
Towards Asynchronous and MPI-Interoperable

Active Messages

Xin Zhao,∗ Darius Buntinas,† Judicael Zounmevo,‡ James Dinan,† David Goodell,†

Pavan Balaji,† Rajeev Thakur,† Ahmad Afsahi,‡ William Gropp∗

∗University of Illinois, Urbana-Champaign, {xinzhao3,wgropp}@illinois.edu
†Argonne National Laboratory, {buntinas, dinan, goodell, balaji, thakur}@mcs.anl.gov

‡Queen’s University, {judicael.zounmevo,ahmad.afsahi}@queensu.ca

Abstract—Many new large-scale applications have emerged
recently and become important in areas such as bioinformatics
and social networks. These applications are often data-intensive
and involve irregular communication patterns and complex oper-
ations on remote processes. Active messages have proven effective
for parallelizing such nontraditional applications. However, most
current active messages frameworks are low-level and system-
specific, do not efficiently support asynchronous progress, and are
not interoperable with two-sided and collective communications.
In this paper, we present the design and implementation of
an active messages framework inside MPI to provide porta-
bility and programmability, and we explore challenges when
asynchronously handling active messages and other messages
from the network as well as from shared memory. We test
our implementation with a set of comprehensive benchmarks.
Evaluation results show that our framework has the advantages
of overlapping and interoperability, while introducing only a
modest overhead.
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I. INTRODUCTION

In recent years, many new high-performance computing

(HPC) applications have become increasingly important in

areas such as bioinformatics and social networks. Unlike

traditional scientific applications, the computation in these new

applications is data-driven, and the topology is always un-

structured and dynamically changing throughout the execution.

Traditional approaches such as partitioning the work according

to the topology and bulk synchronous model no longer suit

such applications.

Active messages [1], proposed by Thorsten von Eicken et

al. for Split-C in 1992, are a parallel programming paradigm in

which the sender of a message specifies a message handler to

be executed at the receiver upon arrival of the message. When

the message is received, the receiver executes the message

handler to process the data contained in the message. Unlike

traditional two-sided message passing, the application on the

receiver side does not need to explicitly call a function in order

to receive the message.

Active messages are particularly suited for data-intensive

applications and algorithms with irregular communication

patterns, such as graph or bioinformatics algorithms. In such

algorithms the receiver may not know how many messages

to expect or even from which receivers to expect messages.

Because active messages do not require the receiver to post

a receive in order to receive a message, the receiver need

not know the communication pattern ahead of time. How-

ever, many other algorithms do have regular communication

patterns and are well suited to two-sided message passing.

Furthermore, an application may have different phases that are

better suited to two-sided communication, active messages, or

even one-sided communication. Such applications can benefit

from a communication library that supports active messages as

well as two-sided, one-sided, and collective communications.

Since the application at the receiver does not need to call

a function in order for the active message to be processed,

the communication library must be prepared to process the

message as soon as it arrives. The communication library can

be implemented to check for incoming messages only when

the application calls a communication function. In this case,

if the application does not call a communication function

for a period of time, for example if the application is in a

long computation loop, then incoming messages will not be

processed during that time. Hence, asynchronous processing

of messages is important for active messages. Asynchronous

message processing can be implemented by using a separate

progress thread that checks for incoming messages and pro-

cesses them. Because this thread is dedicated to receiving and

processing messages, the messages are processed immediately,

without regard to what the application is doing.

The additional thread can increase overhead, however, be-

cause of mutexes needed to synchronize threads when access-

ing shared data structures. This overhead can affect not only

active messages but also two-sided and one-sided messages.

The communication library therefore must be designed care-

fully to minimize the impact of the additional thread.

With modern multicore processors, shared memory can be

used to improve the communication performance between

processes running on the same node. Many communication

libraries make use of shared memory when possible and

use network communication for internode communication [2],

[3], [4], [5]. An implementation of active messages therefore

should use shared memory when possible, in order to improve

performance.

