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Abstract—Due to the growing need to tolerate network

faults and congestion in high-end computing systems,

supporting multiple network communication paths is

becoming increasingly important. However, multi-path

communication comes with the disadvantage of out-of-

order arrival of packets (because packets may traverse

different paths). While modern networking stacks such as

the Internet Wide-Area RDMA Protocol (iWARP) over

10-Gigabit Ethernet (10GE) support multi-path commu-

nication, their current implementations do not handle

out-of-order packets primarily owing to the overhead

on in-order communication that it adds. Specifically, in

iWARP, supporting out-of-order packets requires every

packet to carry additional information causing significant

overhead on packets that arrive in-order. Thus, in this

paper, we analyze the trade-offs in designing a feature-

complete iWARP stack, i.e., one that provides support

for out-of-order arriving packets, and thus, multi-path

systems, while focusing on the performance of in-order

communication. We propose three feature-complete de-

signs of iWARP and analyze the pros and cons of each

of these designs using performance experiments based

on several micro-benchmarks as well as an iso-surface

visual rendering application. Our analysis reveals that

the iWARP design providing the best overall performance

depends on the particular characteristics of the upper

layers and that different designs are optimal based on

the metric of interest.
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I. INTRODUCTION

As high-end computing (HEC) systems continue to

increase rapidly in size, their network subsystems must

scale as well, particularly to address issues such as

hot-spot congestion [22], [26] and hardware faults [8].

Multi-path communication, supported by InfiniBand

(IB) [1] and 10-Gigabit Ethernet (10GE) [16], provides

a way to address these issues. In IB, a subnet man-

ager [27] tracks the topology of the system and pro-

vides capabilities for querying and setting up multiple

paths for a connection. In contrast, 10GE uses VLAN-

based multi-pathing [24] – a technique that allows the

system to build multiple overlay tree structures on the

same physical network.

While multi-path communication has its advantages,

it also possesses the disadvantage of out-of-order ar-

rival of packets. That is, because packets of a given

connection can be sent over different paths, packets

injected into the network later might arrive at the

destination before packets injected into the network

earlier. Unfortunately, current networks do not deal

with this issue, leaving it instead to the protocol stacks

of these networks to handle. The communication pro-

tocol of IB takes a simplistic approach to the problem

by dropping out-of-order packets and relying on the

sender to retransmit them. This, of course, can lead to

significant performance degradation in large-scale HEC

systems. In contrast, for 10GE, the Internet Wide-Area

RDMA Protocol (iWARP) [2] specifies a more elegant

way to deal with out-of-order packet arrival; it directly

places out-of-order packets at the appropriate location

in the destination buffer, while delaying informing the

application about the message till all packets corre-

sponding to this and all previous messages have arrived.
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The iWARP stack (Figure I) is a new initiative by the

Internet Engineering Task Force (IETF) and RDMA

Consortium (RDMAC) to provide capabilities such as

remote direct-memory access (RDMA) and zero-copy

data transfer. iWARP maintains compatibility with

the existing TCP/IP infrastructure by stuffing iWARP

frames within TCP/IP packets. On the sender side,

each TCP/IP packet contains a single iWARP frame.

However, intermediate switches, such as those which

support splicing [10], can segment a single packet into

multiple packets or coalesce multiple packets into a

single packet (Figure 2). Thus, if the first packet is

delayed, the later-arriving packets could either contain

a complete iWARP frame or a part of it. However,

without additional information, the receiver cannot

determine which packets contain a full iWARP frame

and which packets do not. Even if no segmentation

occurs and all the packets contain full iWARP frames,

the receiver has no way to determine this and must

assume the possibility of segmentation for all packets.

The iWARP standard specifies a solution to handle

such scenarios by providing each packet with additional

information, so as to allow the receiver to correctly

determine the iWARP frames within TCP packets

(handled as a part of the MPA layer in Figure I).

However, adding such additional information compli-

cates the packet structure and processing required, thus

impacting the performance of in-order communication.

As a result, currently available implementations of

the iWARP standard [19], [17] do not provide any

capabilities to handle out-of-order arriving packets and

follow simplistic approaches such as those used by IB.

