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Abstract

Massively parallel computersare increasingly being
usedto solvelarge,I/O intensiveapplicationsin manydif-
ferent fields. For such applications,the I/O requirements
quite often presenta significant obstacle in the way of
achievinggoodperformance,andan importantareaof cur-
rent research is the developmentof techniquesby which
thesecostscan be reduced.Onesuch approach is collec-
tive I/O, where theprocessorscooperativelydevelopan I/O
strategy that reducesthenumber, and increasesthesize,of
I/O requests,makinga much betteruseof theI/O subsystem.
CollectiveI/O has beenshownto significantlyreducethe
costof performingI/O in manylarge,parallel applications,
andfor this reasonservesasan importantbaseuponwhich
wecanexplore othermechanismswhich canfurther reduce
thesecosts. Onepromisingapproach is to usethreadsto
performthecollectiveI/O in thebackgroundwhilethemain
threadcontinueswith othercomputationin theforeground.

In this paper, we explore the issuesassociatedwith im-
plementingcollectiveI/O in thebackgroundusingthreads.
Themostnatural approach is to simply spawnoff an I/O
threadto performthecollectiveI/O in thebackgroundwhile
the main threadcontinueswith other computation. How-
ever, our research demonstratesthat this approach is fre-
quentlythe worst implementationoption,oftenperforming
much more poorly than just executingcollectiveI/O com-
pletely in the foreground. To improvethe performanceof
thread-basedcollectiveI/O, wedevelopedan alternateap-
proach where part of the collectiveI/O operation is per-
formedin thebackground,andpart is performedin thefore-
ground.Wedemonstratethat thisnew techniquecansignif-
icantly improvetheperformanceof thread-basedcollective
I/O, providing up to an 80% improvementover sequential
collectiveI/O (where there is no attemptto overlapcompu-
tationwith I/O). Also,wediscussoneveryimportantappli-
cation of this research which is the implementationof the
split-collectiveparallel I/O operationsdefinedin MPI 2.0.

1. Intr oduction

Massively parallel computersare increasingly being
usedto solve large, I/O-intensive applicationsin several
differentdisciplines. However, in many suchapplications
theI/O subsystemperformspoorly, andrepresentsa signif-
icant obstacleto achieving goodperformance.The prob-
lem is generallynot with the hardware;many parallel I/O
subsystemsoffer excellentperformance.Rather, theprob-
lem arisesfrom otherfactors,primarily theI/O patternsex-
hibited by many parallelscientificapplications[5, 14]. In
particular, eachprocessortendsto makea large numberof
small I/O requests,incurring the high costof I/O on each
such request. One reasonfor this accesspatternis that
parallelscientificcodesfrequentlyinvolve largearraysdis-
tributedacrossthe processor’s local memory. After a pro-
cessorperformssomecomputationon its localarray, it will
oftenneedto read/writeits portionof thearrayto/from the
file system. If the processor’s local portion of the array is
not storedin a logically contiguousfashion,the processor
will beforcedto makea seriesof disjointedI/O requeststo
completetheoperation.While eachprocessormayneedto
performseveral,disjointedrequests,it is oftenthecasethat
in theaggregatethewholearrayis beingwritten to or read
from the file system. The applicationcanusethis knowl-
edgeto significantlyimprove its I/O performance.

The techniqueof collectiveI/O hasbeendevelopedto
betterutilize theparallelI/O subsystem[6, 19, 20, 2, 15, 18,
3]. In this approach,the processorsexchangeinformation
abouttheir individual I/O requeststo develop a pictureof
theaggregateI/O request.Basedon this globalknowledge,
I/O requestsarecombinedandsubmittedin theirproperor-
der, makingamuchmoreefficientuseof theI/O subsystem.