In this paper, we chose to add active messages capability

to an MPI implementation because MPI is a widely used



standard that supports two-sided, one-sided, and collective

communications. We modified the MPICH MPI implementa-

tion, which is widely portable across many architectures. Our

implementation provides asynchronous progress for one-sided

and active messages with negligible overhead for two-sided

and collective communications. We optimize for the intranode

case where the sender can directly access the target buffer of

the message.

While one can implement active messages on top of MPI

[6], it is difficult to efficiently provide asynchronous progress.

The implementation would require a separate thread that

would make calls into the MPI library to receive messages

and execute the handler. Thus, the MPI library would need to

run using the MPI_THREAD_MULTIPLE thread level. When

an MPI library is running in that level, the library must ensure

that every MPI function is thread safe, thus requiring the use of

mutexes and imposing an overhead on every communication

operation. By implementing active messages inside the library,

this overhead can be eliminated for two-sided and collective

communications.

II. OVERVIEW AND PREVIOUS WORK

We begin with an overview of Active Messages and MPI

RMA interface.

A. Active Messages

The active messages paradigm was first introduced in [1]

and has since been used internally to implement communica-

tions libraries and runtime systems, such as MPI implemen-

tations, Co-Array Fortran, and Unified Parallel C. Because

existing active messages interfaces were too low-level for

applications to directly use them, Willcock et al. designed

and implemented AM++ [6], which is a higher-level active

messages library intended for applications to use directly.

Low-level active messages interfaces such as GASNet [4],

Low-level Application Programming Interface (LAPI) [7], and

Parallel Active Message Interface (PAMI) [8] are not suitable

for use by applications. While GASNet has been implemented

to be portable to different interconnects and architectures,

LAPI and PAMI are available only for IBM supercomputers.

These interfaces also do not support two-sided or collective

communications.

Active messages libraries have been implemented on top

of MPI, such as AM++ [6] and AMMPI [9]. Hence, these

libraries are widely portable; and applications can use MPI

functionality, such as two-sided and collective communica-

tions. In order to support asynchronous message processing,

however, the active messages library needs an additional thread

that waits for incoming messages. Thus, the MPI library must

use the MPI_THREAD_MULTIPLE thread level, which runs in

an active polling fashion and always uses the CPU even though

no message is coming. Also, it imposes an overhead due to

thread synchronization and mutexes on every communication

operation.

We classify the MPI-based active messages into three cate-

gories:

• NO-ASYNC – Asynchronous message processing is not

supported.

• THREAD-ASYNC – Asynchronous message processing is

provided by using a thread above the MPI library.

• INTEGRATED-ASYNC – Asynchronous message process-

ing is provided internally by the MPI implementation.

AMMPI and AM++ belong to the NO-ASYNC class. How-

ever, if the application using AMMPI or AM++ creates a

thread to wait for incoming messages, that usage would fall

into the THREAD-ASYNC class. In this paper, we propose a

strategy that falls into the third class: INTEGRATED-ASYNC. It

can support asynchronous message processing by an internal

thread and handles active messages in a more efficient way.

B. MPI RMA Interface

The first MPI standard provided only two-sided and collec-

tive communications. The MPI-2 standard, which was released

in 1997, added functionality for one-sided communication

(also called remote memory access (RMA)). One-sided com-

munication allows one process, the origin process, to specify

all communication parameters, for both the origin and the

destination, or target, process. The active messages API in

our work is based on the MPI RMA interface.

MPI-2 defines three types of communication operations:

Put, Get, and Accumulate. Put and Get operations

transfer the data to and from a window on the target process.

The Accumulate operation combines the data from the

origin process with the data on the target process using a

predefined operation.

In order to make sure that all one-sided operations

are finished, explicit synchronization modes are defined

and used, including active target mode and passive target

mode. Active target mode has two synchronization mecha-

nisms: FENCE (Fig.1(a)) and POST-START-COMPLETE-WAIT

(PSCW) (Fig.1(b)). Passive target mode has one synchro-

nization mechanism: LOCK-UNLOCK (Fig.1(c)). For detailed

semantics of synchronizations in the MPI RMA interface,

please refer to [10].

