartis performedn thefore-
ground.\We demonstatethat this new tecdhniquecansignif-
icantly improvethe performanceof thread-basedollective
I/O, providing up to an 80% improvemenbver sequential
collectivel/O (whee thete is no attemptto overlapcompu-
tationwith I/O). Also,wediscussoneveryimportantappli-
cation of this reseach which is the implementatiorof the
split-collectiveparallel I/O opelationsdefinedn MPI 2.0.
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1. Intr oduction

Massiely parallel computersare increasingly being
usedto solwe large, I/O-intensive applicationsin several
differentdisciplines. However, in mary suchapplications
thel/O subsystenperformspoorly, andrepresents signif-
icant obstacleto achiering good performance. The prob-
lem is generallynot with the hardware;mary parallel /O
subsystemsffer excellentperformance.Rather the prob-
lem arisesfrom otherfactors,primarily thel/O patternsex-
hibited by mary parallelscientificapplicationg5, 14]. In
particular eachprocessotendsto makea large numberof
small /O requestsjncurring the high costof 1/O on each
suchrequest. One reasonfor this accesspatternis that
parallelscientificcodesfrequentlyinvolve large arraysdis-
tributedacrossthe processos local memory After a pro-
cessomperformssomecomputatioronits local array it will
often needto read/writeits portion of the arrayto/from the
file system.If the processos local portion of the arrayis
not storedin a logically contiguousfashion,the processor
will beforcedto makea seriesof disjointedl/O requestdo
completethe operation.While eachprocessomay needto
performseveral, disjointedrequestsit is oftenthe casethat
in the aggregatethe whole arrayis beingwrittento or read
from the file system. The applicationcanusethis knowl-
edgeto significantlyimprove its 1/0O performance.

The techniqueof collectivel/O hasbeendevelopedto
betterutilize the parallell/O subsystenfi, 19, 20, 2, 15, 18,
3]. In this approachthe processorgxchangeinformation
abouttheir individual I/O requestdo develop a picture of
theaggregatel/O requestBasedon this globalknowledge,
I/O requestarecombinedandsubmittedn their properor-
der, makingamuchmoreefficientuseof thel/O subsystem.

Two significanimplementatioriechniquedor collective
I/O aretwo-phasd/O [6, 19, 20] anddisk-directed/O [13,
16]. In disk-directed/O, the collective I/O requestis sent
tothel/O processorgvhichcollectively determineandcarry
outtheoptimal l/O stratgy. In thetwo-phasepproachthe
applicationprocessorsollectively determineandcarry out
theoptimizedapproachin this paperwe dealonly with the
two-phasepproach.



Considera collective readoperation. If the datais dis-
tributedacrosghe processorin away thatconformsto the
way it is storedon disk, eachprocessocanreadits local ar
ray in onelarge /O request.This distribution is termedthe
conformingdistribution,andrepresentsheoptimall/O per
formance. Assumethe array is not distributedacrossthe
processorsn a conformingmanner The processorgan
still performthe read operationassumingthe conforming
distribution, andthenuseinterprocessocommunicatiorto
redistrilutethe datato the desireddistribution. Sinceinter-
processocommunications ordersof magnitudeasterthan
I/O operationsit is possibleto obtainperformancehatap-
proacheghatof the conformingdistribution.

Thuscollective I/O playsa critical role in reducingthe
cost of 1/0 requirementsand it provides the basisfrom
whichwe canexploreotherapproacheto furtherreducehe
impactof suchoperationsA very promisingapproachs to
usethreadgto executethe collective I/O in the badkground
while continuingwith othercomputatiorin theforeground.

There are mary factors which can impact the perfor
manceof thread-basedollective 1/0. Paramountamong
theseis the parallel architectureand the configurationof
the parallelfile system. Threadswitching costs,incurred
whenthe background/O threadandthe mainthreadcom-
petefor the CPU, alsohasa tremendousmpacton perfor
mance Additionally, thetype of computatiorperformecdby
themainthreadalsoimpactsperformanceOtherimportant
factorsincludethreadschedulingandthe memoryavailable
to performthe collective /O operation.