Two significantimplementationtechniquesfor collective
I/O aretwo-phaseI/O [6, 19, 20] anddisk-directedI/O [13,
16]. In disk-directedI/O, thecollective I/O requestis sent
to theI/O processorswhichcollectively determineandcarry
out theoptimalI/O strategy. In thetwo-phaseapproach,the
applicationprocessorscollectively determineandcarryout
theoptimizedapproach.In thispaper, wedealonly with the
two-phaseapproach.



Considera collective readoperation. If the datais dis-
tributedacrosstheprocessorsin away thatconformsto the
wayit is storedondisk,eachprocessorcanreadits localar-
ray in onelargeI/O request.This distribution is termedthe
conformingdistribution,andrepresentstheoptimalI/O per-
formance. Assumethe array is not distributedacrossthe
processorsin a conformingmanner. The processorscan
still perform the readoperationassumingthe conforming
distribution, andthenuseinterprocessorcommunicationto
redistributethedatato thedesireddistribution. Sinceinter-
processorcommunicationis ordersof magnitudefasterthan
I/O operations,it is possibleto obtainperformancethatap-
proachesthatof theconformingdistribution.

Thuscollective I/O playsa critical role in reducingthe
cost of I/O requirements,and it provides the basisfrom
whichwecanexploreotherapproachesto furtherreducethe
impactof suchoperations.A verypromisingapproachis to
usethreadsto executethecollective I/O in thebackground
while continuingwith othercomputationin theforeground.

There are many factors which can impact the perfor-
manceof thread-basedcollective I/O. Paramountamong
theseis the parallel architectureand the configurationof
the parallel file system. Threadswitching costs,incurred
whenthebackgroundI/O threadandthemainthreadcom-
petefor theCPU,alsohasa tremendousimpacton perfor-
mance.Additionally, thetypeof computationperformedby
themainthreadalsoimpactsperformance.Otherimportant
factorsincludethreadschedulingandthememoryavailable
to performthecollective I/O operation.

In thispaper, westudytheissueof implementingthread-
basedcollectiveI/O, anddosofor four importantmassively
parallelarchitectures:the IBM SP2,the Intel Paragon,the
HP Exemplar and the SGI Origin 2000. This research
shows that themostnaturalimplementationchoice,to sim-
ply spawn off a threadto performthewholecollective I/O
routine in the background,is quite often the worst imple-
mentationoption. We demonstratethat this approachim-
provesperformanceon only onearchitecture,andproduces
significantlyworseperformanceontwoof thefour architec-
tures.To overcomethis poorperformance,we developeda
techniquewherepart,but notall, of thecollectiveI/O is per-
formedin thebackground.We demonstratethat this modi-
fied technique,in general,is a muchbetterimplementation
optionthaneitherperformingthewholecollectiveI/O oper-
ation in the foregroundor performingthewholeoperation
in thebackground.

An importantapplicationof this researchis thedevelop-
mentof implementationtechniquesfor the split-collective
parallel I/O operationsdefinedin MPI 2.0. Theseopera-
tionsprovideanimplementationtheopportunityto perform
collective I/O in thebackground,but therearecurrentlyno
implementationswhich do so (at leastnot published).The
widespreaduseof MPI, andtheimportanceof portablepar-

allel I/O operations,makethis a very importantandtimely
applicationof this research.

The rest of the paperis organizedas follows. In Sec-
tion 2, we discussthetechniqueof collective I/O andsplit-
collective operationsin moredetail. In Section3, we study
theperformanceof variousapproachesto overlappingcol-
lective I/O andcomputation. In Section4, we discussre-
latedwork andweprovide our conclusionsin Section5.

2. CollectiveI/O

Most parallelarchitecturesprovide someform of hard-
waresupportfor parallel I/O. In general,this supportcon-
sistsof asetof I/O processors,eachof whichcontrolssome
numberof disks. The datain a file is divided into a setof
stripingunits, eachof whichrepresentsa logically contigu-
ousportion of the file data. Thesestriping units are(gen-
erally) distributedamongthedisksin aroundrobin fashion
andarecontiguouson a disk. Performanceis enhancedbe-
causeconcurrentrequeststo different positionswithin the
samefile canbeservicedin parallelby theI/O subsystem.