III. DESIGN ISSUES

In this section, we describe how to extent MPI accumu-

late operation to support user-defined function and message

pipelining technique.

A. User-Defined Function and Operation Registration

The Accumulate operation as defined in the MPI standard

is similar to the concept of active messages except for the pre-

defined operations. Accumulate allows users to specify sim-

ple calculations to be performed in remote memory. However,

it supports only a limited set of built-in operations and does

not support user-defined operations. To allow more complex

operations on remote processes, we extend the functionality

of Accumulate to support user-defined functions.

In the MPI standard, user-defined functions are allowed

for Reduce operations. We use the same mechanism

to specify user-defined functions for Accumulate.



(a) FENCE (b) PSCW (c) LOCK-UNLOCK

Fig. 1: Synchronization types in MPI RMA interface

User-defined functions have the following prototype:

void MPI_User_Function (void∗ invec,

void∗ inoutvec, int∗ len, MPI_Datatype∗

datatype). The invec and inoutvec parameters

describe arrays that the function combines, while the len

and datatype parameters describe the layout of the arrays.

Each invocation of the function leads to the pairwise execution

of user-defined operation on array elements. The result of

the function is written to inoutvec. After the function

has been defined, the MPI_Op_create routine should be

called to bind the function to an operation handle that can be

subsequently passed to the Accumulate function.

We also propose two new routines for operation reg-

istration: MPIX_Op_register(MPI_Op op, int id,

MPI_Win win) and MPIX_Op_deregister(MPI_Op

op, int id, MPI_Win win). Each of them is a collec-

tive call among all processes that are in the same window.

When MPIX_Op_register is called, the operation handle

and a handler id are passed and internally stored in a hash

table on that window. Because operation handles are local,

the handler id is used to identify handler functions on re-

mote processes. In this way, the user-defined operation can

be “available everywhere.” Operations defined on different

processes with the same handler id must have equivalent

functionalities.

B. Message Pipelining

The MPI standard specifies that the implementation may

call a user-defined function multiple times in order to handle

a single large message. If the source and target buffers

are arrays, then the user-defined function may be called to

handle smaller portions of the array. This approach allows

the message reception to be pipelined with the execution of

the user-defined function. It also reduces the memory required

in order to buffer the incoming message. We implemented

pipelining by receiving a chunk of the incoming data, then

calling the user-defined function specifying the data received

and the corresponding data in the target buffer.

IV. ASYNCHRONOUS PROGRESS ENGINE

In most MPI implementations, the MPI library typically

calls the progress engine to handle incoming messages only

when an MPI routine is called. In order to improve perfor-

mance for handling intranode messages using shared memory,

most MPI implementations use active polling and do not block

while waiting for a message. Although this approach improves

intranode communication performance, it has the effect of

using the CPU even when no message is being handled.

Some MPI implementations do provide asynchronous progress

and non-busy-waiting [11], but these features come with a

performance penalty.

MPI implementations typically have a single progress en-

gine that handles both one-sided and two-sided messages. Hav-

ing a single progress engine has two disadvantages: (1) one-

sided and active messages cannot be processed immediately

upon arrival but have to wait until the target explicitly calls an

MPI routine; and (2) one-sided and active messages vs. two-

sided and collective messages cannot be handled in parallel

but have to be processed in serial through the single progress

engine.

Our implementation has two progress engines: one new

asynchronous progress engine handling active messages and

one-sided messages, and the regular progress engine handling

two-sided messages and collective messages. Active messages

and one-sided messages can be processed upon arrival by this

separate progress engine and can be processed concurrently

with other kinds of messages. The following subsections

describe important issues in designing and implementing the

asynchronous progress engine for both network and shared

memory.

A. Network Solution

We use a separate internal thread in the network module

to wait for active messages and one-sided messages from the

network. When an MPI process encounters the first window

creation routine (indicating that there will be active messages

or one-sided messages coming), it internally spawns a separate

thread used by the asynchronous progress engine. This thread

is terminated when MPI_Finalize is called. It does not wait

for messages from shared memory, and therefore it can block

while waiting for incoming messages with minimal impact

on performance. The original progress engine is still used by

the main thread to handle two-sided and collective messages.