In this paperwe studytheissueof implementinghread-
basectollectivel/O, anddo sofor fourimportantmassiely
parallelarchitecturesthe IBM SP2,the Intel Paragon the
HP Exemplar and the SGI Origin 2000. This research
shavsthatthe mostnaturalimplementatiorchoice,to sim-
ply spavn off athreadto performthe whole collective /O
routinein the backgroundjs quite often the worstimple-
mentationoption. We demonstratehat this approachm-
provesperformanceon only onearchitectureandproduces
significantlyworseperformancentwo of thefour architec-
tures. To overcomethis poor performancewe developeda
techniquavherepart,but notall, of thecollectivel/O is per
formedin the background We demonstrateéhatthis modi-
fied techniquejn generaljs a muchbetterimplementation
optionthaneitherperformingthewholecollective /O oper
ationin the foregroundor performingthe whole operation
in the background.

An importantapplicationof this researchs the develop-
mentof implementatiortechniquedor the split-collective
parallel I/O operationsdefinedin MPI 2.0. Theseopera-
tionsprovide animplementatiortheopportunityto perform
collective I/0O in the backgroundbput therearecurrentlyno
implementationsvhich do so (at leastnot published).The
widespreadiseof MPI, andtheimportanceof portablepar

allel I/O operationsmakethis a very importantandtimely
applicationof this research.

The restof the paperis organizedas follows. In Sec-
tion 2, we discusghetechniqueof collective I/O andsplit-
collective operationsgn moredetail. In Section3, we study
the performanceof variousapproache$o overlappingcol-
lective I/O and computation.In Section4, we discussre-
latedwork andwe provide our conclusionsn Section5.

2. Collectivel/O

Most parallelarchitecturegprovide someform of hard-
waresupportfor parallel1/O. In generalthis supportcon-
sistsof a setof /0 processorsachof which controlssome
numberof disks. The datain afile is dividedinto a setof
striping units, eachof which represents logically contigu-
ousportion of the file data. Thesestriping units are (gen-
erally) distributedamongthe disksin aroundrobin fashion
andarecontiguouson a disk. Performanceés enhancedbe-
causeconcurrentrequestdo different positionswithin the
samefile canbe servicedn parallelby thel/O subsystem.

2.1.Split-Collective I/O Operations

The MessagePassinginterface(MPI) [12] is theemeg-
ing standardoy which distributedcomputerscommunicate
and synchronize. As such, it provides a platform upon
which portabledistributedcodescanbe developed.There-
cently releasedVIPI 2.0 standardncorporategarallel I/O
into the specification. As noted above, this specification
includessplit-collectiveoperationswhich providestheim-
plementationthe opportunityto perform collective 1/0O in
thebackground.

A split-collective operatiorhasabegin statementwhich
initiates the collective 1/0, and an end statementwhich
blocks the calling threaduntil the collective operationis
completed Betweenthe begin andend statementgheim-
plementationmay allow the main threadto continuewith
its computatiorwhile the collective I/O operationis carried
outin the backgroundpverlappingthe two operations We
saymaybecaus@ correctimplementatioroptionis to block
themainthreaduntil thecollective I/O operationcompletes,
thus executing the collective 1/O andthe computationse-
guentially Currently thereis no documentedmplementa-
tion of MPI parallel /O that overlapscomputationin the
mainthreadwith collective I/O in thebackground.