2.1.Split-Collective I/O Operations

TheMessagePassingInterface(MPI) [12] is theemerg-
ing standardby which distributedcomputerscommunicate
and synchronize. As such, it provides a platform upon
which portabledistributedcodescanbedeveloped.There-
cently releasedMPI 2.0 standardincorporatesparallel I/O
into the specification. As notedabove, this specification
includessplit-collectiveoperations,which providestheim-
plementationthe opportunityto perform collective I/O in
thebackground.

A split-collectiveoperationhasabeginstatement,which
initiates the collective I/O, and an end statement,which
blocks the calling threaduntil the collective operationis
completed.Betweenthebegin andend statements,theim-
plementationmayallow the main threadto continuewith
its computationwhile thecollectiveI/O operationis carried
out in thebackground,overlappingthetwo operations.We
saymaybecauseacorrectimplementationoptionis to block
themainthreaduntil thecollectiveI/O operationcompletes,
thusexecuting the collective I/O and the computationse-
quentially. Currently, thereis no documentedimplementa-
tion of MPI parallel I/O that overlapscomputationin the
mainthreadwith collective I/O in thebackground.

Thereare essentiallythree implementationoptions for
split-collectiveI/O operations:to performall of thecollec-
tive I/O in the background,to perform part of the collec-
tive I/O in the backgroundandpart in the foreground,and
to perform noneof the collective I/O in the background.
In the first case,execution of the begin statementwould



spawn anI/O threadto performthecollective I/O. Immedi-
atelyafterexecutionof thebeginstatementthemainthread
would continue with its computation. The background
threadwould simply exit whenit completedthe collective
I/O, andthemainthreadwouldblock on theendstatement
until thebackgroundthreaddid exit. In thesecondoption,
part,but notall, of thecollectiveI/O wouldbeperformedin
thebackground.Considera collective write request.When
the main threadexecutesthe begin statement,the imple-
mentationmay chooseto executeall of the collective I/O
routine except the actualwrite to disk in the foreground,
andperform the write to disk in the background. In this
casethe main threadwould againblock on the end state-
mentuntil the I/O threadexited. This sequencewould be
reversedin the caseof a collective readoperation. In the
final implementationoption, thebegin andend statements
wouldbeessentiallyignoredandtherewouldbeno attempt
to overlapcomputationwith collectiveI/O. In thefollowing
sectionswe exploreeachof thesealternatives.

3. Experiments

3.1.Computational Platforms

In order to makeour conclusionsas generalas possi-
ble,we conductedall experimentson four massively paral-
lel machines.Two of the machines,the IBM SP2andthe
Intel Paragon,are distributedmemoryarchitectures.The
othertwo, the SGI Origin 2000andthe HP Exemplar, are
distributedsharedmemory(DSM) architectures.The IBM
SP2is locatedatArgonneNationalLaboratory, andconsists
of 80computenodesand4 I/O processors.EachI/O proces-
sorcontrolsfour SSAdisks,eachwith a 9 Gigabytecapac-
ity. TheIntelParagonis locatedat theCaliforniaInstituteof
Technology, andis configuredwith 381computenodesand
64I/O processors.EachI/O processorcontrolsa4 Gigabyte
seagatedrive. The SGI Origin 2000, housedat Argonne
NationalLaboratory, is configuredwith 128computepro-
cessorsandtwo fibre channelconnectionseachof which is
connectedto adiskarraywith 1109-Gigabytedisks.These
two fibre channelconnectionsaresharedby all of thecom-
puteprocessors.The HP Exemplar, locatedat the Califor-
nia Instituteof Technology, is configuredwith 256compute
processorsgroupedin clusterstermedhypernodes. Each
hypernodeconsistsof 16 computeprocessorsand4 Giga-
bytesof sharedrandomaccessmemoryconnectedthrough
a non-blocking

�����
cross-barswitch. Eachhypernodehas

its own localfile system,andafile systemcannotspanmore
than one hypernode. In general,the file systemsconsist
of eight diskswith a total of 35 Gigabytesof storage(al-
thoughthereis somevariationfrom hypernodeto hypern-
ode).Sincea file systemcannotspanmorethanonehyper-
node,parallelaccessby morethan16 processorsmustall

flow throughthesamehypernodeon which thefile system
is located.

