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Abstract. Many scientific applications require high-performance concurrent
I/O accesses to a file by multiple processes. Those applications rely indi-
rectly on atomic I/O capabilities in order to perform updates to structured
datasets, such as those stored in HDF5 format files. Current support for
atomicity in MPI-IO is provided by locking around the operations, impos-
ing lock overhead in all situations, even though in many cases these opera-
tions are non-overlapping in the file. We propose to isolate non-overlapping
accesses from overlapping ones in independent I/O cases, allowing the non-
overlapping ones to proceed without imposing lock overhead. To enable this,
we have implemented an efficient conflict detection algorithm in MPI-IO us-
ing MPI file views and datatypes. We show that our conflict detection scheme
incurs minimal overhead on I/O operations, making it an effective mechanism
for avoiding locks when they are not needed.

1 Introduction

Some of the scientific applications are I/O intensive and demand high-performance
I/O access and bandwidth to store and retrieve their simulation results. A relatively
slow procedure to store and retrieve the scientific application results to and from the
storage system limits the overall performance despite the ever increasing compute
power. Parallel file systems and high-level parallel I/O libraries are provided as a
solution to mitigate this lag. Parallel file systems provide the semantics of the local
file system but face additional challenges regarding atomicity and consistency. Some
parallel file systems such as PVFS [6] and PVFS2 [3] do not support POSIX [4]
semantics for atomicity and consistency. These semantics are guaranteed only if
there is no data sharing among concurrent processes and are inadequate to describe
complex requests in scientific computing applications that are non-contiguous in files.
Scientific applications do perform these types of operations [11] [13], so alternative
mechanisms for guaranteeing atomicity are necessary, e.g. a locking mechanism.
Atomicity semantics define the outcome of multiple concurrent 1/O accesses, at
least one of which is a write to a shared or overlapping region. With the advent of
parallel I/0O libraries, data can be accessed in various complex patterns by multiple
processes. These access patterns can be contiguous or non-contiguous, overlapping
or non-overlapping depending upon the application behavior. Locking mechanisms
provided by the file system are used to ensure that during a concurrent I/O ac-
cess, shared data is not being violated. File locks, byte range locks, list locks, and



datatype locks are various locking mechanisms that are available to guarantee the
atomicity semantics. Adapted from the POSIX semantics, parallel file systems such
as GPFS [16] and Lustre [2] provide a byte range locking mechanism. Byte range
locks provide an option for guaranteeing atomicity of non-contiguous operations.
By locking the entire region, changes can be made by using a read-modify-write se-
quence. However, this approach does not consider the actual non-contiguous access
pattern that may occur in a byte range and introduces false sharing. This approach
also limits the benefits of parallel I/O that can be gained, by unnecessarily serial-
izing the accesses. To address these particular cases, [5] [10] propose to lock the
exact non-contiguous regions within a byte range and maximize the concurrent I/0
access.

The overhead of a locking mechanism appears in three forms; first is the commu-
nication overhead that is generated while acquiring and releasing the locks (sending
the requests to lock server(s)), second is the storage space overhead that is caused
by storing the locks during their acquire and release time (a data structure is main-
tained to store the locks, and for fine grained locks like list locks, this structure can
grow very large.), and the third is computation overhead to assign new locks (i.e.,
the tree data structure is scanned to check if the same lock request is being held by a
different process). These overheads can be reduced by making sure that unnecessary
locking requests are not generated. An observation is that the locks are requested
(e.g. file locks, byte-range locks, list locks, and datatype locks) even if there are no
overlaps, when locks are not needed. This observation leads us to a very important
question, whether it is possible to isolate the cases where atomicity is required and
where it is not, and optimize the locking mechanism.

We propose a scheme to identify the conflicts at the application level, by identi-
fying the concurrent access patterns and overlaps within an application. Our conflict
detection algorithm, implemented at the MPI-IO level for independent I/O opera-
tions uses file views and datatype decoding to determine the overlaps. Our results
show that the conflict detection algorithm incurs a minimal overhead and performs
within 3.6% of the ideal case (i.e. concurrent access with no locks). When the file
view for a process does not overlap with the file views of other processes, locking is
not required; there will be no conflicts. Our approach reduces the locking overhead at
minimum for the non-overlapping regions but handles the overlapped regions using
either file or byte range locks.