Currently we have implemented the separate thread in the TCP

network module.

B. Shared-Memory Solution

Because the separate thread described above calls the asyn-

chronous progress engine in a blocking way, it is not applicable

for messages from shared-memory communication. We solve



Fig. 2: Working scenario of asynchronous progress engine

this by enabling “origin computation.” When the origin process

encounters an active message or one-sided message targeting

at a remote process on the same node, it directly fetches

the remote data, does the computation (AM or Accumulate)

locally, and pushes it back to the remote process. By enabling

“origin computation,” active messages and one-sided opera-

tions can be handled asynchronously without the help of a

separate thread.

To support the direct access to memory of a remote process

on the same mode, during window creation phase each MPI

process allocates a shared-memory region and exchanges

the shared-memory address information. The MPI standard

has two methods for creating an MPI RMA window. With

MPI_Alloc_mem + MPI_Win_create, the first routine is

used to allocate a memory region and returns the memory

address; the second routine is used to create an MPI RMA

window by using a memory address in the argument list. With

MPI_Win_allocate, a new routine in the MPI-3 standard,

memory allocation and window creation are performed to-

gether in one single function call. We implemented the shared-

memory solution in both methods.

The user can enable or disable the asynchronous progress

engine by passing an Info argument to window creation rou-

tines. If the asynchronous progress engine is enabled, the MPI

process internally allocates a shared-memory region for the

window; if there are processes on different nodes, it internally

spawns a separate thread. Figure 2 demonstrates an example of

how the asynchronous progress engine works. In the example,

process 0 and process 2 are going to issue active messages

to process 1. Process 0 is on the same node with process

1, whereas process 2 is on a different node. Process 1 has a

separate internal thread to handle active messages from process

2, while process 0 performs “origin computation” and directly

writes results to the shared-memory region of process 1. All

active messages operations are performed asynchronously.

Because lock and unlock requests are handled by the

original progress engine and hence are handled only when the

main thread calls an MPI function, when supporting origin

computation on shared memory, the origin process must be

able to acquire the passive lock on the target process without

explicitly sending out a lock request message. We solved

this problem by implementing a distributed lock [12] in the

shared-memory region used by shared memory and network

processes.

C. Thread Safety and Process Safety

For the network solution, key data structures that are

shared between two progress engines (including sockets and

file descriptor tables, sending queues, and pending receiving

packets) are either duplicated or protected by mutexes in order

to avoid data races. In active target mode, a counter is used

to determine whether all operations have arrived and whether

ending synchronization can return. It is atomically accessed

by two threads. In passive target mode, both the main thread

and the asynchronous thread on the target process may try to

acquire the passive lock. We added a mutex on the passive

lock to avoid data race.

For the shared-memory solution, because the origin process

performs origin computation and then writes results into the

memory of the target, both the origin and the target processes

may write to the same memory address concurrently. We added

interprocess mutexes in the shared-memory region of every

process to avoid this case. Those mutexes are disabled by

default, but the user can enable them by passing an assert

to synchronization calls indicating a possibility of conflicting

writes happening in the memory of the target process.

V. EXPERIMENTAL EVALUATION

In this section, we present the performance results of AM-

MPI on the Fusion cluster at Argonne National Laboratory. Fu-

sion has 320 nodes, each having two Intel Xeon X5550 quad-

core CPUs, and QDR InfiniBand HCAs. We implemented the

AM-MPI framework based on MPICH2-1.4.

We present latency, overlapping, two-sided/AM interop-

erability and stencil communication tests. We tested the

AM, Put, and Accumulate on three different IPC (in-

terprocess communication) structures: network-only, shared-

memory-only, and network-and-shared-memory. All tests are

compared under the following three execution models:

1) EXT-ASYNC:AM-MPI with external asynchronous

thread

2) INT-ASYNC:AM-MPI with internal asynchronous thread

3) NON-ASYNC:AM-MPI without asynchronous thread

EXT-ASYNC is enabled by passing an Info argument to

the window creation routine; INT-ASYNC is enabled by turning

on the environment variable MPICH_ASYNC_PROGRESS in

MPICH, which would spawn a separate thread to actively poll

the progress engine.