To address this shortfall, in this paper we analyze

the trade-offs in designing a feature-complete iWARP

stack, i.e., one which provides support for out-of-order

arriving packets, and thus, multi-path communication,

while focusing on the performance of in-order com-

munication. With the added complexity associated with

feature-complete iWARP designs, offloading the entire

iWARP stack onto the network interface card (NIC)

may not always be beneficial. Accordingly, we study

the trade-offs by analyzing three different feature-

complete designs of iWARP over 10GE NICs with

hardware implementations of TCP/IP [13], namely (i)

host-based iWARP, which is completely in host space,

(ii) host-offloaded iWARP, where iWARP is completely

offloaded from the host onto the NIC, and (iii) host-

assisted iWARP, where iWARP is only partially of-

floaded onto the NIC. Our analysis reveals that the

iWARP design providing the best overall performance

depends on the particular characteristics of the upper

layers and that different designs are optimal based on

the metric of interest.

Furthermore, in order to demonstrate the capability

of each iWARP design as applicable to the broader

research community, we also evaluate an iso-surface

visual rendering application [7] using the three iWARP

implementations. This application uses iso-surface ren-

dering techniques to simplify the visual representation

of large datasets such as those corresponding to oil

reservoirs and biomedical virtual images. Though the

application was initially designed on top of TCP/IP

sockets, we modified it to directly utilize the native

iWARP verbs interface so that it can be evaluated with

the different iWARP designs proposed in this paper.

Our analysis shows that depending on subtle changes in

the application parameters, e.g., the granularity of data

distribution, either the host-offloaded iWARP or the

host-assisted iWARP can provide the best performance.

The remaining part of the paper is organized as follows.

In section II, we present a brief overview of the iWARP

stack. We describe the various design choices for a

feature-complete iWARP implementation in section III.

We present our performance results in section IV and

conclude the paper in section V.

II. OVERVIEW OF THE IWARP STANDARD

iWARP comprises of three protocol layers atop a

reliable IP-based protocol such as TCP: (i) RDMAP

verbs, (ii) Remote Direct Data Placement (RDDP)

protocol and (iii) Marker PDU Aligned (MPA) pro-

tocol. RDMAP verbs is a thin interface which allows

applications to interact with RDDP. In this section, we
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describe the details about RDDP and MPA, that are

relevant to this paper. More details about these and

RDMAP verbs are in [2].

Remote Direct Data Placement (RDDP) Protocol:

RDDP provides the core of the data communication

processing in the iWARP stack. It aims at provid-

ing both channel based semantics (i.e., send/receive

communication) as well as memory based semantics

(i.e., RDMA communication) to its upper-layer proto-

cols (ULPs). RDDP provides reliable, in-order deliv-

ery using a reliable IP based protocol such as TCP.

RDDP distinguishes iWARP from other high-speed

network stacks based on its capability to decouple data

placement and message delivery, i.e., even if packets

arrive out-of-order, RDDP directly places them in the

appropriate location of the final destination buffer (data

placement); however, the upper-layer is informed about

the placement of the data only after the entire message

is placed (data delivery). This, of course, assumes

that RDDP can correctly identify and understand the

contents of out-of-order TCP/IP packets. The Marker

PDU Aligned (MPA) protocol provides RDDP with the

necessary support for achieving this.

Marker PDU Aligned (MPA) Protocol: RDDP has

several limitations. First, it is an end-node protocol;

it need not be supported by intermediate nodes. For

switches that support splicing [10] (e.g., firewalls and

port-forwarding switches), this leads to middle box

fragmentation, i.e., packets going into the switch can

be segmented into multiple packets or multiple packets

can be coalesced into a single packet. This makes it

impossible for the end node to recognize the RDDP

headers without additional information, if packets ar-

rive out-of-order. Second, the data-integrity check per-

formed by TCP/IP (i.e., checksum) has been shown to

be error prone in many cases [25]. Accordingly, several

upper layers perform additional data integrity checks

such as the Cyclic Redundancy Check (CRC).

In order to tackle these problems, iWARP uses

MPA [11]. Figure 3 illustrates the new iWARP frame

format with MPA, known as the Framing Protocol Data

Unit (FPDU). The FPDU format has three essential

changes. First, it introduces strips of data, known

as markers pointing to the RDDP header. These are

spaced uniformly based on the TCP sequence number

and provide the receiver with a deterministic way to

find them. When a packet arrives out-of-order, it can

use these markers to identify where the start of the

iWARP frame is; once the start is identified the iWARP

headers can be recognized, and the remaining fields of

the frame, such as the packet length, can be acquired.

Thus, this allows iWARP to identify if that particular

packet contains a complete iWARP frame or a partial

one. Second, MPA uses a 32-bit CRC check together

with any other data integrity check provided by the

underlying protocols. Third, each frame is padded with

up to three pad bytes so as to ensure that it is of a length

which is a multiple of four bytes. Of these, CRC is

easily the most compute intensive. The placement of
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the markers, on the other hand, is a tricky operation.

