Improving the Performance of Collective
Operations in MPICH

Rajeev Thakur and William Gropp

Mathematics and Computer Science Division
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439, USA
{thakur, gropp}@mcs.anl.gov

Abstract. We report on our work on improving the performance of col-
lective operations in MPICH on clusters connected by switched networks.
For each collective operation, we use multiple algorithms depending on
the message size, with the goal of minimizing latency for short messages
and minimizing bandwidth usage for long messages. Although we have
implemented new algorithms for all MPI collective operations, because
of limited space we describe only the algorithms for allgather, broad-
cast, reduce-scatter, and reduce. We present performance results using
the SKaMPI benchmark on a Myrinet-connected Linux cluster and an
IBM SP. In all cases, the new algorithms significantly outperform the old
algorithms used in MPICH on the Myrinet cluster, and, in many cases,
they outperform the algorithms used in IBM’s MPI on the SP.

1 Introduction

Collective communication is an important and frequently used component of
MPI and offers implementations considerable room for optimization. MPICH,
although widely used as an MPI implementation, has until now had fairly rudi-
mentary implementations of the collective operations. We have recently focused
on improving the performance of all the collective operations in MPICH. Our
initial target architecture is the one that is the most popular among our users,
namely, clusters of machines connected by a switch, such as Myrinet or the
IBM SP switch. For each collective operation, we use multiple algorithms based
on message size: The short-message algorithms aim to minimize latency, and
the long-message algorithms aim to minimize bandwidth usage. Our approach
has been to identify the best algorithms known in the literature, improve on
them where possible, and implement them efficiently. Our implementation of
the algorithms handles derived datatypes as well as non-power-of-two number
of processes.

We have implemented new algorithms in MPICH for all the collective oper-
ations, namely, scatter, gather, allgather, broadcast, reduce, allreduce, reduce-
scatter, scan, and barrier. Because of limited space, however, we describe only
the algorithms for allgather, broadcast, reduce-scatter, and reduce. We use the



SKaMPI benchmark [19] to measure the performance of the algorithms on two
platforms: a Linux cluster at Argonne connected with Myrinet 2000 and the
IBM SP at the San Diego Supercomputer Center. On the Myrinet cluster we use
MPICH-GM and compare the performance of the new algorithms with the old
algorithms in MPICH-GM. On the IBM SP, we use IBM’s MPI and compare
the performance of the new algorithms with the algorithms used in IBM’s MPI.
On both systems, we ran one MPI process per node. We implemented the new
algorithms as functions on top of MPI point-to-point operations, so that we can
compare performance simply by linking or not linking the new functions.

The rest of this paper is organized as follows. Section 2 describes related work
in this area. Section 3 describes the cost model we use to guide the selection of
the algorithms. The algorithms and their performance are described in Section 4.
We conclude in Section 5 with a brief discussion of future work.

2 Related Work

Early work on collective communication focused on developing optimized algo-
rithms for particular architectures, such as hypercube, mesh, or fat tree, with
an emphasis on minimizing link contention, node contention, or the distance
between communicating nodes [2—4, 13]. More recently, Dongarra et al. have de-
veloped automatically tuned collective communication algorithms [18]. Their ap-
proach consists of running tests to measure system parameters and then tuning
their algorithms for those parameters. Researchers in Holland and at Argonne
have optimized MPI collective communication for wide-area distributed environ-
ments [7,8]. In such environments, the goal is to minimize communication over
slow wide-area links at the expense of more communication over faster local-area
connections. Research has also been done on developing collective communica-
tion algorithms for clusters of SMPs [12,15-17], where communication within
an SMP is done differently from communication across a cluster. Some efforts
have focused on using different algorithms for different message sizes, such as
the work by Van de Geijn et al. for the Intel Paragon [1,9, 14], by Rabenseifner
on reduce and allreduce [11], and by Kale et al. on all-to-all communication [6].

3 Cost Model

We use a simple model to estimate the cost of the collective communication
algorithms in terms of latency and bandwidth usage and to guide the selection of
algorithms for a particular collective communication operation. We assume that
the time taken to send a message between any two nodes can be modeled as o+
nB, where « is the latency (or startup time) per message, independent of message
size, ( is the transfer time per byte, and n is the number of bytes transferred. We
assume further that the time taken is independent of how many pairs of processes
are communicating with each other, independent of the distance between the
communicating nodes, and that the communication links are bidirectional (that
is, a message can be transferred in both directions on the link in the same time as



in one direction). The node’s network interface is assumed to be single ported;
that is, at most one message can be sent and one message can be received
simultaneously. In the case of reduction operations, we assume that v is the
computation cost per byte for performing the reduction operation locally on any
process.