3.2.Experiment 1: Non-collectiveI/O and Threads

Thefirst setof experimentswasdesignedto provide an
estimateof the maximumspeedupobtainableby overlap-
pingcomputationwith I/O operations.Theapplicationpro-
gramsimplyrepeatedtheexecutionof acomputephasefol-
lowed by an I/O phase. The computephaseconsistedof
performingsomenumberof floating point multiplications,
andtheI/O phaseconsistedof eachprocessorwriting afour
Megabytesectionof anarrayto diskassumingtheconform-
ing distribution. That is to say, the processorsdid not en-
gagein a collective phaseto mapout theoptimal I/O strat-
egy anddid not collector redistributedataamongthepro-
cessors.Eachprocessorsimply performedonelarge write
of four Megabytesto different locationson the disk. The
timetakentocompletethecomputephasewascontrolledby
varying the numberof floating point operationsperformed
duringthatphase.Theseexperimentswereperformedwith
8, 16, 32 and64 processors,wherethe lengthof the com-
putephasewascalibratedto takeapproximatelyaslong as
theaverageI/O phasewith 64 processors.Sinceeachpro-
cessorwrote four Megabytesto the file, the total number
of byteswritten was32 Megabyteswith 8 processors,64
Megabyteswith 16processors,128Megabyteswith 32pro-
cessorsand256Megabyteswith 64 processors.

The metric of interestis the time requiredto complete
both thecomputationphaseandthe I/O phase.In the first
approach,theapplicationperformedthecomputephaseand
theI/O phasesequentially(i.e. therewasnooverlapof com-
putationandI/O). In the secondapproach,the application
spawnedathreadto performtheI/O in thebackground,and
thenimmediatelyenteredinto its computephase.Themain
threadblockeduntil bothphaseswerecompleted.

The resultsareshown in Figure1. As canbe seen,all
of thearchitectures,exceptfor theHP Exemplar, show ex-
cellentimprovementin performanceasthenumberof pro-
cessorsandthesizeof thefile aresimultaneouslyincreased.
With 64processors,theSP2showedanimprovementin per-
formanceof 37%, theParagonshowedan improvementof
35%,andtheSGIOrigin producedanimprovementof 49%.
TheExemplarshowedno improvementin performancewith
64 processors,mostlikely becauseall of thefile activity is
funneledthrougha singlehypernodecreatinga bottleneck.
TheExemplardoesshow a modestimprovementin perfor-
mancewith 8, 16 and32processors.

Theseresultsshow thatspawningabackgroundthreadto
overlapI/O with computationcanresult in significantper-
formancegains,at leastwhenthe I/O threaddoesnothing
but performasingle,largewrite to disk.
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Figure 1. This figure shows the impr ovement
in performance that is possible when (non-
collective) I/O is overlapped with computa-
tion.

3.3.CollectiveI/O and Threads

In this section, we investigateoverlapping collective
ratherthannon-collective I/O with computation.Thusthe
wholecollectiveI/O operationis executed,includingtheuse
of inter-processorcommunicationto collectively determine
theoptimal I/O strategy andto redistributethedataamong
the processorsas needed. Theseexperimentsassumean
SPMD computation,whereeachprocessorcomputesover
a differentregion of a 
���
�� � 
���
�� arrayof integers. The
array is distributedamongthe processorsin a block-block
distribution. We hold the size of the array constant,and
measurethe time requiredto completeboth the computa-
tion andcollective I/O for 8, 16,32 and64 processors.The
collective I/O operationis a collective write. We notethat
dueto memoryconstraints,weemployed16,32,64and128
processorsontheIntel Paragon.