Since the markers are placed in between the data

stream, the data has to be moved in order to do this.

There are a number of ways of doing this, as we will

see in section III, each having its pros and cons.

III. DESIGN CHOICES FOR IWARP

As described in section I, designing a feature-complete

iWARP stack, i.e., one which provides support for out-

of-order arriving packets, is a non-trivial task. Specifi-

cally, as discussed in section II, such capability makes

the packet format and processing significantly more

complex. In this section, we describe three different

design choices for handling such additional complexity:

(i) host-based iWARP (in section III-A), (ii) host-

offloaded iWARP (in section III-B) and (iii) host-

assisted iWARP (in section III-C).

In practice, a complete spectrum of design choices

exist for implementing feature-complete iWARP. For

example, with host-offloaded iWARP, depending on the

hardware features provided by the NIC, a large number

of different design choices exist. Similarly, with host-

assisted iWARP, design choices exist with respect to

what components can be offloaded to the NIC and what

components be retained at the host. However, dealing

with all these choices is outside the scope of this paper.

Instead, we pick two design choices for host-offloaded

iWARP based on the NIC hardware components that

are widely available in the commercial market, and one

design choice for host-assisted iWARP based on our

understanding of the computational complexity of the

iWARP stack, and analyze them.

For each of these designs, amongst the various iWARP

tasks that need to be handled, we identify three tasks

that are of particular importance: (i) CRC based data-

integrity, (ii) connection demultiplexing and (iii) place-

ment of markers. We describe the pros and cons of each

iWARP design based on these three tasks.

A. Host-based iWARP

Host-based iWARP is a completely software-based de-

sign of iWARP that has been proposed and imple-

mented by several researchers earlier [4], [12]. It is

a generic design that can be used on any Ethernet

adapter while maintaining complete compatibility with

hardware implementations of iWARP. In this section,

we summarize some details of this design.

There exist two designs for host-based iWARP, one

in user-space and one in kernel-space. The user-space

design builds the iWARP stack on top of TCP/IP sock-

ets. Asynchronous communication aspects are handled

using a separate thread. The kernel-space design, on

the other hand, bypasses sockets and communicates

directly with the internal TCP/IP stack. In this paper,

we only deal with the kernel-level host-based iWARP

because of its better performance, and describe the

pros and cons of its design based on the three tasks

in the iWARP stack which we identified earlier, i.e.,

CRC based data-integrity, connection demultiplexing,

and placement of markers.

CRC based data-integrity: CRC is one of the most

compute intensive tasks in the iWARP stack. There

have been several attempts to improve its perfor-

mance [23], [9], often at the cost of additional memory

usage. However, its computational overhead is still

considered to be very high [20]. Thus, since CRC is

performed by the host, it accounts for a significant

overhead in this design.

Connection Demultiplexing (DEMUX): Traditional

TCP/IP performs demultiplexing (DEMUX) of packets

in host-space, i.e., the NIC hands over all packets to

the host and the host identifies the connection to which

each packet belongs and places it in the appropriate

queue. While this is not a major concern for applica-

tions that only deal with a single (active) connection,

this introduces significant overheads for applications

dealing with several connections simultaneously (e.g.,

cache thrashing and CPU interruption for non-critical

data). Host-based iWARP uses the DEMUX done by

TCP/IP in host-space, resulting in a high overhead.

Placement of Markers: In order to deal with out-of-

order placement of data, iWARP inserts markers at reg-

ular intervals in the data stream. These markers point

to the RDDP header of each iWARP frame allowing

the receiver to recognize the frame boundaries. Since

markers are inserted within the data stream (Figure 3),

an additional copy of data is required to allow this in

this design, which adds more overhead.

In summary, all of the above three tasks add significant

overheads for the host-based iWARP design. The only

advantage of this design is its generality, which allows

it to be utilized on any NIC.

B. Host-offloaded iWARP

Host-offloaded iWARP is completely offloaded from the

host and implemented on the hardware and firmware

present on the NIC, specifically taking advantage of
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the various hardware engines such as the CRC engine,

DEMUX engine and DMA engines. This approach is

similar to that taken by most modern cluster intercon-

nects such as IB and Quadrics [21]. In this section, we

point out aspects that make this design different for

iWARP as compared to other networks.