2 Design

We propose a conflict detection algorithm that should be performed before any
locking mechanism. Our goal is to optimize the lock acquiring process by provid-
ing an efficient conflict detection algorithm beforehand to identify the overlapping
regions, thereby requesting the locks only if there are overlapping regions. The con-
flict detection algorithm presented in this paper is based on MPI datatypes and
file views. Typically, a file read/write request in any MPI-IO program consists of
following steps: 1) Create the Data types, 2) Create the File views, and 3) Read-
/Write Request. The conflict detection is performed when a file view is created
(MPI_File set_view). Since it is a collective call, each process can exchange their
file views and determine the overlapping regions by comparing offset/block length
pairs. Each node acts as a conflict detector for itself.



The file view is created using MPI_File_set_view, and then each node decodes
the supplied MPI datatype. Decoding a datatype is not straight forward and is
a two step procedure using MPI-IO functions. The first step is getting the enve-
lope of the datatype using MPI_Type_get_envelope which returns information such
as number of displacements and block lengths used to create the datatype. The
second step is getting the actual contents in the form of offset/block length us-
ing MPI_Type_get_contents. The decoded datatypes are exchanged using collective
communication functions. The overhead of conflict detection is based on the com-
plexity and size of the datatype. For some datatypes this overhead is as small as
exchanging two long integer values, while for others it can consist of a long list of
offset /length pairs.

2.1 Conflict Detection

We categorize the derived datatypes in to two broader categories based on their
structure. The first category is a regular datatype; all the processes have the same
block size but a different displacement e.g. MPI_Type_vector, MPI_Type_subarray. In
a subarray, each process accesses a subarray that is defined by the number of dimen-
sions and the starting and ending offsets in each dimension. For a regular datatype,
we need to exchange the start and end offset in each dimension for each process.
The second category is irregular datatype; all the processes may access different
block sizes, different patterns and different displacements, e.g. MPI_Type_hindexed,
where each process accesses a non-contiguous region defined by a list of offsets and
corresponding block lengths.

Regular Datatypes: In independent write operations, when there are overlaps
among different writes, only one process should perform the write at a time. For
regular datatypes, we take the example of MPI_Type_subarray. A subarray datatype
is defined by the number of dimensions, size of array in each dimension, sizes of
subarrays in each dimension and the start positions for each subarray. The start
of each subarray and the size in each dimension is used to identify the overlaps
between any two consecutive tiles or subarrays as shown in the following equations.
A conflicting region is specified by CR(CO,CL), where CO is the conflicting offset
and CL is the conflicting length. The displacement of the i*" process is specified
by disp;(x,y) for a two-dimensional subarray and the corresponding block length is
given by blklen;(x,y).

CO = max(disp;(x,y), dispj(x,y)) (1)

If both the displacements i.e. disp; and disp; are the same, the C'L is given by eq. 2,
otherwise eq. 3 is used.

CL = min(blklen;(x,y), blklen;(z,y)) (2)

CL = [min(disp;(z,y) + blklen;(z,y),
dispj(x,y) + blklen;(z,y))| — CO (3)
Irregular Data types: For irregular datatypes, the offset/length pairs are re-

quired because each non-contiguous region will be of a different size. Each pro-
cess compares its own offset/length list against the others. A conflicting region



CR(CO,CL) is defined by the following equations, where C'O is the starting off-
set, and C'L is the length of the conflicting region. disp(i) is the displacement of the
it" process and blklen(i) is the corresponding block length.

CO = max(disp(i), disp(j)) (4)

If both the displacements i.e. disp(i) and disp(j) are the same, the C'L is given by
eq. 5, otherwise eq 6 is used.