As notedabove, themostnaturalimplementationoption
is to simply spawn a threadto perform the collective I/O
operationin thebackground,while themain threadcontin-
ueswith its computationin the foreground. In terms of
implementationtechniquesfor split-collective operations,
this correspondsto spawning anI/O threadwhenthebegin
statementis executed,allowing the main threadto imme-
diately enterinto its computeloop, andblocking the main
threadat theendstatementuntil thecollectiveI/O operation
is completed.We comparethis approachwith performing
thecomputationandcollective I/O in sequence.

In Figure2, we comparethesetwo approaches,andas
canbeseen,theresultsarequitedisappointing.Theuseof
abackgroundthreadto overlapcomputationwith collective
I/O resultedin little, if any, improvementin performance
for any architectureother than the IBM SP2. On the HP
ExemplarandtheSGI Origin 2000,this approachactually
decreasesperformance,sometimessignificantly. OntheIn-
tel Paragon,the performanceof both approachesis about
the same.This shows thatmerelyspawning a background
threadto performthecollectiveI/O operationis not, in gen-
eral,sufficient to achieve highperformance.

To understandtheseresults,it is importantto differenti-
atebetweenuser-level threads,wherethe threadsareexe-
cutingin userspace,versuskernel-level threads,wherethe
threadsaremanagedby thekernel.With user-level threads,
thereis very little context andthusthecostof threadswitch-
ing is quite low. The trade-off however is that when a
user-level threadblocks,suchaswhenit performsa write
to disk, the wholeprocessis blocked,not just the calling
thread.With kernel-level threads,only thecalling threadis
blocked,allowingcomputationandI/O (or communication)
to be overlapped.However, the kernelmustscheduleand
control thesethreads.While the costof managingkernel-
level threadsis lessthan that for a heavy-weight process,
this costis still greaterthanthecostof implementinguser-
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Figure 2. This figure shows the time required
to complete both phases when performed in
sequence, and when a thread is spawned to
execute the collective I/O in the background.

level threads.For this reason,kernel-level threadsareof-
tentermedlight-weightprocesses.It is kernel-level threads
thatareusedin thisproject,andtheimplementationthusin-
currsthehigherthread-switchingcostsassociatedwith such
threads.

Now considerthat only parts of the collective I/O al-
gorithm can be overlappedwith computation. In particu-
lar, settingupandinitiating communications,settingup the
disk write andcopyingto andfrom messagebufferscannot
beoverlappedwith computation.Thetimespentwaitingfor
messagesto arrive andwaiting for a write to disk to com-
pletecan be overlapped.Thusthereis a trade-off. When
the actionstakenby the I/O threadcannotbe overlapped
with the main thread,the two threadsare competingfor
control of the CPU.This of courserequiresthe multiplex-
ing of threadson andoff the CPU, incurring the relatively
high costsof threadswitching. As shown in this setof ex-
periments,the performancegainsobtainedby overlapping
(parts)of thecollective I/O with computationareoffset,or
morethanoffset,by theoverheadof threadschedulingand
threadswitching.

To reducethesecosts,we modifiedthe implementation
suchthat the collective I/O threadperformedpart, but not
all, of thecollective I/O algorithm. In particular, all of the
copyingandinterprocessorcommunicationrequiredby the
collective I/O algorithmareperformedby themain thread.
TheI/O threadis spawnedto performonly theactualwrite
to disk. With this approach,competitionbetweenthemain
threadandthe I/O threadis minimized,andtheoverlapof
computationandI/O is maximized.

