
Advanced MPI Programming

Pavan Balaji
Argonne	National	Laboratory

Email:	balaji@anl.gov
Web:	www.mcs.anl.gov/~balaji

Torsten Hoefler
ETH	Zurich

Email:	htor@inf.ethz.ch
Web:	http://htor.inf.ethz.ch/

Rajeev	Thakur
Argonne	National	Laboratory
Email:	thakur@mcs.anl.gov

Web:	www.mcs.anl.gov/~thakur

William	Gropp
University	of	Illinois,	Urbana-Champaign

Email:	wgropp@illinois.edu
Web:	www.cs.illinois.edu/~wgropp

Latest	slides	and	code	examples	are	available	at

www.mcs.anl.gov/~thakur/sc15-mpi-tutorial

Tutorial	at	SC15,	November	2015

About the Speakers

§ Pavan Balaji:	Computer	Scientist,	Mathematics	and	Computer	
Science	Division,	Argonne	National	Laboratory

§ William	Gropp:	Professor,	University	of	Illinois,	Urbana-
Champaign

§ Torsten Hoefler:	Assistant	Professor,	ETH	Zurich	

§ Rajeev	Thakur:	Deputy	Director,	Mathematics	and	Computer	
Science	Division,	Argonne	National	Laboratory

§ All	four	of	us	are	deeply	involved	in	MPI	standardization	(in	
the	MPI	Forum)	and	in	MPI	implementation

Advanced	MPI,	SC15	(11/16/2015) 2

Outline

Morning

§ Introduction
– MPI-1,	MPI-2,	MPI-3

§ Running	example:	2D	stencil	code	
– Simple	point-to-point	 version

§ Derived datatypes
– Use	in	2D	stencil	code

§ One-sided	communication
– Basics	and	new	features	in	MPI-3

– Use	in	2D	stencil	code

– Advanced	topics

• Global	address	space	
communication

Afternoon
§ MPI	and	Threads

– Thread	safety	specification	in	MPI
– How	it	enables	hybrid	programming
– Hybrid	(MPI	+	shared	memory)	version	

of	2D	stencil	code

§ Nonblockingcollectives
– Parallel	FFT	example

§ Process	topologies
– 2D	stencil	example

§ Neighborhood	collectives
– 2D	stencil	example

§ Recent	efforts	of	the	MPI	Forum
§ Conclusions

3 3Advanced	MPI,	SC15	(11/16/2015)

MPI-1

§ MPI	is	a	message-passing	 library	interface	standard.
– Specification,	not	implementation
– Library,	not	a	language

§ MPI-1	supports	the	classical	message-passing	programming	
model:	basic	point-to-point	communication,	collectives,	
datatypes,	etc

§ MPI-1	was	defined	(1994)	by	a	broadly	based	group	of	
parallel	computer	vendors,	computer	scientists,	and	
applications	developers.
– 2-year	intensive	process

§ Implementations	appeared	quickly	and	now	MPI	is	taken	
for	granted	as	vendor-supported	software	on	any	parallel	
machine.

§ Free,	portable	implementations	exist	for	clusters	and	other	
environments	(MPICH,	Open	MPI)

4 4Advanced	MPI,	SC15	(11/16/2015)

MPI-2

§ Same	process	of	definition	by	MPI	Forum

§ MPI-2	is	an	extension	of	MPI
– Extends	the	message-passing	model

• Parallel	I/O

• Remote	memory	operations	 (one-sided)

• Dynamic	process	management

– Adds	other	functionality
• C++	and	Fortran	90	bindings

– similar	to	original	C	and	Fortran-77	bindings

• External	interfaces

• Language	interoperability

• MPI	interaction	with	threads

5 5Advanced	MPI,	SC15	(11/16/2015)

6

Timeline of the MPI Standard
§ MPI-1	(1994),	presented	at	SC’93

– Basic	point-to-point	 communication,	collectives,	datatypes,	etc

§ MPI-2	(1997)
– Added	parallel	I/O, Remote	Memory	Access	(one-sided	operations),	dynamic	processes,

thread	support,	 C++	bindings,	…

§ ---- Stable	for	10	years	----

§ MPI-2.1	(2008)
– Minor	clarifications	and	bug	fixes	to	MPI-2

§ MPI-2.2	(2009)
– Small	updates	and	additions	to	MPI	2.1

§ MPI-3.0	(2012)
– Major	new	features	and	additions	to MPI

§ MPI-3.1	(2015)
– Minor	updates	and	fixes	to	MPI	3.0

Advanced	MPI,	SC15	(11/16/2015)

Overview of New Features in MPI-3
§ Major	new	features

– Nonblocking collectives
– Neighborhood	 collectives
– Improved	one-sided	communication	interface
– Tools	interface
– Fortran	2008	bindings

§ Other	new	features
– Matching	Probe	and	Recv for	thread-safe	probe	and	receive	
– Noncollective communicator	creation	function
– “const”	correct	C	bindings
– Comm_split_type function
– Nonblocking Comm_dup
– Type_create_hindexed_block function