For the first two tasks (CRC and DEMUX), the use

of hardware engines allows host-offloaded iWARP to

reduce the computational requirements of the host and

improve performance. The capabilities of these hard-

ware engines is similar to that of other networks (e.g.,

IB, Quadrics). The third task (placement of markers),

however, is tricky. As described in section II, placement

of markers is done in between the data stream. Thus,

the data has to be split to insert these markers, i.e.,

it needs to be placed in a non-contiguous manner on

the NIC memory. Also, though the data at the host

that needs to be transmitted by the application might

be contiguous in virtual address space, it is quite likely

that it will be non-contiguous in physical address space

(split as physical pages). Thus, the ideal approach to

insert markers would be to use a hardware DMA engine

that is capable of true scatter/gather DMA, i.e., capable

of transferring a set of noncontiguous buffers on the

host memory to a set of noncontiguous buffers on the

NIC memory in a single DMA. However, this is not

easy to achieve.

Though several NICs provide an API for scatter/gather

DMA, the operation itself is implemented as multiple

independent DMAs. The API is really a programming

convenience. Some networks such as Quadrics opti-

mize scatter/gather DMAs by using DMA chaining

(pipelining multiple DMAs); but this still does not get

rid of the requirement for multiple DMAs. Though, in

theory, it is possible to build a custom DMA engine to

perform scatter for DMA read and gather for DMA

write (generic scatter/gather is not possible due to

chipset restrictions), no commercially available DMA

engine currently does that because of the complexity it

introduces. Thus, based on the capabilities of current

DMA engines, we propose two design variants for host-

offloaded iWARP: (i) Contiguous DMA and decoupled

marker insertion and (ii) Scatter/Gather DMA based

marker insertion.

Contiguous DMA and Decoupled Marker Insertion:

In this design, the NIC DMAs a sufficiently large

contiguous chunk of the data (e.g., 2KB) and moves

the data on the NIC to insert markers within the data

stream. In other words, the DMA is decoupled with

marker insertion. The advantage of this approach is

that large contiguous data segments can be fetched in

each DMA; thus the number of DMAs are less and the

performance high. The disadvantage is that data has to

be moved on the NIC in order to insert the markers.

To further understand the disadvantages of this ap-

proach, we modeled the NIC processing in software

using 4 threads (in each communication direction),

each performing the tasks of a different processing

engines on the NIC, namely: (i) Send DMA (SDMA)

engine (RDMA engine for receive), (ii) Processing

engine, (iii) CRC engine and (iv) SEND engine (RECV

engine for receive). The states taken by each of these

threads are represented in Figures 4-7. Note that this

model only represents the processing and memory

overheads with this design and does not simulate the

actual performance of the approach.

In the model illustrated, the main processing of the

SDMA engine is the DMA of data from host to NIC

memory, thus touching NIC memory once for each byte

transferred over the network. The processing engine’s

functionality is more complex; this engine has to move

data that is DMA’ed by the SDMA engine to a different

memory location while creating splits within the data

stream so that the markers can be placed in these splits.

This engine touches NIC memory twice (one to read

the data DMA’ed by the SDMA engine and once to

write it in the split format) for every byte transferred.

The CRC engine and the SEND engine (to transfer data

from NIC memory to the wire) touch NIC memory

once each, summing up to five memory transactions

for every byte transferred over the network. A number

of NICs available in the market allow a single engine

to process CRC while simultaneously transferring data

to the wire; this reduces the number of memory trans-

actions to four, which is still very high.

Scatter/Gather DMA based Marker Insertion: This

approach is similar to the previous approach, except

that the functionalities of the SDMA and processing

engines are integrated (Figure 8). This integrated en-

gine DMAs small noncontiguous chunks of data (repre-

sented by a scatter/gather list) and directly places them

with markers within the data stream. The advantage of

this approach is that it cuts down two NIC memory

transactions. The disadvantage is that, as mentioned
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earlier, scatter/gather DMAs are implemented as mul-

tiple independent DMAs by most NICs. Therefore, in

this approach, the DMAs are for small chunks of data

(the iWARP standard requires the marker separation to

be 512 bytes). Thus, the number of DMAs is high,

making it less efficient.

From implementation perspective, only the second

approach was possible on the NICs we used. We

implemented this using the reference iWARP code from

Chelsio. However, due to the limited programmability

of the NIC, we had to generate the scatter/gather list

(corresponding to the data segments and the markers)

on the host for each MTU chunk before handing it over

to the NIC through multiple explicit communication

calls. In other words, if a 2KB data message needs

to be sent out with a marker separation of 512 bytes,

we post a scatter/gather request with multiple (5-7)

different entries, each pointing to appropriate sized data

segments and markers.