Considerhow this approachcorrespondsto the imple-
mentationof split-collective operations. When the main
threadexecutesthe begin statement,the initial phaseof
thecollective I/O operationis executedby themainthread.
This includesall of theactivity requiredto getthedatadis-
tributedamongtheprocessorsin sucha way thateachpro-
cessorcanperformits write to disk assumingtheconform-
ing distribution. Oncethis partof thecollective I/O routine
is complete,a threadis spawnedto performtheactualwrite
to disk andthe main threadentersinto its computephase.
Executionof theend statementblocksthemainthreadun-
til thewrite to disk is complete.(Theorderof theseevents
wouldbereversedin thecaseof acollectivereadoperation.)

Theperformanceof thethreeimplementationoptionsis
shownin Figure3. Ascanbeseen,executingonly theactual
write to disk in thebackgroundcanprovide significantper-
formancebenefits.On the Intel Paragon,this strategy pro-
videsup to a 27% improvementin performanceover both
of the other techniques.On the SGI Origin 2000,spawn-
ing a threadto performonly thedisk write resultsin a 33%
improvementover thesequentialapproach,anda 49% im-
provementwhencomparedto executingthe whole collec-
tive I/O operationin thebackground.On theHP Exemplar,



spawning a threadto performonly thedisk write performs
roughlyaswell asperformingthe two phasesin sequence.
However, it exhibits an 49% improvementover perform-
ing the whole collective I/O operationin the background.
On the IBM SP2,both of the thread-basedstrategies per-
form at approximatelythe samelevel, anddemonstrateup
to an 46% improvementover executingthe two phasesin
sequence.

Before leaving this sectionit is importantto note that
performing one large I/O requestin the backgroundas-
sumesthereis enoughmemoryto buffer all of thedatathat
will be written to disk. If thereis not enoughmemoryto
hold all of the data,then the implementationis forced to
performthe write to disk iteratively. This would certainly
have a negative impacton performance,and in suchcases
the besttechniquemaybe to performthe wholecollective
I/O operationin theforeground.

3.4 Overlapping Communication with Collective
I/O

Thusfar, we have lookedat performancewhencompu-
tation is overlappingthecollective I/O operation.It is also
importantto consideroverlappingcommunicationwith col-
lective I/O. To investigatethis issue,we left all of the pa-
rametersthe sameexcept for replacingthe computephase
with a communicationphase.In thecommunicationphase,
processor� repeatedlysendsaneightkilobyte messageto
processor����� , and receives an eight kilobyte message
from processor����� . All communicationis synchronous.
The time spentin the communicationphaseis againcal-
ibrated to take approximatelyas long as the averageI/O
phasewith 64 processors.We are againinterestedin the
timerequiredto completeboththecommunicationandcol-
lective I/O phases.

In this setof experiments,we comparedthe sequential
implementation,wherethereis no attemptto overlap the
communicationwith thecollective I/O, andthe implemen-
tation techniquethat spawns a threadto performonly the
actualwrite to disk. We note that we could not overlap
thecompletecollective I/O operationwith communication
sincethecommunicationlibrarieson threeof the four ma-
chinesarenot thread-safe,disallowing callsto thecommu-
nicationlibrary by morethanonethread.

Theresultsof thisexperimentareshown in Figure4. As
canbe seen,performingcommunicationratherthancom-
putation in the main thread did have a negative impact
on performance. On the SP2, the improvement in per-
formancefell from 46% to 34%. On the SGI Origin the
improvementdroppedfrom 33% to 23%, and on the In-
tel Paragontheimprovementin performancedroppedfrom
27% to 18%. Thereasonfor this decreasein performance
is thatthemainthreadandtheI/O threadarecompetingfor
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Figure 3. This figure showns the performance
of the three implementation options for split-
collective I/O operations.



networkresourcesconcurrently. It is interestingto notethat
performanceon theHP Exemplaractually improvedwhen
computationwasreplacedby communication,althoughthis
improvementdecreasesas the numberof processorsap-
proaches64. Thetechniqueof spawningathreadtoperform
only thewrite to diskappearsto scalewell asthenumberof
processors,andconsequentlythetotal numberof messages
in thenetwork,aresimultaneouslyincreased.