CL = min(blklen(i), blklen(j)) (5)

CL = [min(disp(i) + blklen(i),
disp(j) + blklen(j))] — CO (6)

Since, the exact displacement and block length values are used, false sharing
is eliminated completely. There are more complex datatypes that we categorize as
multi-level datatypes, and MPI facilitates the creation of nested datatypes. For ex-
ample in noncontig benchmark, MPI_Type_contig, MPI_Type_vector and MPI_Type
_struct are used to create file views. In such cases, we perform multi-level decoding
to determine the conflicts. The overhead incurred by conflict detection is evaluated
in Section 4 in terms of communication and computation time. The communication
overhead is determined by the collective communication calls to exchange datatypes.
The computation overhead includes the time to generate and compare the datatypes.
It depends on the datatype or the size of the list to be compared. For each process,
if the size of the list is N, it will perform a linear compare of order N. The space
required is equal to the size of the datatype or the offset/length list.

3 Implementation

We implement the self-detecting locking mechanism in ROMIO, by adding it to
MPI File_set_view as shown in the listing 1. Listing 1 also shows how to use the
conflict variable in the main program. The decoding process utilizes two function
from MPI-IO library; MPI_Type_get_envelope and MPI_Type_get_contents. Our
initial implementation provides conflict detection support for a few selected data
types, MPI_Type_vector, MPI_Type_subarray, MPI_Type_hindexed. Each process
exchanges the view information using the MPI_Allgather collective communication
function. Once the data is ready at each node, it performs the comparison for the
conflicts. Our current implementation is tested with PVFS2, which does not support
locking. We have used the algorithms presented in [15] for file locks and [17] [14]
for byte range locks implementations with PVFS2. For byte range locks, we deter-
mine the start and end offsets of the byte range accessed by each process using an
existing function in ROMIO i.e. ADIOI_Calc_my_of f_len; it returns the start and
end offsets used by BR_Lock_acquire(br_lock,..).

MPI-IO write functions can be performed collectively or independently. The col-
lective write operations do not require conflict detection because conflicts cannot
occur in collective operation. The independent write operations do not commu-
nicate with each other to optimize the non-contiguous access and require locking
to protect the shared data regions. The blocking independent write functions are
MPI File write, MPI File write_at, and MPI File write_shared. Our conflict de-
tection implementation can be used with any locking mechanism and independent
write function. et.



4 Performance

In this section, we evaluate our conflict detection algorithm. We quantify the over-
head of the conflict detection algorithm, and compare the I/O time of various bench-
marks. We evaluate the conflict detection using three different benchmarks for both
overlaps and no-overlaps in file access patterns. We compare the time to determine
conflicts combined with and without locks and also show the overhead of conflict
detection in terms of the communication and computation time. In our experiments,
we use the best case of a concurrent write access i.e. when there are no locks, and
all processes can perform a write operation concurrently. The worst case used in
the experiments is the whole file locks [15], when all writes by different processes
become serial. Additionally, we have also used the byte range locks as implemented
in [17] [14].

The experimental setup consists of a 16 node cluster, with PVFS2. Each node is
a Dell PowerEdge 2 CPU, dual core with 4GB memory and two 500 GB SAS hard
drives. PVFS2 has been setup on all 16 nodes, so all nodes serve as I/O nodes and
the compute nodes. The network connection is Intel Pro/1000 NIC, and the cluster
network consist of Nortel BayStack 5510-48T GigaBit switch. We have used PVFS2
version 2.7.0 and MPICH2-1.0.7 in our experiments.

MPI-Tile I0: MPI-Tile IO [1] is used to write non-overlapping and overlapping
tiles. Non-overlapping Access: The number of dimensions for MPI_Type_subarray is
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Fig. 1: MPI-Tile-IO: Comparing I/O time for non-overlapping and overlapping re-
gions with conflict detection and locks.

2 in MPI-Tile-IO, and the array of starts gives the z and y position for each tile.
The array of sub-sizes returns the size of each tile in both dimensions. The problem
size consist of an array of 4096 X 8192 per process, where each element size is 32
bytes. Each process writes 1GB of data, hence if there are 32 processes then the total
amount of data written will be 32GB. The 4, 8, 16 and 32 processes are arranged
in 2x2, 4x2, 8x2 and 16x2 panels. The I/O time results are shown in Figure 1. 1/O



time includes the time for MPI_File_set_view (also the time for conflict detection),
MPI_File_write and waiting time if there are file locks or byte range locks.

