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Abstract

The ROMIO implementation of the MPI-IO standard provides a por-
table infrastructure for use on top of a variety of underlying storage
targets. These targets vary widely in their capabilities, and in some
cases additional effort is needed within ROMIO to support all MPI-IO
semantics. Two aspects of the interface that can be problematic to imple-
ment are MPI-IO atomic mode and the shared file pointer access routines.
Atomic mode requires enforcing strict consistency semantics, and shared
file pointer routines require communication and coordination in order to
atomically update a shared resource. For some file systems, native locks
may be used to implement these features, but not all file systems have lock
support. In this work, we describe algorithms for implementing efficient
mutex locks using MPI-1 and the one-sided capabilities from MPI-2. We
then show how these algorithms may be used to implement both MPI-IO
atomic mode and shared file pointer methods for ROMIO without requir-
ing any features from the underlying file system. We show that these
algorithms can outperform traditional file system lock approaches. Be-
cause of the portable nature of these algorithms, they are likely useful in
a variety of situations where distributed locking or coordination is needed
in the MPI-2 environment.

1 Introduction

MPI-IO (The MPI Forum 1997) provides a standard interface for MPI programs
to access storage in a coordinated manner. Implementations of MPI-IO, such
as the portable ROMIO implementation (Thakur, Gropp, and Lusk 1999) and
the implementation for AIX GPFS (Prost, Treumann, Hedges, Jia, and Koniges
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2001), have aided in the widespread availability of MPI-IO. These implemen-
tations in particular include a collection of optimizations (Thakur, Gropp, and
Lusk 1998; Prost, Treumann, Hedges, Jia, and Koniges 2001; Latham, Ross,
and Thakur 2004) that leverage MPI-IO features to obtain higher performance
than would be possible with the less capable POSIX interface (IEEE 1996).

One component of the MPI-IO interface that has been difficult to implement
in a portable manner is the atomic mode. This mode provides a more strict
consistency semantic than the default MPI-IO mode or even POSIX I/O. Atomic
mode is a useful capability for applications and higher-level I/O components
that need to share data through a file. One good example where atomic mode
may be helpful is in HDF5, where internal data stored in the file is used by
all processes to place application data in a consistent manner. In ROMIO the
atomic mode is implemented through the use of file system locks where available.
Unfortunately, ROMIO cannot support atomic mode for file systems without
locking systems.

Another feature that the MPI-IO interface provides is shared file pointers.
A shared file pointer is an offset that is updated by any process accessing the
file in this mode. This feature organizes accesses to a file on behalf of the
application in such a way that subsequent accesses do not overwrite previous
ones. This is particularly useful for logging purposes: it eliminates the need for
the application to coordinate access to a log file.

Obviously, coordination must still occur; it just happens implicitly within
the I/O software rather than explicitly in the application. Only a few historical
file systems have implemented shared file pointers natively (Vesta (Corbett and
Feitelson 1994), PFS (Intel Supercomputing Division 1993), CFS (Pierce 1989),
SPIFFI (Freedman, Burger, and Dewitt 1996)), and they are not supported by
parallel file systems being deployed today. Thus, today shared file pointer access
must be provided by the MPI-IO implementation.

With the recent full implementation of MPI-2 one-sided operations in MPICH2
and other MPI packages, a new opportunity has arisen. By building up mutex
locks from one-sided and point-to-point operations, we can implement atomic
mode semantics and the shared file pointer routines without file system support.

This paper discusses a novel method for supporting shared file pointer access
within an MPI-IO implementation. This method relies only on MPI-1 and MPI-
2 communication functionality and not on any storage system features, making
it portable across any underlying storage. Sections 2 and 3 discuss the MPI-
IO interface standard, the portions of this related to atomic mode and shared
file pointers, and the way atomic mode and shared file pointer operations are
supported in the ROMIO MPI-IO implementation. Section 4 describes our
new approach to supporting atomic mode and shared file pointer operations
within an MPI-IO implementation. Three algorithms are used: one for atomic-
mode synchronization, one for independent shared-mode operations, and one for
collective ordered calls. Section 5 evaluates the performance of our approaches
on MPI-IO benchmarks. Section 6 concludes with a discussion of future work
in this area.
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2 MPI-IO Atomic Mode and ROMIO