There are essentiallythree implementationoptions for
split-collective /O operationsto performall of the collec-
tive I/O in the backgroundto perform part of the collec-
tive /0 in the backgroundandpartin the foreground,and
to perform none of the collective 1/0 in the background.
In the first case,execution of the begin statementwould



spavn anl/O threadto performthe collective I/O. Immedi-
atelyafterexecutionof the begin statementhe mainthread
would continue with its computation. The background
threadwould simply exit whenit completecthe collective
I/0, andthe mainthreadwould block on the end statement
until the backgroundhreaddid exit. In the secondoption,
part,but notall, of the collective I/O would be performedn
the background Considera collective write requestWhen
the main threadexecutesthe begin statementthe imple-
mentationmay chooseto executeall of the collective 1/0
routine exceptthe actualwrite to disk in the foreground,
and perform the write to disk in the background. In this
casethe main threadwould againblock on the end state-
mentuntil the /O threadexited. This sequenceavould be
reversedin the caseof a collective readoperation. In the
final implementatioroption, the begin andend statements
would beessentiallyignoredandtherewould beno attempt
to overlapcomputatiorwith collective I/O. In thefollowing
sectionswve explore eachof thesealternatves.

3. Experiments
3.1.Computational Platforms

In orderto makeour conclusionsas generalas possi-
ble, we conductedill experimentson four massvely paral-
lel machines.Two of the machinesthe IBM SP2andthe
Intel Paragon,are distributed memoryarchitectures. The
othertwo, the SGI Origin 2000 andthe HP Exemplar are
distributedsharedmemory(DSM) architecturesThe IBM
SP2is locatedat ArgonneNationalLaboratoryandconsists
of 80computenodesand4 1/O processorsEachl/O proces-
sorcontrolsfour SSAdisks,eachwith a9 Gigabytecapac-
ity. Thelntel Paragoris locatedatthe Californialnstituteof
Technologyandis configuredwith 381 computenodesand
641/0 processorsEachl/O processocontrolsa4 Gigabyte
seagatarive. The SGI Origin 2000, housedat Argonne
National Laboratory is configuredwith 128 computepro-
cessoraindtwo fibre channelconnectiongachof whichis
connectedo adiskarraywith 1109-Gigabytedisks. These
two fibre channelkconnectionsaresharedy all of thecom-
pute processorsThe HP Exemplar locatedat the Califor-
nia Instituteof Technologyis configuredwith 256 compute
processorgroupedin clusterstermedhypernodes Each
hypernodeconsistsof 16 computeprocessorand4 Giga-
bytesof sharedrandomaccessnemoryconnectedhrough
anon-blocking8 X' 8 cross-baswitch. Eachhypernodenas
its own localfile systemandafile systemcannotspanmore
than one hypernode. In general,the file systemsconsist
of eight diskswith a total of 35 Gigabytesof storage(al-
thoughthereis somevariationfrom hypernodeto hypern-
ode). Sinceafile systemcannotspanmorethanonehyper
node,parallelaccessdy morethan 16 processorsnustall

flow throughthe samehypernodeon which thefile system
is located.

3.2.Experiment 1: Non-collectivel/O and Threads

Thefirst setof experimentswasdesignedo provide an
estimateof the maximumspeedupbtainableby overlap-
ping computatiorwith 1/O operationsTheapplicationpro-
gramsimply repeatedhe executionof a computephaseol-
lowed by an I/O phase. The computephaseconsistedof
performingsomenumberof floating point multiplications,
andthel/O phaseconsistedf eachprocessowriting afour
Megabytesectionof anarrayto diskassumingheconform-
ing distribution. Thatis to say the processorgid not en-
gagein a collective phaseto mapout the optimall/O strat-
egy anddid not collector redistribute dataamongthe pro-
cessors.Eachprocessosimply performedonelarge write
of four Megabytesto different locationson the disk. The
timetakento completehecomputephasevascontrolledby
varying the numberof floating point operationgerformed
duringthatphase.Theseexperimentsvereperformedwith
8, 16, 32 and 64 processorswherethe lengthof the com-
putephasewascalibratedto takeapproximatelyaslong as
the averagel/O phasewith 64 processorsSinceeachpro-
cessormwrote four Megabytesto the file, the total number
of byteswritten was 32 Megabyteswith 8 processors64
Megabyteswith 16 processorsl 28 Megabyteswith 32 pro-
cessorand256 Megabyteswith 64 processors.