There are five bars, the first bar shows the best case of no-locks, whereas the last
bar shows the worst case. The second and third bar shows the case when conflict
detection is performed, no conflicts are reported and the underlying file and byte
range locking is disabled as a result. The fourth bar performs byte range locks
without using conflict detection. We can see that file and byte range locks combined
with conflict detection performs close to the no-locks, i.e. an ideal case for the non-
overlapping I/O accesses. The overhead of conflict detection is minimal, because
the datatypes exchanged in MPI-Tile-IO consist of start and end offset of each
tile accessed by a process. This overhead increases with the number of processes,
and the detailed overhead results are shown in Figure 3. File locks have the worst
performance because they introduce sequential access and the I/O time increases
with the increase in number of processes.

Overlapping Access: We used overlap-z and overlap-y options in MPI-Tile-1O to
generate the overlapped I/O access patterns. The problem size consists of an array
of 4096 x 8192 per process with an overlap of 512 x 1024 in x and y direction respec-
tively, where each element size is 32 bytes. Each process writes 1GB of data with
an overlapping data of 16MB per process. The atomicity semantics guarantee that
the 16MB overlapping data will be defined by one process at a time and not contain
any data from more than one processes. We compare the I/O time for file locks
and byte range locks with and without conflict detection. No-locks results are not
provided here, because the output in overlapping region is not defined without locks.
I/0O time for the other four cases is shown in
the Figure 1. It should be noted that since
there are overlaps, locks cannot be avoided, 200 :
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a variety of parameters to adjust the to- Fig 9. S3asim: Comparing I/O time
tal fragments in the database, sequence size, hen there are no-locks, conflict de-
query count, etc. After each worker finishes iaction with file locks, and file locks.
its query processing of its fragment, it sends

its ordered scores to the master process. The

master process merges the ordered scores to

its list and once all fragments of an input

query have been processed, it send the loca-

tions in the aggregate file to each worker to write the results. Finally, each worker
writes the result data to the output file independently when it receives the location



from master. The datatype used by workers is MPI_Type_hindexed, and is defined
by an array of block lengths and displacements.

Our conflict detection algorithm returns no conflict for the S3asim benchmark,
and this result is in accordance with [7]. All the workers work on different segments
of the database for query search, and a few of them write the results to a shared
file. Figure 2 shows three cases; no-locks i.e. none of the locking mechanism was
applied, conflict detection i.e. conflict detection algorithm was run in order to deter-
mine overlaps, and finally file locks. The conflict detection is performed only for the
processes that actually write, and on average it performs within 3.6% of the no-locks
case. The file locks show increase in I/O time with increase in number of processes,
since there are fewer writers as compared to the number of processes, and the line
is not a steep curve.

Conflict Detection Overhead: In this section, we present the overhead in-
curred by our conflict detection algorithm. Each process participates in two collec-
tive communication calls to gather the file view and the starting offset. We measure
the communication overhead as the time spend in communicating the required in-
formation. This overhead depends on the datatypes and the number of processes
that actually perform the write operation. In Figure 3, we show the communication
overhead in different benchmarks. It is noticed that in tile-io, each process writes a
tile/subarray that may or may not have overlapping regions, but in S3asim only a
few workers that find the match perform the write operation. This explains the less
steep curve for S3asim as compared with tile-io. Non-contig shows the maximum
overhead because it has a multi-level datatype and, we need two collective calls to
communicate the two levels of datatypes.