The MPI-IO atomic mode guarantees sequential consistency of writes to the
same file by a group of processes that have collectively opened the file. It
also guarantees that these writes will be immediately visible by other processes
in this group. This semantic is used primarily for two purposes: simplifying
communication through a shared file, and guaranteeing atomicity of writes to
overlapping regions. The MPI-IO standard encourages applications to use the
more relaxed default MPI-IO consistency semantics when peak performance is
desired, as the MPI-IO implementation can more easily optimize the requests.
Even though atomic mode might not be the fastest way to access the underlying
file system, some programs need this capability; hence, it is important that we
support the standard in its entirety where possible.

The ROMIO implementation builds MPI-IO on top of the I/O API sup-
ported by the underlying file system. For many file systems, this interface is
POSIX. While the POSIX I/O read, write, readv, and writev calls also guar-
antee sequential consistency, they cannot describe all possible I/O operations
through the MPI-IO interface, particularly ones with noncontiguous data in file.
The lio listio function available as part of the POSIX real-time extensions
is also inadequate because the list of operations are considered independent —
there is no guarantee of atomicity with respect to the entire collection. Because
of these characteristics, atomicity must be imposed through additional means.
For these file systems ROMIO uses fcntl locks, locking contiguous regions en-
compassing all the bytes that the process will access.

File systems such as PVFS v1 (Carns, Ligon III, Ross, and Thakur 2000)
and PVFS v2 do not guarantee atomicity of operations, instead relying on the
MPI-IO layer to provide these guarantees. Other types of storage back-ends,
such as GridFTP (Allcock, Bester, Bresnahan, Chervenak, Foster, Kesselman,
Meder, Nefedova, Quesnal, and Tuecke 2002) and logistical networks (Atchley,
Beck, Millar, Moore, Plank, and Soltesz 2002), do not have locking capabili-
ties either. The NFS file system provides advisory lock routines but makes no
guarantees that locks will be honored across processes. In the existing ROMIO
implementation atomic mode is simply not supported for these types of storage.

To implement atomic mode without file system support, we need to build a
mechanism for coordinating access to a file or regions of a file. Our approach is
to provide a mutex lock for the entire file coupled with an efficient system for
notifying subsequent processes on lock release. In Section 4 we describe how we
implement these capabilities.

3 MPI-IO Shared File Pointers and ROMIO

The MPI-IO interface standard provides three options for referencing the loca-
tion in the file at which I/O is to be performed: explicit offsets, individual file
pointers, and shared file pointers. In the explicit offset calls, the process pro-
vides an offset that is to be used for that call only. In the individual file pointer
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calls, each process uses its own internally stored value to denote where I/O
should start; this value is referred to as a file pointer. In the shared file pointer
calls, each process in the group that opened the file performs I/O starting at a
single, shared file pointer.

Each of these three ways of referencing locations has both independent (non-
collective) and collective versions of read and write calls. In the shared file
pointer case the independent calls have the shared suffix (e.g., MPI File -
read shared), while the collective calls have the ordered suffix (e.g., MPI -
File read ordered). The collective calls additionally guarantee that accesses
will be ordered by rank of the processes. We will refer to the independent calls as
the shared-mode accesses and the collective calls as the ordered-mode accesses.

The fundamental problem in supporting shared file pointers at the MPI-
IO layer is that the implementation never knows when some process is going
to perform a shared-mode access. This information is important because the
implementation must keep a single shared file pointer value somewhere, and it
must access and update that value whenever a shared-mode access is made by
any process.

When ROMIO was first developed in 1997, most MPI implementations pro-
vided only MPI-1 functionality (point-to-point and collective communication),
and these implementations were not thread safe. Thread safety makes it eas-
ier to implement algorithms that rely on nondeterministic communication, such
as shared-mode accesses, because a separate thread can be used to wait for
communication related to shared file pointer accesses. Without this capability,
a process desiring to update a shared file pointer stored on a remote process
could stall indefinitely waiting for the remote process to respond. The reason is
that the implementation could check for shared-mode communication only when
an MPI-IO operation was called. These constraints led the ROMIO developers
to look for other methods of communicating shared file pointer changes.