4 Algorithms

In this section we describe the new algorithms and their performance.

4.1 Allgather

MPI_Allgather is a gather operation in which the data contributed by each pro-
cess is gathered on all processes, instead of just the root process as in MPI_Gather.

The old algorithm for allgather in MPICH uses a ring method in which
the data from each process is sent around a virtual ring of processes. In the
first step, each process ¢ sends its contribution to process ¢ + 1 and receives
the contribution from process ¢ — 1 (with wrap-around). From the second step
onwards each process i forwards to process i+ 1 the data it received from process
1 — 1 in the previous step. If p is the number of processes, the entire algorithm
takes p—1 steps. If n is the total amount of data to be gathered on each process,
then at every step each process sends and receives % amount of data. Therefore,
the time taken by this algorithm is given by Tring = (p — o + p?%lnﬂ. Note
that the bandwidth term cannot be reduced further because each process must
receive % data from p — 1 other processes. The latency term, however, can be
reduced if we use an algorithm that takes lgp steps. We use such an algorithm,
called recursive doubling, for the new allgather in MPICH. Recursive doubling
has been used in the past, particularly on hypercube systems; it is also used in
the implementation of allreduce in [11].

Figure 1 illustrates how the recursive doubling algorithm works. In the first
step, processes that are a distance 1 apart exchange their data. In the second
step, processes that are a distance 2 apart exchange their own data as well as
the data they received in the previous step. In the third step, processes that
are a distance 4 apart exchange their own data as well the data they received
in the previous two steps. In this way, for a power-of-two number of processes,
all processes get all the data in lgp steps. The amount of data exchanged by

each process is 2 in the first step, 22 in the second step, and so forth, up to
p

p
olsp—1y

in the last step. Therefore, the total time taken by this algorithm is
Trec_dbl = lgp o+ ijlnﬁ

The recursive-doubling algorithm is straightforward for a power-of-two num-
ber of processes but is a little tricky to get right for a non-power-of-two number
of processes. We have implemented the non-power-of-two case as follows. At each
step of recursive doubling, if the current subtree is not a power of two, we do
additional communication to ensure that all processes get the data they would



Fig. 1. Recursive doubling for allgather

have gotten had the subtree been a power of two. This communication is done
in a logarithmic fashion to minimize the additional latency. This approach is
necessary for the subsequent steps of recursive doubling to work correctly. The
total number of steps for the non-power-of-two case is bounded by 2|lgp|.

Note that the bandwidth term for recursive doubling is the same as for the
ring algorithm, whereas the latency term is much better. Therefore, one would
expect recursive doubling to perform better than the ring algorithm for short
messages and the two algorithms to perform about the same for long messages.
We find that this situation is true for short messages (see Figure 2). For long
messages (> 512 KB), however, we find that recursive doubling runs much slower
than the ring algorithm, as shown in Figure 3. We believe this difference is be-
cause of the difference in the communication pattern of the two algorithms:
The ring algorithm has a nearest-neighbor communication pattern, whereas in
recursive doubling, processes that are much farther apart communicate. To con-
firm this hypothesis, we used the b_eff MPI benchmark [10], which measures
the performance of about 48 different communication patterns, and found that,
for long messages on both the Myrinet cluster and the IBM SP, some commu-
nication patterns (particularly nearest neighbor) achieve more than twice the
bandwidth of other communication patterns. In MPICH, therefore, we use the
recursive-doubling algorithm for short- and medium-size messages (< 512 KB)
and the ring algorithm for long messages (> 512 KB).
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Fig. 2. Performance of allgather for short messages on the Myrinet cluster (64 nodes).
The size on the x-axis is the total amount of data gathered on each process.

We note that the dissemination algorithm [5] used to implement barrier oper-
ations is a better algorithm for non-power-of-two number of processes as it takes
[lg p] steps. In each step k of this algorithm, process i sends a message to pro-
cess (i + 2¥) and receives a message from process (i — 2*) (with wrap-around).
This algorithm works well for barrier operations, where no data needs to be
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Fig. 3. Ring algorithm versus recursive doubling for long-message allgather (64 nodes).
The size on the x-axis is the total amount of data gathered on each process.

communicated: Processes simply send 0-byte messages. We, however, find it not
easy to use for collective operations that have to communicate data, because
keeping track of which data must be routed to which process is nontrivial in this
algorithm and requires extra bookkeeping and memory copies. With recursive
doubling, on the other hand, keeping track of the data is trivial.