The metric of interestis the time requiredto complete
both the computationphaseandthe /0O phase.In the first
approachtheapplicationperformedhecomputephaseand
thel/O phasesequentially(i.e. therewasno overlapof com-
putationand1/O). In the secondapproachthe application
spavnedathreadto performthel/O in thebackgroundand
thenimmediatelyenterednto its computephase Themain
threadblockeduntil bothphasesverecompleted.

The resultsare shavn in Figure 1. As canbe seen,all
of the architecturesexceptfor the HP Exemplar shov ex-
cellentimprovementin performanceasthe numberof pro-
cessorandthesizeof thefile aresimultaneouslyncreased.
With 64 processorghe SP2shavedanimprovementn per
formanceof 37%, the Paragonshaved animprovementof
35%,andthe SGI Origin producedanimprovementof 49%.
TheExemplarshavednoimprovementin performancevith
64 processorsmnostlikely becausall of thefile actiity is
funneledthrougha single hypernodecreatinga bottleneck.
The Exemplardoesshav a modestimprovementin perfor
mancewith 8, 16 and32 processors.

Theseresultsshawv thatspavning abackgroundhreado
overlap /O with computationcanresultin significantper
formancegains,at leastwhenthe I/0O threaddoesnothing
but performasingle,large write to disk.
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Figure 1. This figure shows the impr ovement
in performance that is possible when (non-

collective)
tion.

I/O is overlapped with computa-

3.3.Collectivel/O and Threads

In this section, we investigateoverlapping collective
ratherthannon-collectve /0O with computation.Thusthe
wholecollectivel/O operatioris executedjncludingtheuse
of inter-processocommunicatiorto collectively determine
the optimall/O stratgyy andto redistribute the dataamong
the processorsas needed. Theseexperimentsassumean
SPMD computationwhereeachprocessorcomputesover
a differentregion of a 4096 X 4096 array of integers. The
arrayis distributedamongthe processorsn a block-block
distribution. We hold the size of the array constant,and
measurehe time requiredto completeboth the computa-
tion andcollective I/O for 8, 16,32 and64 processorsThe
collective I/O operationis a collective write. We notethat
dueto memoryconstraintsywe employedl 6,32,64and128
processorentheIntel Paragon.

As notedabove, the mostnaturalimplementatioroption
is to simply spavn a threadto performthe collective 1/0
operationin the backgroundwhile the main threadcontin-
ueswith its computationin the foreground. In terms of
implementationtechniquesfor split-collective operations,
this correspond$o spavning anl/O threadwhenthebegin
statemenis executed,allowing the main threadto imme-
diately enterinto its computeloop, andblocking the main
threadattheend statemenuntil thecollective I/O operation
is completed.We comparethis approachwith performing
thecomputatiorandcollective I/O in sequence.

In Figure 2, we comparethesetwo approachesandas
canbe seentheresultsarequite disappointing.The useof
abackgrounadhreadto overlapcomputatiorwith collective
I/O resultedin little, if arny, improvementin performance
for any architectureother thanthe IBM SP2. On the HP
Exemplarandthe SGI Origin 2000, this approachactually
deceaseperformancesometimesignificantly Ontheln-
tel Paragon,the performanceof both approachess about
the same. This shows that merely spavning a background
threadto performthecollective /O operationis not, in gen-
eral,sufficient to achievze high performance.

To understandheseresults,it is importantto differenti-
ate betweenuserlevel threadswherethe threadsare exe-
cutingin userspaceyersuskernel-lezel threadswherethe
threadsaremanagedy the kernel. With userlevel threads,
thereis verylittle context andthusthe costof threadswitch-
ing is quite low. The trade-of however is that when a
userlevel threadblocks, suchaswhenit performsa write
to disk, the whole processs blocked, not just the calling
thread.With kernel-level threadspnly the calling threadis
blocked,allowing computatiorandl/O (or communication)
to be overlapped. However, the kernel mustscheduleand
control thesethreads. While the costof managingkernel-
level threadsis lessthanthat for a heary-weight process,
this costis still greaterthanthe costof implementinguser
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Figure 2. This figure shows the time required
to complete both phases when performed in
sequence, and when a thread is spawned to
execute the collective 1/O in the background.

level threads. For this reason kernel-level threadsare of-
tentermedlight-weightprocessesilt is kernel-level threads
thatareusedin this project,andtheimplementatiorthusin-
currsthehigherthread-switchingostsassociateavith such
threads.