Processes in ROMIO use a second hidden file containing the current value
for the shared file pointer offset. A process reads from or writes into this file
the value of the shared file pointer file before carrying out I/O routines. The
hidden file acts as a communication channel among all the processes. File system
locks serialize access and prevent simultaneous updates to the hidden file. This
approach works well as long as the file system meets two conditions:

1. The file system must support file locks.

2. The file system locks must prevent access from other processes, and not
just from other file accesses in the same program.

As discussed earlier, several common file systems do not provide file sys-
tem locks. On such file systems ROMIO cannot correctly implement shared
file pointers using the hidden file approach and currently must disable support
for this feature. For this reason ROMIO needs a portable mechanism for syn-
chronizing access to a shared file pointer that does not rely on any underlying
storage characteristics.
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if (myrank == homerank) {
MPI_Win_create(waitlistaddr , nprocs , 1,

MPI_INFO_NULL , comm , &waitlistwin );
}
else {

MPI_Win_create(NULL , 0, 1, MPI_INFO_NULL ,
comm , &waitlistwin );

}

Figure 1: MPI pseudocode for creating windows in a one-sided algorithm. The
“homerank” process hosts the actual memory, but all processes can access it.

4 Synchronization and Coordination with One-
Sided Operations

The MPI-2 specification adds a new set of communication primitives, called
the one-sided or remote memory access (RMA) functions. We are particularly
interested in “passive target” RMA communication, which allows one process
to modify the contents of remote memory without the remote process inter-
vening. These passive target operations provide the basis on which to build
a portable synchronization method within an MPI-IO implementation. This
synchronization primitive can then be used to coordinate accesses when imple-
menting atomic mode and shared file pointers.

MPI-2 one-sided operations do not provide a way to atomically read and
modify a remote memory region. We can, however, construct an algorithm
based on existing MPI-2 one-sided operations that lets a process perform an
atomic modification. For atomic mode, we want to coordinate access to the
entire file. In the shared file pointer case, we want to serialize access to the
shared file pointer value.

Before performing one-sided transfers, a collection of processes must first
define a window object. This object contains a collection of memory windows,
each associated with the rank of the process on which the memory resides.
After defining the window object, MPI processes can then perform put, get,
and accumulate operations into the memory windows of the other processes.
Figure 1 gives pseudocode for how this might be done.

MPI passive target operations are organized into access epochs that are
bracketed by MPI Win lock and MPI Win unlock calls. Clever MPI implemen-
tations (Thakur, Gropp, and Toonen 2004) will combine all the data movement
operations (puts, gets, and accumulates) into one network transaction that oc-
curs at the unlock. The MPI-2 standard allows implementations to optimize
RMA communication by carrying out operations in any order at the end of an
epoch. Implementations take advantage of this fact to achieve much higher per-
formance (Thakur, Gropp, and Toonen 2004). Thus, within one epoch a process
cannot read a byte, modify that value, and write it back because the standard
makes no guarantee about the order of the read-modify-write steps. This aspect
of the standard complicates, but does not prevent, the use of one-sided routines
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Figure 2: Depiction of MPI windows.

to build our data structures for coordination among MPI processes.
Implementing locks with MPI one-sided operations poses an interesting chal-

lenge: the standard does not define the traditional test-and-set and fetch-and-
increment operations. In fact, no mechanism exists for both reading and writ-
ing a single memory region in an atomic manner in the MPI scheme. Two
approaches are outlined in (Gropp, Lusk, and Thakur 1999). These approaches
have some disadvantages, particularly in that they require many remote one-
sided operations and poll on remote memory regions. Our approach requires
only a few one-sided operations and makes no use of polling.

At a high level, our algorithm is simple. A process that wants to acquire
the lock first adds itself to a list of processes waiting for the lock. If the process
is the only one in the list, then it has acquired the lock. If not, it will wait for
notification that the lock has been passed on to it. Processes releasing the lock
are responsible for notifying the next waiting process (if any) at lock release
time.