4 RelatedWork

The researchmost closely relatedto this project is the
developmentof the MTIO library [17], which is a multi-
threadedMPI-basedI/O library. MTIO supportsthe over-
lap of computationwith collective I/O by spawning anI/O
threadto completethewholecollectiveroutinein theback-
ground.TheMTIO library is implementedontheIBM SP2.
Theauthorsreportupto an80%overlapof computationand
I/O, which is very similar to theresultswe obtainedon the
SP2.As notedabove however, wefoundthattheSP2is the
only architecturefor which thisapproachperformedwell.

Theperformanceof two-phaseI/O on the Intel Paragon
hasbeenstudiedextensively by both DickensandThakur
[8] andby Bordawekar[2]. However, neitherof thesestud-
ies looksat thread-basedcollective I/O. Also, Bordawekar
[4] providesanexcellentdiscussionof the I/O characteris-
ticsof theHPExemplar.

Two-phaseI/O is not theonly approachthat cansignif-
icantly improve performanceof I/O intensive applications.
Acharyaet al. [1] investigatecoderestructuringandother
optimizationsto improve the performanceof I/O bound
computations,andreportedexcellentperformancewithout
theuseof collective I/O. Thereareotherprojectsusingcol-
lectiveI/O. For example,Passionhasbeenextendedto han-
dle out-of-corearrays[19]. Also, a variation of the disk-
directedI/O techniqueis usedin thePandaruntimelibrary
[18]. Excellentoverviews of thefield of parallelI/O canbe
foundin [9, 7, 10].

5 Discussionand Conclusions

Theresearchpresentedhereclearlydemonstratesthat it
is possibletoobtaingoodperformanceby overlappingcom-
putationwith collective I/O, but it is not automatic. We
have alsoshown thatthemostnaturalimplementationtech-
nique,thatof simplyspawning a backgroundthreadto per-
form the whole collective I/O operation,is in general,not
sufficient to obtaingoodperformance.In fact, for the ar-
chitecturesstudiedhere, this simple approachmore often
reducesratherthan enhancesperformance.The reasonis
simple: If a threadcanblock without blocking the whole
process,then the threadsarebeingmanagedat the kernel
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Figure 4. This figure compares the perfor-
mance of executing the comm unication and
collective I/O phases in sequence versus
spawning a thread to execute the actual write
to disk.



level. This makesthreadswitchingexpensive, and,when
thereis a lot of competitionbetweenthe main threadand
theI/O thread,cannegatethebenefitsof overlappingcom-
putationandI/O. However, whenthis competitionis mini-
mized,suchaswhentheI/O threadperformsonly theactual
write to disk,excellentperformancegainscanbeobtained.
It is importantto notehowever thatthiswholeinvestigation
is built upon the premisethat thereis sufficient computa-
tion to effectively overlapcomputationandcollective I/O.
Whetherthis is in generaltrueremainsto beseen.

Therearecurrentlythreemainobstaclesto thisline of re-
search.Foremostis thelack of thread-safeMPI implemen-
tations.Secondly, in mostcasestheuserdoesnot have the
ability to setthreadschedulingpolicies. It is possiblethat
performingthewholecollective I/O operationin theback-
grounddoesprovide goodperformanceif the priorities of
the two threadscanbe manipulated.Finally, althoughthe
threadspackageon eachmachinestudiedis basedon the
Posixstandard,therearestill enoughdifferencesbetween
thelibrariesto makeportingthecodebetweenarchitectures
to besomewhattedious.

Currentresearchis focusingon implementingthe com-
pleteMPI 2.0parallelI/O library, andperformingthissame
studyon importantapplicationcodes.
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