C. Host-assisted iWARP

Host-assisted iWARP is a hybrid design which takes the

best features of host-based and host-offloaded iWARP.

Specifically, host-assisted iWARP performs compute

intensive tasks such as CRC and DEMUX on the NIC

using dedicated processing engines, while retaining

tasks such as marker insertion on the host. This means

that the copy required to insert markers on the host

is the only overhead associated with this design. The

advantage of such partial offload is that it efficiently

utilizes the capabilities of both the NIC as well as

the host. It is to be noted that this approach primarily

focuses on raw performance – other metrics such as

CPU utilization, however, suffer compared to host-

offloaded iWARP due to the involvement of the host

in the protocol processing tasks.

Figure 9 summarizes the tasks breakup for the three

different designs of iWARP, i.e., host-based iWARP

does everything on the host, host-offloaded iWARP

does everything on the NIC and host-assisted iWARP

does the marker insertion on the host and everything

else on the NIC.

IV. PERFORMANCE RESULTS

In this section, we evaluate the performance of the dif-

ferent iWARP designs using various micro-benchmark

tests (section IV-B) as well as a iso-surface visual

rendering application (section IV-C).

A. Experimental Testbed

For our experiments, we used a 4-node cluster built

around SuperMicro SUPER X5DL8-GG motherboards

with ServerWorks GC LE chipsets, which include 133-

MHz PCI-X interfaces. Each node has two Intel Xeon

3.0 GHz processors with a 512-KB cache, a 533 MHz

front-side bus and 2 GB of 266-MHz DDR SDRAM.

The nodes are connected with Chelsio T110 10GE

TCP offload engines through a 12-port Fujitsu XG800

switch. The software stack on the machines is based

on linux-2.4.22smp and RedHat linux distribution. The

driver version on the NICs is 1.2.0. For each ex-

periment, ten or more runs/executions are conducted,

the highest and lowest values dropped (to discard

anomalies) and the average of the remaining values is

reported. For micro-benchmark evaluations, the results

of each run are an average of 10,000 or more iterations.

B. iWARP Evaluation

In this section, we evaluate the performance of the

iWARP stacks using different micro-benchmarks.
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1) iWARP Latency, Bandwidth and CPU Usage:

Ping-pong Latency: Figure 10(a) compares the ping-

pong latency of the three designs. In this experiment,

the sender sends a message of size S to the receiver.

On receiving this message, the receiver sends back

another message of the same size to the sender. This is

repeated several times and the total time averaged over

the number of iterations – this gives the average round

trip time. The ping-pong latency reported here is one

half of the round trip time, i.e., the time taken for a

message to be transferred from one node to another.

As shown in the figure, for small messages, all three

schemes perform similarly at about 16µs. As the

message size increases, the performance of host-based

iWARP deteriorates faster as compared to the other de-

signs. This is expected as this design does not take ad-

vantage of any advanced hardware present on the NIC.

Comparing host-offloaded and host-assisted iWARP, as

message size increases, host-assisted iWARP performs

the best, outperforming host-offloaded iWARP by 10-

15%. This trend is attributed to the overhead of multiple

DMAs on host-offloaded iWARP, e.g., for a 2KB

message, the host-assisted iWARP performs just one

DMA, while with a marker separation of 512 bytes,

host-offloaded iWARP needs to perform 5-7 DMAs.

Uni-directional Bandwidth: Figure 10(b) shows a

comparison of the uni-directional bandwidth. In this

experiment, the sender sends a single message of size

S a number of times to the receiver. On receiving all the

messages, the receiver sends back one small message to

the sender informing that it has received the messages.

The sender calculates the total time, subtracts the one

way latency of the message sent by the receiver, and

based on the remaining time calculates the amount of

data it had transmitted per unit time.

The basic trend for this result is quite similar to ping-

pong latency, i.e., host-based iWARP performs the

worst achieving a bandwidth of only about 2Gbps.

Comparing host-offloaded and host-assisted iWARP,

for very small messages host-offloaded iWARP per-

forms slightly better. For the peak bandwidth, however,

host-assisted iWARP outperforms the host-offloaded

iWARP with bandwidths of about 6Gbps and 3.5Gbps,

respectively. The reason for the performance limita-

tion of host-offloaded iWARP is again the number of

DMAs. Though, pipelining the DMAs can improve

7



the performance a little, it is eventually limited by

the DMA overhead. Host-assisted iWARP, on the other

hand, can DMA full length 2KB data chunks in each

operation and thus can perform better.