The algorithms presented here were influenced by the MCS lock (Mellor-
Crummey and Scott 1991), an algorithm devised for efficient mutex locks in
shared-memory systems. Like the MCS lock, we carry out O(1) network trans-
actions per lock acquisition. However, we are not able to meet their achievement
of constant memory size per lock, mainly because of the constraint in MPI of
not reading and writing to the same memory location in a single access epoch.
Our use of MPI communication and the approach we use for organizing memory
windows are unique to our algorithms. This general approach has been used
in a simulation of a portable atomic mode algorithm (Ross, Latham, Gropp,
Thakur, and Toonen 2005) and a simulated shared file pointer access (Latham,
Ross, and Thakur 2005). Here we elaborate on both approaches, implement
them in an MPI-IO implementation, and analyze behavior with actual MPI-IO
programs.

4.1 The Hybrid Point-to-Point and One-Sided Approach

Were we to use only one-sided operations, we would end up polling on a par-
ticular byte to know when another process released the lock. While doing so
minimizes remote memory access, we would expect that spinning on local vari-
ables would waste many CPU cycles. Avoiding this situation can be particularly
important in systems where the memory bus is shared with other processors or
processors are oversubscribed (i.e., more MPI processes than physical proces-
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/* add self to waitlist */
val = 1;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0,

waitlistwin );
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE ,

homerank , 0, 1, waitlisttype , waitlistwin );
MPI_Put (&val , 1, MPI_BYTE , homerank , myrank ,

1, MPI_BYTE , waitlistwin );
MPI_Win_unlock(homerank , waitlistwin );

/* check to see if lock is already held */
for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

/* wait for notification */
MPI_Recv(NULL , 0, MPI_BYTE , MPI_ANY_SOURCE ,

WAKEUPTAG , comm , MPI_STATUS_IGNORE );
}

Figure 3: MPI pseudocode for obtaining lock in hybrid algorithm. The MPI
datatype waitlisttype is an indexed type that accesss all the bytes except
waitflag[myrank].

sors). One solution would be to use a back-off algorithm to mitigate CPU
utilization, but that would incur additional latency in our lock acquisition.

Fundamentally, we want one process to inform another that it now owns the
lock. Because we are in an MPI environment, we have an effective mechanism
for implementing notification: point-to-point operations. We will call this algo-
rithm, which uses both MPI-1 point-to-point and MPI-2 one-sided operations,
the hybrid algorithm.

Our algorithms make use of the following data structure. We define a window
object with an N-byte waitflag array and an MPI Offset-sized sharedfp, both
residing on a single process (Figure 2). In our discussion we will assume that this
data structure is stored on process 0, but these structures could be distributed
among different processes to balance the memory requirements if many files
were being accessed. We also define on each process an MPI datatype designed
to access all the bytes in waitflag except for the byte corresponding to the
process’s rank. As we will see, even though atomic mode, shared file pointers,
and ordered mode accesses will access this data structure in different ways, this
data structure contains all the information we need for the three modes.

Each byte in the waitflag array corresponds to a process. A process will
request a lock (Figure 3) by putting a 1 in the byte corresponding to its rank in
the communicator used to open the file. Doing so effectively adds it to the list of
processes that want to access the file. In the same access epoch, the process will
make use of waitlisttype to get only the remaining N-1 bytes of waitflag.
Thus, at the end of the epoch, a process knows (because it has either read or
written each of them) the value of all N bytes of waitflag array.

Should a process find that the waitflag array contains other 1 values, then
some other process has the lock. The process will then call MPI Recv and block
until awakened by the lock-holding process. Upon receiving this message, the
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/* remove self from waitlist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0,

waitlistwin );
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE ,

homerank , 0, 1, waitlisttype , waitlistwin );
MPI_Put (&val , 1, MPI_BYTE , homerank , myrank ,

1, MPI_BYTE , waitlistwin );
MPI_Win_unlock(homerank , waitlistwin );

for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

int nextrank = myrank;

/* find the next rank waiting for the lock */
while (nextrank < nprocs -1 &&

waitlistcopy[nextrank] == 0) nextrank ++;
if (nextrank < nprocs - 1) {

nextrank ++; /* nextrank is off by one */
}
else {

nextrank = 0;
while (nextrank < myrank &&

waitlistcopy[nextrank] == 0) nextrank ++;
}

/* notify next rank with zero -byte message */
MPI_Send(NULL , 0, MPI_BYTE , nextrank , WAKEUP , comm);

}

Figure 4: MPI pseudocode for releasing lock in hybrid algorithm.

process can safely assume it has been granted the lock. It does not need to
re-examine the waitflag array.