Now considerthat only parts of the collective 1/0 al-
gorithm can be overlappedwith computation. In particu-
lar, settingup andinitiating communicationssettingup the
disk write andcopyingto andfrom messagéufferscannot
beoverlappedvith computation Thetime spentwaiting for
messageo arrive andwaiting for a write to disk to com-
plete can be overlapped. Thusthereis a trade-of. When
the actionstakenby the 1/0O threadcannotbe overlapped
with the main thread, the two threadsare competingfor
control of the CPU. This of courserequiresthe multiplex-
ing of threadson andoff the CPU, incurring the relatively
high costsof threadswitching. As shawn in this setof ex-
perimentsthe performancegainsobtainedby overlapping
(parts)of the collective I/0O with computationareoffset, or
morethanoffset, by the overheadof threadschedulingand
threadswitching.

To reducethesecosts,we modifiedthe implementation
suchthatthe collective I/O threadperformedpart, but not
all, of the collective I/O algorithm. In particular all of the
copyingandinterprocessocommunicatiorrequiredby the
collective I/O algorithmare performedby the main thread.
Thel/O threadis spavnedto performonly the actualwrite
to disk. With this approachcompetitionbetweenthe main
threadandthe I/O threadis minimized,andthe overlap of
computatiorandl/O is maximized.

Considerhow this approachcorrespondgo the imple-
mentationof split-collective operations. When the main
thread executesthe begin statementthe initial phaseof
the collective I/O operationis executedby the mainthread.
Thisincludesall of theactvity requiredto getthe datadis-
tributedamongthe processorén suchaway thateachpro-
cessorcanperformits write to disk assuminghe conform-
ing distribution. Oncethis partof thecollective I/O routine
is completeathreadis spavnedto performthe actualwrite
to disk andthe main threadentersinto its computephase.
Executionof the end statemenblocksthe mainthreadun-
til thewrite to disk is complete.(The orderof theseevents
wouldbereversedn thecaseof acollective readoperation.)

The performancef the threeimplementatioroptionsis
shavnin Figure3. As canbeseengxecutingonly theactual
write to disk in thebackgroundcanprovide significantper
formancebenefits.On the Intel Paragon this stratgy pro-
videsup to a 27% improvementin performanceover both
of the othertechniques.On the SGI Origin 2000, spavn-
ing athreadto performonly the disk write resultsin a 33%
improvementover the sequentiabpproachanda 49%im-
provementwhen comparedo executingthe whole collec-
tive I/O operationin the backgroundOn theHP Exemplar



spavning a threadto performonly the disk write performs
roughly aswell asperformingthe two phasesn sequence.
However, it exhibits an 49% improvementover perform-
ing the whole collective 1/0O operationin the background.
Onthe IBM SP2,both of the thread-basedtratgies per
form at approximatelythe samelevel, and demonstrateip
to an 46% improvementover executingthe two phasesn
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performthe write to disk iteratively. This would certainly °° ‘ ‘ ‘

have a negative impacton performanceandin suchcases o semseni

the besttechniqguemay be to performthe whole collective
I/O operationin theforeground.