CPU Utilization: Figure 10(b) also shows the CPU

utilized by the different designs. To calculate the CPU

utilization, we first run the experiment with a large

number of iterations. When the experiment is running,

on the same machine we take several sample mea-

surements of the percentage of CPU cycles that are

being used by the system (from /proc) and report

the average.

As shown in the figure, host-offloaded iWARP uses

the least amount of host-CPU (less than 15%) for all

message sizes. As shown in prior research [5], as the

message size increases, the percentage CPU used by

hardware offloaded protocols should drop to zero, since

most of the time in communicating large messages is

spent on the network and does not use CPU. However,

for the host-offloaded iWARP design, we notice that

even for very large messages, the CPU overhead is

constant and does not drop to zero. The reason for this

counter intuitive behavior is attributed to our imple-

mentation of this design. Specifically, as mentioned in

section III-B, due to the limited programmability of the

NICs we used, we had to generate the scatter/gather list

(corresponding to the data segments and the markers)

on the host before handing it over to the NIC through

explicit communication calls. This causes the amount

of host processing required in our implementation of

the host-offloaded iWARP design, to linearly increase

with message size and the percentage CPU used per

unit time to be about constant.

The high CPU utilization of host-based iWARP is

expected since it performs all tasks, including CRC,

in software. However, surprisingly the CPU utilization

of host-assisted iWARP is even higher than host-based

iWARP. This is attributed to the higher performance of

host-assisted iWARP. Note that host-assisted iWARP

performs a copy of the data into a temporary buffer (to

insert markers) before transmitting. Since the perfor-

mance of host-assisted iWARP is higher than that of

host-based iWARP, the data is sent out of the temporary

buffer faster, thus requiring the CPU to spend a larger

fraction of the time performing memory copy. This

reflects as a higher CPU usage for host-assisted iWARP.

iWARP Bandwidth (Out-of-cache Communication)
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Fig. 11. Out-of-Cache Communication

2) Impact of Out-of-Cache Communication: Figure 11

shows a comparison of the bandwidths achieved by the

different iWARP designs when the data being sent is

not in the system cache. This experiment is similar to

the bandwidth test described in section IV-B.1, the only

difference being that the sender sends out a number of

different messages, each of size S, instead of sending

the same message multiple times. As illustrated in the

figure, we see a reversal in the relative performances of

host-assisted and host-offloaded iWARP as compared

to the regular bandwidth test (Figure 10(b)). This trend

is associated to the high dependency of the performance

of copy-based schemes such as host-based and host-

assisted iWARP on cache activity. In other words, since

host-based and host-assisted iWARP perform a copy

of the data being communicated, when not in cache

this data has to be fetched from memory, significantly

altering their performance.

To further analyze out-of-cache communication, we

show the ratio of cache traffic to the number of bytes

communicated in Figure 12 (transmit and receive), i.e.,

if for communicating N bytes of data, a cache traffic

of M bytes is generated, the ratio is represented as M /

N. The cache traffic is measured based on the Pentium

hardware performance measurement counters (PMCs)

provided by the processor subsystem. In these figures,

three important things are to be noticed:

First, there is a huge difference in the cache traffic gen-

erated between host-offloaded iWARP and the copy-

based schemes (host-assisted and host-based iWARP).

In fact, the cache traffic in host-offloaded iWARP

is very close to zero. This result is not surprising

since in the host-offloaded iWARP design, the CPU

does not touch the data that is being transmitted or

received. Thus, it does not generate much cache traffic
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Fig. 12. iWARP Out-of-Cache Communication Bandwidth: (a) Transmit Side, (b) Receive Side

irrespective of whether the data to be communicated is

already in cache or not.

Second, both the copy-based designs of iWARP gener-

ate about 3 bytes of cache traffic for each byte trans-

ferred over the network. This trend closely matches

previous literature [14], [18]. Specifically, for the copy,

both the source and destination buffers need to be in

cache. Further, if the receive buffer is larger than what

the cache can accommodate or if a buffer is being

transferred to the NIC, it has to be flushed to memory;

this would generate cache traffic as well. In summary,

for a copy when the source and destination buffers are

neither cached nor small enough to be accommodated

in it, for each byte to be transferred two bytes have to

fetched into the cache and one byte has to be flushed

out – a total of 3 bytes. Our experimental results match

this trend for all, except very small message sizes.