For Sec. V-A, V-B, V-D, all results are gathered with FENCE;

for Sec. V-C, all results are gathered with FENCE (active)

and exclusive LOCK-UNLOCK (passive). Similar results are

observed for other synchronizations, but we cannot show them

here because of space limitations. For figures in the following

subsections, IB refers to InfiniBand, and PTP refers to point-

to-point communication.

A. Overhead of Active Messages Handler

Fig. 3 shows the overhead of the AM handler by comparing

it with Put and Accumulate operations on network and
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Fig. 3: Overhead of AM handler
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Fig. 5: Latency of multiple AM operations

shared memory under the NON-ASYNC model. In this test, one

message is transmitted from the origin process to the target

process, and latency is measured with increasing message

sizes.

For Put operations, there is only data copy on the tar-

get process; therefore, it has the smallest overhead. For

Accumulate operations, a predefined function is called

upon data arrival, which has an optimized implementation in

MPICH. For AM operations, a user-defined function is called

when data is received; and it has the highest overhead. Here

we present only the overhead with FENCE. Similar results are

observed for PSCW and LOCK-UNLOCKs, but we cannot show

them here because of space limitations.

B. Communication Latency

Figure 4 shows the comparison of communication latency

for a single AM operation among the various IPC models for

varying message sizes. Figure 5 shows the latency for multiple

AM operations through various IPC models for a fixed (4-

byte) message size. While INT-ASYNC and NON-ASYNC are

mostly on par, EXT-ASYNC underperforms. Actually, when

MPICH_ASYNC_PROGRESS is enabled, MPICH operates at

the MPI_THREAD_MULTIPLE level, making the progress

engine a critical section that the main application thread and

the EXT-ASYNC thread must compete for. In comparison,

INT-ASYNC operates a separate progress engine that is not

shared with the main thread. The overhead of the EXT-ASYNC

thread entering and exiting the mutex-protected progress en-

gine becomes apparent when the number of operations grows

(Fig. 5). Additionally, for shared-memory communications,

INT-ASYNC performs better than NON-ASYNC when the num-

ber of operations increases (Fig. 5(a)), because it does directly

memory copy instead of copying the messages through the

Nemesis [2] send queues.

C. Overlapping Effects

To measure the overlapping effects of the asynchronous

progress engine, we crafted tests in which a certain amount

of computation is performed on the target process while the

origin process sends multiple active messages. The target

process issues no MPI call while it computes. In Fig. 6, we

show the overlapping effects for the passive target mode.
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Fig. 6: Overlapping effects

In Fig. 6(a), both EXT-ASYNC and INT-ASYNC have overlap-

ping effects, whereas NON-ASYNC has none. The reason is that

while the main thread is busy doing computation, EXT-ASYNC

and INT-ASYNC can separately handle communications with

the progress thread whereas NON-ASYNC cannot. Figure 6(b)

shows the overlapping effect of the shared memory imple-

mentation. In the EXT-ASYNC model, the asynchronous thread

on the target process deals with incoming active messages

while the main thread is doing computation; in the INT-ASYNC

model, after the origin process acquires the passive lock on

the target, it directly performs the computation and writes

the results into the memory of the target while the target is

doing computations. Here there is a performance gap between

EXT-ASYNC and INT-ASYNC on both network and shared

memory, due to the queuing operations needed for distributed

passive lock.

No overlapping effects are observed for the active target

mode. Because AM-MPI is implemented based on the RMA

implementation in MPICH, in which all messages are delayed

and lazily issued out during the ending synchronization phase,

message reception on the target must also happen within the

ending synchronization phase, which cannot be overlapped

with computation in the epoch. Future implementations of

MPICH are expected to have support for eager issuing of

messages; in that case overlapping effects can be expected

for active target mode.