If the waitflag array contains no other 1 values, then no other process
is waiting for the lock. The process can proceed to access the file. When it
releases the lock (Figure 4), it will initiate a second access epoch, placing a 0
in the corresponding byte of the waitflag array. During that second access
epoch, the process will also get the remaining bytes of waitflag. If it finds a
process waiting for the lock, it will call MPI Send and wake it up.

Notification is handled by a single, simple MPI Send on the process releasing
the lock and by a MPI Recv on the process waiting for notification. Because
the waiting process does not know who will notify it that it now owns the lock,
MPI ANY SOURCE is used to allow the receive operation to match any sender. A
zero-byte message is used because all we are really interested in is synchroniza-
tion; the arrival of the message is all that is needed.

4.2 Shared-Mode Synchronization

The MPI-2 standard makes no promises as to the order of concurrent shared-
mode accesses. Additionally, the implementation does not need to serialize
access to the file system, only the value of the shared file pointer. After a process
updates the value of the file pointer, it can carry out I/O while the remaining
processes attempt to gain access to the shared file pointer. By observing these
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val = 1; /* add self to waitlist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, waitlistwin );
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE , homerank , FP_SIZE , 1,

waitlisttype , waitlistwin );
MPI_Put (&val , 1, MPI_BYTE , homerank , FP_SIZE + myrank , 1, MPI_BYTE ,

waitlistwin );
MPI_Get(fpcopy , 1, fptype , homerank , 0, 0, fptype , waitlistwin );
MPI_Win_unlock(homerank , waitlistwin );

/* check to see if lock is already held */
for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

/* wait for notification */
MPI_Recv (&fpcopy , 1, fptype , MPI_ANY_SOURCE , WAKEUPTAG , comm ,

MPI_STATUS_IGNORE );
}

Figure 5: MPI pseudocode for acquiring access to the shared file pointer.

restrictions, we can devise an approach that minimizes the time during which
any one process has exclusive access to the shared file pointer.

In our shared-mode approach, we use the waitflag array to synchronize
access to the shared file pointer. Figure 5 gives pseudocode for acquiring the
shared file pointer, and Figure 6 demonstrates how we update the shared file
pointer value.

Just like the atomic mode case, a process requests a lock by putting a 1 in the
corresponding byte in the waitlistwin. In the same access epoch the process
gets the remaining N-1 bytes of waitflag and the sharedfp value. (For atomic
mode, we can omit the sharedfp value, since our atomic mode serializes access
to the entire file.) This combination effectively implements a test and set. If a
search of waitflag finds no other 1 values, then the process has permission to
access the shared file pointer, and it already knows what that value is without
another access epoch, having optimistically gotten that value at the same time
as it got the N-1 bytes of the waitflag array.

In this case the process saves the current shared file pointer value locally
for subsequent use in I/O. It then immediately performs a second access epoch
(Figure 6). In this epoch the process updates sharedfp, puts a zero in its
corresponding waitflag location, and gets the remainder of the waitflag array.
Following the access epoch the process searches the remainder of waitflag. If
all the values are zero, then no processes are waiting for access. If there is a
1 in the array, then some other process is waiting. For fairness the first rank
after the current process’s rank is selected to be awakened, and a point-to-point
send (MPI Send) is used to notify the process that it may now access the shared
file pointer. The contents of the send is the updated shared file pointer value;
this optimization eliminates the need for the new process to reread sharedfp.
(For atomic mode, the send is carried out with a zero-byte payload.) Once the
process has released the shared file pointer in this way, it performs I/O using
the original, locally stored shared file pointer value. Again, by moving I/O after
the shared file pointer update, we minimize the length of time the shared file
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val =0; /* remove self from waitlist */
MPI_Win_lock(MPI_LOCK_EXCLUSIVE , homerank , 0, waitlistwin );
MPI_Get(waitlistcopy , nprocs -1, MPI_BYTE , homerank , FP_SIZE , 1,

waitlisttype , waitlistwin );
MPI_Put (&val , 1, MPI_BYTE , homerank , FP_SIZE + myrank , 1,