3.4 Overlapping Communication with Collective
I/0

Thusfar, we have looked at performancevhencompu-
tation is overlappingthe collective I/O operation.lt is also
importantto consideroverlappingcommunicatiorwith col-
lective 1/0. To investigatethis issue,we left all of the pa-
rameterghe sameexceptfor replacingthe computephase
with acommunicatiorphase.ln the communicatiorphase,
processotV repeatedlysendsan eightkilobyte messagé¢o
processorN + 1, andreceves an eight kilobyte message
from processotV — 1. All communicatioris synchronous.
The time spentin the communicationphaseis againcal-
ibratedto take approximatelyas long as the averagel/O
phasewith 64 processors.We are againinterestedn the
time requiredto completeboththe communicatiorandcol-
lective 1/O phases.

In this setof experiments,we comparedhe sequential
implementationwherethereis no attemptto overlap the
communicatiorwith the collective 1/0, andthe implemen-
tation techniquethat spavns a threadto performonly the
actualwrite to disk. We note that we could not overlap
the completecollective /O operationwith communication
sincethe communicatioriibrarieson threeof the four ma-
chinesarenot thread-safeglisalloning callsto the commu-
nicationlibrary by morethanonethread.

Theresultsof this experimentareshowvn in Figure4. As
canbe seen,performingcommunicationratherthan com-
putationin the main thread did have a negative impact
on performance. On the SP2, the improvementin per
formancefell from 46% to 34%. On the SGI Origin the
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improvementdroppedfrom 33% to 23%, and on the In-
tel Paragontheimprovementin performancealroppedrom
27%to 18%. Thereasonfor this decreasén performance
is thatthe mainthreadandthe /O threadarecompetingfor

Figure 3. This figure showns the performance
of the three implementation options for split-
collective 1/O operations.
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networkresourcesoncurrently It is interestingo notethat Overlapping Communication with Computation
performanceon the HP Exemplaractuallyimproved when S
computationwvasreplacedy communicationalthoughthis
improvementdecreasess the numberof processorsap-
proache$4. Thetechniqueof spavningathreado perform
only thewrite to diskappearso scalewell asthenumberof
processorsandconsequentlyhetotal numberof messages

in the network,aresimultaneouslyncreased.
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foundin [9, 7, 10].
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Theresearclpresentedhereclearly demonstratethatit
is possibleto obtaingoodperformancdy overlappingcom-
putationwith collective 1/O, but it is not automatic We &\i//»
have alsoshovn thatthemostnaturalimplementatiortech- 0 B ——

. . . 0 50 100 150
nigue,thatof simply spavning a backgroundhreadto per
form the whole collective I/O operation,is in general,not
sufficient to obtain good performance.In fact, for the ar
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chitecturesstudiedhere, this simple approachmore often Figure 4. This figure compares the perfor-
reducesratherthan enhanceperformance.The reasonis mance of executing the comm unication and
simple: If athreadcanblock without blocking the whole collective 1/O phases in sequence versus
processthenthe threadsare being managecat the kernel spawning athread to execute the actual write

to disk.



level. This makesthreadswitching expensve, and, when
thereis a lot of competitionbetweenthe main threadand
thel/O thread,canneggatethe benefitsof overlappingcom-
putationand!/O. However, whenthis competitionis mini-
mized,suchaswhenthel/O threadperformsonly theactual
write to disk, excellentperformancegainscanbe obtained.
It is importantto notehowever thatthis wholeinvestigation
is built uponthe premisethat thereis sufficient computa-
tion to effectively overlap computationand collective 1/0.
Whetherthisis in generakrueremaingo beseen.

Therearecurrentlythreemainobstacleso thisline of re-
search.Foremosts thelack of thread-saféMPl implemen-
tations. Secondlyin mostcaseghe userdoesnot have the
ability to setthreadschedulingpolicies. It is possiblethat
performingthe whole collective /O operationin the back-
grounddoesprovide good performancef the priorities of
the two threadscan be manipulated.Finally, althoughthe
threadspackageon eachmachinestudiedis basedon the
Posix standardthereare still enoughdifferencesbetween
thelibrariesto makeportingthe codebetweerarchitectures
to be someavhattedious.

Currentresearchs focusingon implementingthe com-
pleteMPI 2.0parallell/O library, andperformingthis same
studyonimportantapplicationcodes.
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