D. Interoperability Performance

Figure 7 demonstrates the execution time when active

messages and two-sided communications happen together

(AM+PTP). In the test, the origin process sends multiple active

messages to the target process. At the same time, a third

process sends multiple two-sided messages to the same target

process. We increase the number of both AM and two-sided

operations, measure the execution time on the origin process

of AM communications, and compare the results with Fig. 5

(AM-Only).

Figure 7(a) shows the interoperability performance on IB

network. When the two-sided communication is added, the

time of both the EXT-ASYNC and NON-ASYNC models in-

creases, because under EXT-ASYNC and NON-ASYNC, active

messages and two-sided messages are processed by the same

thread (asynchronous thread under EXT-ASYNC and main

thread under NON-ASYNC). However, the time of INT-ASYNC

does not increase obviously. The reason is that under INT-

ASYNC, active messages and two-sided messages are pro-
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Fig. 7: Interoperability performance

cessed in separate threads: the asynchronous thread handles

active messages, and the main thread handles two-sided mes-

sages. Therefore, adding two-sided communications does not

affect the total execution time in INT-ASYNC.

Figure 7(b) shows the interoperability performance on

shared memory. When adding two-sided communications, the

execution times in all three models are increased, because now

active messages and two-sided messages are handled within

the same thread for all three models. However, since there is

no extra thread existing or awake in NON-ASYNC and INT-

ASYNC, the overhead is relatively small compared with that

of EXT-ASYNC.

E. Stencil Kernel Benchmark

To examine the scalability and the effectiveness of the

asynchronous progress engine on both network and shared

memory, we implemented a stencil kernel benchmark using

AM operations and FENCE synchronization. During runtime,

every node has 8 MPI processes. For the INT-ASYNC and EXT-

ASYNC models, each MPI process would spawn a separate

thread. Processes are formed as a square grid, and each one

sends and receives messages from neighbors within distance

1. The process number is scaled from 2×2, 4×4 ... to 20×20.

Fig. 8 demonstrates the execution time with small grid

size and large grid size. Both INT-ASYNC and EXT-ASYNC

performs worse than NON-ASYNC due to overhead of the

context switching. INT-ASYNC has less overhead than EXT-

ASYNC as expected, because asynchronous thread in INT-

ASYNC is waken up only when there are active messages on

network coming, whereas asynchrnous thread in EXT-ASYNC

is always working throughout the whole execution and context

switching is very frequent.



F. Graph 500 Benchmark

Graph 500 [13] is a relatively new supercomputing bench-

mark used to test data-intensive computing systems. It per-

forms a breadth-first search, and its performance metric is

traversed edges per second (TEPS). The MPI one-sided im-

plementation of Graph 500 performs a large number of 8-

byte MPI_Accumulates among all the peers during FENCE

epochs. A straightforward improvement upon that approach is

to coalesce a certain number of those MPI_Accumulates,

in order to reduce the large number of small communications

with each peer. Such an improvement can simply use MPI

derived datatypes (DDTs) to send coalesced data resulting

from the local accumulation of the data meant for each

peer in each fence epoch. However, the DDT approach must

satisfy the nonoverlapping constraint imposed by the MPI

specification for target datatypes in MPI_Accumulate. By

resorting to AM, which uses user-defined functions instead of a

regular MPI_Op in MPI_Accumulate, the aforementioned

constraint can be totally avoided. Before issuing operations

to each peer at the end of the epoch, the AM approach

compacts the locally accumulated data into sparse arrays.

This step, which occurs once for each peer in each epoch, is

less computation-intensive than the nonoverlapping constraint

checking that the DDT approach performs for each local

accumulation.

In Fig. 9, we present measurement of TEPS to compare

the default one-sided implementation (Default-g500) with a

DDT-based implementation (DDT-g500) and our AM-based

implementation (AM-g500). All results are gathered under

NON-ASYNC model. The tests are performed for 215 vertices

(scale-15) and 2
20 vertices (scale-20) respectively over 128,

256, and 512 processes.