After communicating the file views, each process computes the conflicts, which
are the results of the comparisons of its own file view with the received ones. The
time spent in computing the conflicts is quantified as the computation overhead. This
overhead depends on the datatypes and also the size of offset/length pairs generated
from the file views. In Figure 3, we also show the computation overhead in various
benchmarks. It can be seen that the overhead is minimal in tile-io, the reason being
that tile-io writes data logically in sub-arrays, and in order to perform the conflict
detection we do not generate the offset/length pairs and use the start and end offsets
in each dimension to detect conflicts. For S3asim, the overhead is also minimal
because the actual number of workers writing the results is less than the number
of processes performing the search. For example, in a 32p run, for certain queries
only 4 or 5 processes write in the end. S3asim has a few writers but its datatype
is more complex and with the increase in number of processes it has more writers,
so S3asim has greater overhead with increased number of processes. Noncontiguous
benchmark performs four different access patterns, i.e. contiguous/non-contiguous
in memory and contiguous/non-contiguous in file. We only present the results when
accesses are either non-contiguous in memory or in file. A file size of 2GB is used but
we keep per process file size constant, the vector length i.e. the number of elements
in vector datatype used is set to 32 and element count i.e. the number of elements in
a contiguous chunk to 128. The first derived datatype is MPI_Type_vector, and the
second derived datatype that is comprised of MPI_Type_vector is MPI_Type_struct.
The overhead of conflict detection for non-contig is shown in Figure 3. Non-contig
has a steady increase in computation overhead with number of processes, it is a case
of multi-level datatype.
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Number of Lock Requests: We emphasize that with conflict detection, if there
are no overlaps in the application access pattern, locking can be avoided. Otherwise,
only the overlapped region should be locked to guarantee the atomicity of concur-
rent operations. Finally, we investigate the utilization of our scheme with the exist-
ing locking mechanisms. Assuming that there are three locking implementations, i.e.
whole-file, byte range and list locks, we compare the number of locks per client in each
case with and without conflict detection.
There is one lock per client
for the file locks and the
byte range locks, but these are
coarse grained locks. The non-

Table 1: Reduction in number of locks

contiguous access patterns ob-

Approach Number of Locks/Client
serve false sharing with coarse [Whole-File Locks 1
grained locks. We want to show [Byte-Range Locks 1
that a locking mechanism com- |List Locks 64

bined with our approach is ef-
fective in reducing the num-
ber of lock requests that will

Locks with Conflict detection

No-0Overlaps: 0
Overlaps: 1 (Whole-file),
1 (Byte-Range),

Number of CR (List)

be issued for any lock server

that needs communication and

space on the server to be stored. Many scientific applications have patterns that
would require hundred thousands of locks [10]. In Table 1, we show a simple com-
parison of the number of locks (whole file, byte-range and list) with and without
using conflict detection. It should be noticed that the list locks and the datatype
locks are very fine grained locks. The locks acquiring process is instigated by a client.
The client first calculates which servers to access for the locks; the saving from con-
flict detection will come in the form of either none or a fewer number of requests.
The implementation of conflict detection with list locks [5] is left for future work.



5 Related Work

Researchers have contributed to provide atomicity semantics both at application
and file system level. Non-contiguous access patterns and overlapping 1/O pat-
terns [8] [9] [12] have been widely studied and the customized locking schemes,
process rank ordering and handshaking have been proposed. List locks and datatype
locks [5] [10] have maximum concurrency, but they acquire and maintain locks for
all regions accessed by a process. We provide conflict detection to find the overlaps
before lock requests are issued. The conflict check facilitates the locking mechanism
by providing a decision where locks are necessary to guarantee atomicity.

6 Conclusion

We have proposed a scheme to perform conflict detection using file views, and intro-
duce lock free independent write operations if there are no conflicts. We have imple-
mented our algorithm in ROMIO. In MPI-1IO applications atomicity guarantees rely
on the file system locks. Our Conflict detection algorithm is able to extract over-
lapping regions from the file views (for independent operations) created by MPI-IO
application with a minimal overhead. It paves the way to the lock-free and scalable
approaches of MPI-IO atomicity support.

Listing 1 Pseudocode for Conflict Detection

//Pseudocode for Conflict Detection

int Conflict_Detection(MPI_Datatype ftype) {

//Get the datatype envelope,

MPI_Type_get_envelope(ftype, &num_ints, &num_adds, &num_dtypes, &combiner);

//Get the actual contents of the datatype
MPI_Type_get_contents(ftype, num_ints, num_adds, num_dtypes,
array_of_ints, array_of_adds, array_of_dtypes);

//Gather datatypes from all other nodes
MPI_Allgather(array_of_ints, num_ints, MPI_INT, ai_all,
num_ints, MPI_INT, MPI_COMM_WORLD) ;

//Compare datatypes

switch(combiner){

case MPI_COMBINER_SUBARRAY:

// Compare the elements of ai_all, that contains array of
starts, and the block lengths are same for all blocks!

break;

case MPI_COMBINER_INDEXED:

case MPI_COMBINER_HINDEXED:

break;

}
return conflict;

}
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