MPI_BYTE , waitlistwin );
MPI_Put (&fpcopy , 1, fptype , homerank , 0, 1, fptype , waitlistwin );
MPI_Win_unlock(homerank , waitlistwin );

for (i=0; i < nprocs -1 && waitlistcopy[i] == 0; i++);
if (i < nprocs - 1) {

int nextrank = myrank;

/* find the next rank waiting for the lock */
while (nextrank < nprocs -1 && waitlistcopy[nextrank] == 0) nextrank ++;
if (nextrank < nprocs - 1) {

nextrank ++; /* nextrank is off by one */
}
else {

nextrank = 0;
while (nextrank < myrank && waitlistcopy[nextrank] == 0) nextrank ++;

}
/* notify next rank with zero -byte message */
MPI_Send (&fpcopy , 1, fptype , nextrank , WAKEUPTAG , comm);

}

Figure 6: MPI pseudocode for updating the shared file pointer and (if needed)
waking up the next process.

pointer is held by any one process.
If during the first access epoch a process finds a 1 in any other byte, some

other process has already acquired access to the shared file pointer. The re-
questing process then calls MPI Recv with MPI ANY SOURCE to block until the
process holding the shared file pointer notifies it that it now has permission
to update the pointer and passes along the current value. It is preferable to
use point-to-point operations for this notification step, because they allow the
underlying implementation to best manage making progress. We know, in the
case of the sender, that the process we are sending to has posted, or will very
soon post, a corresponding receive. Likewise, the process calling receive knows
that very soon some other process will release the shared file pointer and pass
it to another process. The alternative, polling using one-sided operations, has
been shown less effective (Ross, Latham, Gropp, Thakur, and Toonen 2005).

4.3 Ordered-Mode Synchronization

Ordered-mode accesses are collective; in other words, all processes participate
in them. The MPI-IO specification guarantees that accesses in ordered mode
will be ordered by rank for these calls: the I/O from a process with rank N
will appear in the file after the I/O from all processes with a lower rank (in the
write case). However, the actual I/O need not be carried out sequentially. The
implementation can instead compute a priori where each process will access the
file and then carry out the I/O for all processes in parallel.
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Process 0 Process 1 through (N − 2) Process (N − 1)
Lock
MPI Get
Unlock
MPI Scan MPI Scan MPI Scan

Lock
MPI Put
Unlock

MPI Bcast MPI Bcast MPI Bcast
perform collective I/O perform collective I/O perform collective I/O

Figure 7: Synchronizing in the ordered mode case. Process 0 acquires the
current value for the shared file pointer. After the call to MPI Scan, process
(N − 1) knows the final value for the shared file pointer after the I/O completes
and can MPI Put the new value into the window. Collective I/O can then be
carried out in parallel with all processes knowing their appropriate offset into
the file. An MPI Bcast with process (N −1) as the root ensures that the shared
file pointer value is updated before any process exits the call.

Section 9.4.4.2 of the MPI-2.0 standard places several restrictions on collec-
tive I/O with shared file pointers. The most important one is that the applica-
tion must ensure all outstanding independent I/O (e.g., shared-mode) routines
have completed before initiating collective I/O (e.g., ordered-mode) ones. This
restriction simplifies the implementation of the ordered-mode routines. How-
ever, the standard also states that

In order to prevent subsequent shared offset accesses by the same
processes from interfering with this collective access, the call might
return only after all the processes within the group have initiated
their accesses. When the call returns, the shared file pointer points
to the next etype accessible.

This statement indicates that the implementation should guarantee that changes
to the shared file pointer have completed before allowing the MPI-IO routine to
return.