Third, for very small messages, we notice that the

cache traffic is higher than three times the number of

bytes transmitted. This is attributed to the system noise

caused by other cache misses, e.g., control structures

of the communication stack. For larger messages, how-

ever, the overhead caused by such noise is negligible

and thus cannot be noticed in the graph.

Current Intel systems provide a non-temporal copy

mechanism which allows the destination cache block

to be assigned without the requirement to fetch the

destination buffer from memory. This is primarily sup-

ported on 64-bit systems through the memcpy routine.

For 32-bit systems (such as those used in this paper),

such capability is present through assembly-level in-

structions and is not portable to other systems. Thus,

in this paper, we only utilize a regular copy mechanism

and defer using non-temporal copy based mechanisms

to future work.

3) Impact of Marker Separation Length: The iWARP

standard specifies a length of 512 bytes between the

markers in order to ensure that each Ethernet packet

has at least one marker in it. Increasing this length can

result in some packets not containing markers. Thus,

if such a packet arrives out of order, it has to be either

dropped or buffered on the NIC. In this section, we

vary the separation length between the markers in the

MPA protocol and study its impact on the performance

of the different iWARP designs.

In our experiments, we noticed that the performance

of host-assisted and host-based iWARP does not vary

much with marker separation length. This is expected,

since these designs do not perform any task which

can be affected by it. The amount of data copied or

transferred varies, but minimally. For host-offloaded

iWARP, however, the marker separation length makes

a big difference, i.e., it directly impacts the number

of DMAs needed, e.g., for a 16KB message, with

a marker separation length of 512 bytes about 64

DMAs are needed, while with a marker separation

length of 1KB only 32 are needed. Figure 13 shows

the impact of varying the marker separation on the

performance of host-offloaded iWARP. We use the

latency/bandwidth tests described in the section above,

but vary the marker separation from 512 bytes (as per

the iWARP standard) to infinite bytes (no markers). We

observe that for larger marker sizes, the performance of

the host-offloaded design improves to about 7.2Gbps,

which is higher than what host-assisted iWARP can

achieve (Figure 10(b)).

iWARP (no markers) depicts the behavior of current

iWARP adapters which only support in-order pack-

ets and drop out-of-order packets. iWARP (512 byte

marker separation) depicts the behavior of feature-
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Fig. 13. Impact of marker separation on iWARP performance: (a) Latency (b) Bandwidth

complete iWARP implementations that strictly follow

the iWARP standard. All other implementations are in-

termediate cases which trade NIC buffering capability

for in-order communication performance. Though these

cases are not a part of the current iWARP standard,

we still study them as they have the potential to be

included in future revisions of the standard based on

their impact on the performance of iWARP.

4) Computation and Communication Overlap Capabil-

ity: Figure 14 shows the capabilities of the iWARP

designs to overlap computation with communication.

This experiment is similar to the bandwidth test, except

that before each request is initiated, interleaving com-

putation is added. Bandwidth is measured for different

amounts of computation. As shown in the figure, for

very little computation, the trend is similar to the band-

width test (Figure 10(b)), with host-assisted iWARP

performing the best, followed by host-offloaded and

host-based iWARP, respectively. However, as the com-

putation increases, the performance of host-assisted

iWARP drops rapidly. When the amount of compu-

tation becomes higher than 8µs for 4KB messages

and 128µs for 128KB messages, host-offloaded iWARP

outperforms host-assisted iWARP. This behavior is

attributed to the large amount of CPU used by host-

assisted iWARP as compared to host-offloaded iWARP.

Due to this, any additional computation added leads to

lesser CPU cycles allotted to communication, result-

ing in performance loss. On the other hand, in host-

offloaded iWARP, since the NIC is performing most

of the communication tasks, additional computation on

the CPU does not affect it as much.

C. Iso-surface Visual Rendering Application

Iso-surface rendering [15], [3] is a widely used tech-

nique in many application areas including environ-

mental simulations, biomedical imaging and oil reser-

voir simulators, for extracting and visualizing sur-

faces within a 3D volume. In this paper, we uti-

lize a component-based implementation of iso-surface

rendering [7], developed by University of Maryland,

on top of their widely used data-cutter library [6].

The original implementation of data-cutter is based

on TCP/IP sockets. In this paper, we modified the

components of data-cutter that are relevant to the iso-

surface application, to directly communicate using the

native iWARP interface. This allows us to evaluate

this application using the different iWARP designs

proposed in this paper.