4.2 Broadcast

The old algorithm for broadcast in MPICH is the commonly used binary tree
algorithm. In the first step, the root sends data to process (root + £). This pro-
cess and the root then act as new roots within their own subtrees and recursively
continue this algorithm. This communication takes a total of [lgp] steps. The
amount of data communicated by a process at any step is n. Therefore, the time
taken by this algorithm is Ty ee = [lgp](a + ng).

This algorithm is good for short messages because it has a logarithmic la-
tency term. For long messages, however, a better algorithm has been proposed
by Van de Geijn et al. that has a lower bandwidth term [1,14]. In this algo-
rithm, the message to be broadcast is first divided up and scattered among the
processes, similar to an MPI_Scatter; the scattered data is then collected back
to all processes, similar to an MPI_Allgather. The time taken by this algorithm
is the sum of the times taken by the scatter, which is (Igp « + %nﬁ) for a
binary tree algorithm, and the allgather for which we use either recursive dou-
bling or the ring algorithm depending on the message size. Therefore, for very
long messages where we use the ring allgather, the time taken by the broadcast
is Tvandegeijn = (1gp +p— ].)O[ + 2%nﬁ

Comparing this time with that for the binary tree algorithm, we see that for
long messages (where the latency term can be ignored) and when lgp > 2 (or
p > 4), the Van de Geijn algorithm is better than binary tree. The maximum
improvement in performance that can be expected is (1g p)/2. In other words, the
larger the number of processes, the greater the expected improvement in perfor-
mance. Figure 4 shows the performance for long messages of the new algorithm
versus the old binary tree algorithm in MPICH as well as the algorithm used by



IBM’s MPI on the SP. In both cases, the new algorithm performs significantly
better. Therefore, we use the binary tree algorithm for short messages (< 12
KB) and the Van de Geijn algorithm for long messages (> 12 KB).

Myrinet Cluster
250000

MPICH Old ——
MPICH New -

200000 -

150000 -

time (microsec.)

100000 -

50000 -

0 - L L L L L L L L
0 1le+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06
message length (bytes)

time (microsec.)

160000

140000

120000
100000
80000 -
60000 -
40000

20000 -

0
0

IBM SP

MPICH New -------

IBM MPI ——

. . . . . . . .
1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06
message length (bytes)

Fig. 4. Performance of long-message broadcast (64 nodes)

4.3 Reduce-Scatter

Reduce-scatter is a variant of reduce in which the result, instead of being stored
at the root, is scattered among all processes. The old algorithm in MPICH
implements reduce-scatter by doing a binary tree reduce to rank 0 followed by
a linear scatterv. This algorithm takes lgp + p — 1 steps, and the bandwidth
term is (lgp + pp%l)nﬂ. Therefore, the time taken by this algorithm is T,q =

(lgp+p—a+(gp+E5)nb+nlgpy.

In our new implementation of reduce-scatter, for short messages, we use dif-
ferent algorithms depending on whether the reduction operation is commutative
or noncommutative. The commutative case occurs most commonly because all
the predefined reduction operations in MPI (such as MPI_SUM, MPI_MAX) are com-

mutative.

For commutative operations, we use a recursive-halving algorithm, which is
analogous to the recursive-doubling algorithm used for allgather (see Figure 5).
In the first step, each process exchanges data with a process that is a distance

p
2

L away: Each process sends the data needed by all processes in the other half,

receives the data needed by all processes in its own half, and performs the re-
duction operation on the received data. The reduction can be done because the
operation is commutative. In the second step, each process exchanges data with

P

a process that is a distance £ away: Each process sends the data needed by all

4

processes in the other half of the current subtree, receives the data needed by all
processes in its own half of the current subtree, and performs the reduction on
the received data. This procedure continues recursively, halving the data com-
municated at each step, for a total of lg p steps. Therefore, if p is a power of two,
the time taken by this algorithm is Trcc_naiy = lgp o+ p—1 nf + pp%ln'y. We use

this algorithm for messages up to 512 KB.

p
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Fig. 5. Recursive halving for commutative reduce-scatter

If p is not a power of two, we first reduce the number of processes to the
nearest lower power of two by having the first few even-numbered processes
send their data to the neighboring odd-numbered process (rank+1). These odd-
numbered processes do a reduce on the received data, compute the result for
themselves and their left neighbor during the recursive halving algorithm, and,
at the end, send the result back to the left neighbor. Therefore, if p is not a
power of two, the time taken by the algorithm is Trec nary = (|lgp] + 2)a +
2np 4+ n(l + ijl)'y. This cost is approximate because some imbalance exists in
the amount of work each process does, since some processes do the work of their
neighbors as well. A similar method for handling non-power-of-two cases is used
in [11].