Figure 7 outlines our algorithm for ordered mode. Process 0 uses a single
access epoch to get the value of the shared file pointer. Since the value is stored
locally, the operation should complete with particularly low latency. While we
use the same data structure for both shared-mode and ordered-mode accesses,
note that ordered mode does not need to access waitlist at all, because the
MPI specification requires the application not be performing shared-mode ac-
cesses at the same time. All processes can determine, based on their local
datatype and count parameters, how much I/O they will carry out. In the call
to MPI Scan, each process adds this amount of work to the ones before it. After
this call completes, each process knows its effective offset for subsequent I/O.
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The (N − 1)th process can compute the new value for the shared file pointer by
adding the size of its access to the offset it obtained during the MPI Scan. It
performs a one-sided access epoch to put this new value into sharedfp, again
ignoring the waitlist.

The MPI standard requires us to ensure no process races ahead of the others
and starts carrying out other I/O operations before the last process can update
the shared file pointer. We enforce this rule by having the (N − 1)th process
perform an MPI Bcast of one byte after updating the shared file pointer. We
use an MPI Bcast here because we do not require all the syncronization steps
of the more expensive MPI Barrier. The single-byte payload ensures that a
clever MPI implementation does not optimize away the call. All other processes
wait for this MPI Bcast, after which they know the last rank has completed
its update of the shared file ponter. All processes may then safely carry out
collective I/O and exit the call.

5 Performance Evaluation

We integrated the above approaches in an experimental version of the ROMIO
MPI-IO implementation as found in MPICH2. We carried out experiments on
the NCSA Mercury machine. Mercury is an IA64 Linux cluster with Myrinet
interconnect and a GPFS file system for parallel I/O. MPICH2 was configured
to use the new “nemesis” channel over GM (Buntinas, Mercier, and Gropp
2006). Our experiments compare performance of several MPI-IO routines under
ROMIO’s older fcntl()-based locking and synchronization approach to our new
RMA-based coordination methods.

5.1 Atomic Mode Performance

For our atomic mode comparison we instrumented ROMIO’s atomicity test.
This test initializes a file with zeros, then enables atomic mode. One process
writes contiguous data to a file, while all other processes read data from the
file. The sequence is then repeated with a noncontiguous access pattern. If
the file system and MPI-IO implementation implement MPI-IO atomic mode
correctly, processes should either see all old data or all new data, but never
both. Note that under the default MPI-IO semantics, the results for such an
operation would be undefined.

We plot results for a contiguous access pattern in Figure 8(a), where we
see similar performance for the two approaches. We would expect contiguous
accesses to be the best case for an fcntl-based approach because the amount
of lock traffic in the contiguous case is significantly smaller than in the noncon-
tiguous case. Both approaches see decreased performance (increased run time)
as the number of processes — and the amount of time processes are waiting for
their turn to take the lock — increases.

When we look at Figure 8(b) for the noncontiguous case, however, we see
significant benefits to carrying out our synchronization via one-sided operations.
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Figure 8: MPI-IO atomic mode. Average time per process to write or read from
file.

The fcntl approach can potentially do well with a noncontiguous workload
if the underlying file system implements byte-range locks. Even so, the RMA
approach enjoys two advantages. First, the operations make use of MPI-2 access
epochs to carry out the large number of requests more efficiently. The fcntl
system call does not have enough contextual information to be able to make
many optimizations when faced with a large number of requests. Second, the
one-sided messaging traffic is carried out over a high-performance interconnect
(in this case Myrinet) instead of trying to use the file system as a messaging
layer. While MPI-IO atomic mode was never intended to be a high-performance
mode of operation, we can handle a wider array of access patterns with higher
performance by using one-sided operations.

5.2 Shared File Pointer Performance

For our shared file pointer analysis we instrumented the shared fp test from
ROMIO. In this test, all processes perform a shared write operation and then
a shared read. While a typical application using shared file pointers would use
variable-length blocks, this experiment uses fixed-sized records to eliminate any
effects file system block alignment might have on a comparison. The one aspect
we want to examine is the relative performance of the fcntl approach compared
to the one-sided algorithm.

In Figures 9(a) and 9(b) we can see that the one-sided approach both
performs and scales better than the older fcntl approach. As discussed earlier
in this paper, the fcntl approach will make use of a hidden file, and each process
will update that file with the appropriate value for the shared file pointer. The
latency for a small file I/O operation can often be high. Here again, one-
sided operations benefit from being able to make use of the high-performance
network on this cluster instead of trying to communicate through the file system
interface.
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Figure 9: MPI-IO shared file pointers. Average time per process to write or
read from file.