For scale-15 (Fig. 9(a)), both DDT-g500 and AM-g500

perform better than Default-g500; and as expected, AM-g500

performs even better than DDT-g500. The same trend is

observed in scale-20 (Fig. 9(b)) over 128 and 256 processes.

However, AM-g500 performs poorly over 512 processes at

scale-20. The case where AM-g500 underperforms compared

with DTT-g500 and Default-g500 is a consequence of a few

more general behaviors of the one-sided implementation of

Graph 500. For DDT-g500 and AM-g500, job size variations

create a tradeoff between the size of communication with each

peer and the number of peers each process communicates with.

The larger the job, the larger the number of peers but the

smaller the message sizes. As a result, the coalescing effect

tends to be watered down when the job size increases at

a fixed scale. A point can be reached where the overhead

of each coalescing approach will not be offset enough by

the communication time saved by coalescing. The important

observation, however, is that at a fixed scale, Graph 500

remains scalable with respect to the number of processes until

a peak is reached, and then TEPS enter a phase of performance

drop. The numbers of processes shown in Fig. 9 happen to be

in the range of performance drop for scale-15 and scale-20.

We confirm in particular that 128 is the optimal job size for

scale-20 for our test environment when job sizes are changing

by a factor of 2. Consequently, no matter what implementation

chosen, the informed user is less likely to execute Graph 500

over job sizes where the AM implementation underperforms.

VI. DISCUSSION AND FUTURE WORK

The existing prototype of MPI user-defined function dis-

cussed in Sec. III has several restrictions:

(1) Only one kind of datatype layout and size is accepted by

the user function, which forces input and output data to have

the same data layouts.

(2) MPI_Accumulate allows updates only on the data

specified by the function call, which makes some operations

(inserting an element into a remote queue) hard to implement

by using AM operations.

(3) For noncontiguous datatypes data to be transferred between

two processes, it must be internally packed at the origin side,

and unpacked at the target side; therefore the target process

has to allocate a large temporary buffer to place the unpacked

data. This approach is inefficient when encountering sparse

data.

To solve these problems, we propose a design of gen-

eralized API for active messages in MPI. This API allows

for much more flexibility on usage and allows the user

to specify the type of receiving buffer by themselves. The

generalized API includes following new functions: MPIX_

Am_handler_register, MPIX_Am_free, MPIX_Am_

send, MPIX_Am_hhandler (header handler), and MPIX_

Am_comp_handler (completion handler). Only the header

handler needs to be registered. When MPIX_Am_send is

called, the runtime system issues small immediate data fol-

lowed by the main data. Immediate data is handled by the

header handler at the target. The header handler specifies

the receiving buffer and the completion handler for the main

data. When the main data arrives, all AM operations are

done in the completion handler. Because users can specify the

datatype of the receiving buffer, they can make it as a packed

datatype, in order to avoid memory efficiency issues. Also,

the argument of the completion handler is a pointer to a user-

defined C structure; therefore users can pack any arguments

they need and pass these arguments to the function, which

removes restrictions on input data. We plan to implement this

generalized API in our future work.

VII. CONCLUSION

We have presented the design and implementation of active

messages in MPI based on the MPI RMA interface. This

implementation is achieved by proposing operation registration

schemes, extending the functionality of the Accumulate

operation to support user-defined message handlers, and us-

ing multithreading and shared-memory allocation to support

asynchronous progress engine. The impact of this work is

as follows: active messages can work interoperably with

two-sided and collective communications while introducing a

modest overhead; a process that does shared-memory commu-

nication directly performs origin computation that allows the
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asynchronous thread to nonactively wait for messages from the

network; and asynchronous AM is implemented inside MPI,

not on top of MPI. Through the evaluation of communica-

tion latency, overlapping effect, interoperability, and stencil

tests, we demonstrated that the performance is competitive

with external asynchronous progress engine. Furthermore, we

investigated the performance of the Graph 500 benchmark by

comparing an AM with a derived datatype implementation,

demonstrating the advantage of active messages in implement-

ing data-intensive algorithms.
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