If the reduction operation is not commutative, recursive halving will not
work. Instead, we use a recursive-doubling algorithm similar to the one in all-
gather. In the first step, pairs of neighboring processes exchange data; in the sec-
ond step, pairs of processes at distance 2 apart exchange data; in the third step,
processes at distance 4 apart exchange data; and so forth. However, more data is
communicated than in allgather. In step 1, processes exchange all the data except
the data needed for their own result (n—2); in step 2, processes exchange all data
except the data needed by themselves and by the processes they communicated

with in the previous step (n— 27”); in step 3, it is (n— 4?”); and so forth. Therefore,

the time taken by this algorithm is Tspert = lg pa+n(lg p— pp%l)ﬂ—i—n(lg p— %)%
We use this algorithm for very short messages (< 512 bytes).

For long messages (> 512KB in the case of commutative operations and >
512 bytes in the case of noncommutative operations), we use a pairwise exchange
algorithm that takes p — 1 steps. At step 7, each process sends data to rank + 1,
receives data from rank — i, and performs the local reduction. The data ex-
changed is only the data needed for the scattered result on the process (= %)
The time taken by this algorithm is Tjong = (p — 1)a + pp%lnﬂ + pp%ln'y. Note
that this algorithm has the same bandwidth requirement as the recursive halv-
ing algorithm. Nonetheless, we use this algorithm for long messages because it
performs much better than recursive halving (similar to the results for recursive
doubling versus ring algorithm for long-message allgather).

The SKaMPI benchmark, by default, uses a noncommutative user-defined
reduction operation. Since commutative operations are more commonly used,
we modified the benchmark to use a commutative operation, namely, MPI_SUM.
Figure 6 shows the performance of the new algorithm for short messages on the
IBM SP. The performance is significantly better than that of the algorithm used
in IBM’s MPI. For large messages, the new algorithm performs about the same
as the one used in IBM’s MPI. Because of a known problem in our Myrinet
network, we were not able to test the old algorithm for short messages (the
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program hangs). We were able to test it for long messages on 32 nodes, and the
results are shown in Figure 6. The new algorithm performs several times better
than the old algorithm (reduce + scatterv) in MPICH.
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Fig. 6. Performance of reduce-scatter for short messages on the IBM SP (64 nodes)
and for long messages on the Myrinet cluster (32 nodes)

4.4 Reduce

MPI _Reduce performs a global reduction operation and returns the result to the
specified root. The old algorithm in MPICH uses a binary tree, which takes lg p
steps, and the data communicated at each step is n. Therefore, the time taken by
this algorithm is Tyee = [lgp](c +nB + ny). This is a good algorithm for short
messages because of the lgp steps, but a better algorithm, proposed by Rolf
Rabenseifner [11], exists for long messages. The principle behind Rabenseifner’s
algorithm is similar to that behind Van de Geijn’s algorithm for long-message
broadcast. Van de Geijn implements the broadcast as a scatter followed by an
allgather, which reduces the nlg p3 bandwidth term in the binary tree algorithm
to a 2nf term. Rabenseifner implements a long-message reduce effectively as a
reduce-scatter followed by a gather to the root, which has the same effect of
reducing the bandwidth term from nlgp 8 to 2ngG.

In the case of predefined reduction operations, we use Rabenseifner’s al-
gorithm for long messages (> 2 KB) and the binary tree algorithm for short
messages (< 2 KB). In the case of user-defined reduction operations, we use the
binary tree algorithm for all message sizes because in this case the user may pass
derived datatypes, and breaking up derived datatypes to do the reduce-scatter is
tricky. With predefined reduction operations, only basic datatypes are allowed.

The time taken by Rabenseifner’s algorithm is the sum of the times taken by
reduce-scatter (recursive halving) and gather (binary tree), which is Trqpensei fner =

2lgpa+ 2%nﬂ + pp%ln'y.

Figure 7 shows the performance of reduce for long messages on the Myrinet
cluster. The new algorithm is more than twice as fast as the old algorithm in
some cases. On the IBM SP we found that the new algorithm performs about

the same as the one in IBM’s MPI.
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Fig. 7. Performance of reduce (64 nodes)

5 Conclusions and Future Work

We have reported on our work on improving the performance of the collective
communication algorithms in MPICH. All these algorithms will be available
in the next release of MPICH (1.2.6). Since these algorithms distinguish be-
tween short and long messages, an important factor is the message size at which
we switch between the short- and long-message algorithms. At present, we use
experimentally determined cut-off points, which are different for different algo-
rithms. We plan to develop a model to calculate the cutoff points automatically
based on system parameters. We also plan to extend this work to incorporate
topology awareness, particularly algorithms that are optimized for architectures
comprising clusters of SMPs. Finally, we plan to explore the use of one-sided
communication to improve performance of collective operations.
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