5.3 Ordered Mode Performance

To compare ordered-mode accesses, we modified the shared fp test to make
use of the collective ordered-mode routines. Otherwise, the workload is similar:
all processes write a fixed amount of data to a file, then read it back. Under a
correct implementation, all records will show up in the file, but will also show
up in rank order (i.e., rank 0’s data will show up before rank 1 and so on).

As is evident in Figures 10(a) and 10(b), the one-sided ordered-mode algo-
rithm excels in this situation, delivering much better performance and remark-
able scalability. We can identify three contributing factors. First, under the
fcntl approach each process reads and updates the shared file pointer from
the file system. Our one-sided algorithm stores the file pointer information in
a memory window, not on disk, and so can avoid the overhead of acquiring a
file system lock. Second, and most important, the one-sided algorithm takes
advantage of the collective nature of the MPI-IO ordered routines. The mem-
ory window containing the shared file pointer information needs only to be read
by one process and written by one other. The appropriate shared file pointer
offset is disseminated with a collective call. Our ordered-mode algorithm can
again make effective use of the high-performance interconnect on the Mercury
cluster, but we also expect that even older or lower-performance interconnects
would see performance gains.

6 Conclusions and Future Work

We have presented new algorithms for implementing mutual exclusion with no-
tification using MPI primitives. Our algorithms perform locking and unlocking
in two access epochs in the absence of contention and require only a single point-
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Figure 10: MPI-IO ordered mode. Average time per-process to write or read
from file.

to-point message for notification in the event of contention. The algorithms also
avoid starvation by cycling through ranks.

We implemented these algorithms in an experimental version of ROMIO
as an option for implementing MPI-IO atomic mode and shared file pointers
in ROMIO, providing atomic mode semantics for file systems whose locking
subsystems are not yet complete and for file systems that lack locking subsys-
tems entirely (e.g., PVFS). While our results compare favorably with the fcntl
approach, further investigation will be necessary to determine whether the one-
sided approach is in general more scalable than the locking implementations in
some parallel file systems (e.g., GPFS). If so, we will modify ROMIO to use our
scalable algorithm rather than the file system locks.

While we have focused specifically on providing a correct and efficient imple-
mentation that is portable across file systems, this work could be extended in a
number of ways if we determined that higher performance was necessary. One
way in which the system could be improved is through the detection of nonover-
lapping file views. File views are the mechanism MPI-IO uses for specifying
a subset of a file that a process will access. When the file view for a process
does not overlap with the file views of other processes, locking is unnecessary:
conflicts will not occur. Because of the complexity of the MPI datatypes used
to describe file views, this is an open research topic.

Another way in which this work could be enhanced for atomic mode is
through the use of multiple locks to partition a file into independent regions.
Processes could then acquire only the locks needed to access regions that they
were changing, allowing for concurrent access to separate regions. Ideally a
range-based locking approach would be used. While maintaining the shared
data structures necessary to store a list of ranges will undoubtedly require ad-
ditional overhead, this approach might lead to an MPI-IO implementation that
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provides a level of concurrency and efficiency that beats that of the best file
system locking implementations, eliminating the need for file locks in ROMIO
entirely. Initial work toward this end has been done in (Thakur, Ross, and
Latham 2005) but will require further analysis.

We have demonstrated that this work can outperform fcntl approaches for
up to 128 processes. In order to handle even more processes (on the order
of thousands), a tree algorithm might be more appropriate, where leaf nodes
first acquire an intermediate lock before acquiring the lock itself. This level of
indirection would limit contention on the byte array. Further testing at scale is
necessary to determine whether this extra degree of complexity in the algorithm
is warranted.

Our algorithms rely solely on MPI communication, using one-sided, point-
to-point, and collective routines as appropriate. This removes any dependency
on file system features and makes shared file pointer operations an option for
all file systems. Performance in the shared-mode case scales as well as can be
expected; performance in the ordered mode case scales very well.

Our synchronization routines have been used for MPI-IO atomic mode as
well as MPI-IO shared file pointers. In future efforts we will look at using
these routines to implement extent-based locking and other more sophisticated
synchronization methods.
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