Overview of the Data-cutter Library: Data-cutter

is a component framework that supports subsetting

and user-defined processing of large multi-dimensional

datasets. It provides a framework, called filter-stream

programming, for developing data-intensive applica-

tions. In this framework, the application processing

structure is implemented as a set of components, called

filters. Data exchange between filters is performed

through a stream abstraction. A stream denotes a uni-

directional data flow from one filter (i.e., the producer)

to another (i.e., the consumer). The overall processing

structure of an application is realized by a filter group,

which is a set of filters connected through logical

streams. When a filter group is instantiated to process

an application query, the run-time system establishes

connections between filters placed on different hosts

before starting the execution of the application query.

Filters placed on the same host execute as separate

threads. An application query is handled as a unit of

work (UOW) by the filter group. The size of the UOW

also represents the granularity in which data segments

are distributed in the system. The processing of a UOW

can be done in a pipelined fashion; different filters can

work on different data elements simultaneously. Several
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Fig. 14. Computation and communication overlap capability of the different iWARP implementations: (a) Message

size 4KB, (b) Message Size 128KB

data-intensive applications including the iso-surface

visual rendering application, have been designed and

developed using the data-cutter run-time framework.

Evaluating the Iso-surface Application: Figure 15

shows the execution time for the iso-surface appli-

cation using the different iWARP designs for two

granularities of data distribution. Figure 15(a) uses a

data distribution granularity (UOW) of 8KB, while

Figure 15(b) uses a granularity of 1MB. The complete

dataset is about 1GB in size, which is hosted on a

ram disk in order to avoid disk fetch overheads in

the experiment. The application uses four filters, read

dataset, isosurface extraction, shade and rasterize and

merge/view. As mentioned earlier, each filter performs

some computation and communicates the processed

data to the next filter. Once the communication is

initiated, the filter starts computation on the next UOW,

thus attempting to overlap communication with com-

putation. In our experiments, two instances of the four

filters (i.e., totally eight filters) were placed on the four

dual-processor nodes.

As shown in Figure 15(a), when the UOW is small

(8KB), host-assisted iWARP performs the best, fol-

lowed by host-offloaded iWARP. Host-based iWARP

performs the worst of the three. These results are

consistent with the raw latency and bandwidth per-

formance (Figure 10). Though the application tries to

overlap computation and communication, the amount

of computation is quite small (since the UOW is

small); thus the lesser CPU utilization of host-offloaded

iWARP does not help much in this case. With a larger

UOW (1MB), we notice a reversal in trend with host-

offloaded iWARP outperforms host-assisted iWARP.

This is attributed to the cache misses associated with

this workload as well as the lower CPU usage of host-

offloaded iWARP.

When the UOW is small (e.g., 8KB), data that is

fetched to cache for computation can be reused for

the copy associated with communication; thus there

are no additional cache misses. However, when the

UOW is large (e.g., 1MB), data has to be fetched

to cache in parts, and flushed back to accommodate

later parts of the data. Thus, during communication,

the data has to fetched to cache again, resulting in

more cache misses. On the other hand, host-offloaded

iWARP does not have to deal with the extra cache

misses during communication because of its zero-copy

capability, which helps it achieve better performance.

V. CONCLUDING REMARKS

Multi-path communication is gaining significant promi-

nence with the growing scales of high-end computing

(HEC) systems and the increasing focus on capabilities

to tolerate hardware faults and congestion. However,

with multi-path networks the communication protocols

face the disadvantage of having to deal with out-of-

order arrival of packets. Internet Wide-Area RDMA

Protocol (iWARP) is a new initiative as a high-speed

communication protocol over 10GE, with the unique

ability to maintain backward compatibility with the

existing TCP/IP infrastructure. This, however, makes

it more complicated and expensive to correctly iden-

tify and understand the contents of iWARP packets

during out-of-order communication. More importantly,

it makes the packet format and processing signifi-

cantly more complex, which unfortunately affects the

performance of in-order communication as well. In

this paper, we analyzed the trade-offs in designing a

feature-complete iWARP stack, i.e., one which pro-
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Fig. 15. Iso-surface visual rendering application: (a) UOW 8KB, (b) UOW 1MB

vides support for out-of-order arriving packets and thus

multi-path systems, while focusing on the performance

of in-order communication. Specifically, we proposed

three different feature-complete designs of iWARP:

(i) host-based iWARP, (ii) host-offloaded iWARP, and

(iii) host-assisted iWARP. We analyzed each of these

designs using micro-benchmarks as well as an iso-

surface visual rendering application and demonstrated

that depending on the characteristics of the upper-layers

or applications, different iWARP designs can provide

the best overall performance.
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