§ C++	bindings	 removed
§ Previously	deprecated	functions	 removed
§ MPI	3.1	added	nonblocking collective	I/O	functions

7Advanced	MPI,	SC15	(11/16/2015)

Status of MPI-3.1 Implementations

MPICH MVAPICH Open
MPI

Cray	
MPI

Tianhe
MPI

Intel	
MPI

IBM	BG/Q	
MPI1

IBM	PE	
MPICH2

IBM	
Platform

SGI	
MPI

Fujitsu	
MPI

MS	
MPI MPC

NBC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ (*) Q4’15

Nbrhood
collectives ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q4’15

RMA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ *

Shared	
memory ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ *

Tools	
Interface ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ * Q4’16

Comm-creat
group ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ *

F08	Bindings ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q2’16

New	
Datatypes ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q4’15

Large	Counts ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q2’16

Matched	
Probe ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q2’16

NBC	I/O ✔ Q1‘16 Q4‘15 Q2‘16

1 Open	Source	but	unsupported 2 No	MPI_T	variables	exposed *	Under	development (*)	Partly	done

Release	dates	are	estimates	and	are	subject	to	change	at	any	time.
Empty	cells	indicate	no	publicly	 announced plan	to	implement/support	that	feature.

Platform-specific	restrictions	might	apply	for	all	supported	features

Advanced	MPI,	SC15	(11/16/2015) 8

Important considerations while using MPI

§ All	parallelism	is	explicit:	the	programmer	is	responsible	for	
correctly	identifying	parallelism	and	implementing	parallel	
algorithms	using	MPI	constructs

9Advanced	MPI,	SC15	(11/16/2015)

Web Pointers

§ MPI	standard	:	http://www.mpi-forum.org/docs/docs.html

§ MPI	Forum	:	http://www.mpi-forum.org/

§ MPI	implementations:	
– MPICH	:	http://www.mpich.org

– MVAPICH	:	http://mvapich.cse.ohio-state.edu/

– Intel	MPI:	http://software.intel.com/en-us/intel-mpi-library/

– Microsoft	MPI:	https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

– Open	MPI	:	http://www.open-mpi.org/

– IBM	MPI,	Cray	MPI,	HP	MPI,	TH	MPI,	…

§ Several	MPI	tutorials	can	be	found	on	the	web

Advanced	MPI,	SC15	(11/16/2015) 10

New Tutorial Books on MPI

Advanced	MPI,	SC15	(11/16/2015) 11

Basic MPI AdvancedMPI,	includingMPI-3

New Book on Parallel Programming Models
Edited	by	Pavan Balaji
• MPI: W.	Gropp and	R.	Thakur
• GASNet: P.	Hargrove
• OpenSHMEM: J.	Kuehn	and	S.	Poole
• UPC: K.	Yelick and	Y.	Zheng
• Global	Arrays: S.	Krishnamoorthy,	 J.	Daily,	A.	Vishnu,	

and	B.	Palmer
• Chapel: B.	Chamberlain
• Charm++: L.	Kale,	N.	Jain,	 and	J.	Lifflander
• ADLB: E.	Lusk,	R.	Butler,	and	S.	Pieper
• Scioto: J.	Dinan
• SWIFT: T.	Armstrong,	J.	M.	Wozniak,	M.	Wilde,	 and	I.	

Foster
• CnC: K.	Knobe,	M.	Burke,	and	F.	Schlimbach
• OpenMP: B.	Chapman,	D.	Eachempati,	and	S.	

Chandrasekaran
• Cilk Plus: A.	Robison	 and	C.	Leiserson
• Intel	TBB:A.	Kukanov
• CUDA: W.	Hwu and	D.	Kirk
• OpenCL: T.	Mattson

Pre-order	at	https://mitpress.mit.edu/models
Discount	code:	MBALAJI30	(valid	till	 12/31/2015)

12Advanced	MPI,	SC15	(11/16/2015)

Released	at	SC15

Our Approach in this Tutorial

§ Example	driven
– 2D	stencil	code	used	as	a	running	example	throughout	the	tutorial

– Other	examples	used	to	illustrate	specific	features

§ We	will	walk	through	actual	code

§ We	assume	familiarity	with basic	concepts	of	MPI-1

1313Advanced	MPI,	SC15	(11/16/2015)

Regular Mesh Algorithms

§ Many	scientific	applications	involve	the	solution	of	partial	
differential	equations	(PDEs)

§ Many	algorithms	for	approximating	the	solution	of	PDEs
rely	on	forming	a	set	of	difference	equations
– Finite	difference,	finite	elements,	finite	volume

§ The	exact	form	of	the	difference	equations	depends	on	the	
particular	method
– From	the	point	of	view	of	parallel	programming	for	these	

algorithms,	the	operations	are	the	same

14Advanced	MPI,	SC15	(11/16/2015)

Poisson Problem

§ To	approximate	the	solution	of	the	Poisson	Problem	∇2u	=	f
on	the	unit	square,	with	u defined	on	the	boundaries	of	the	
domain	(Dirichlet boundary	conditions),	this	simple	2nd	
order	difference	scheme	is	often	used:
– (U(x+h,y)	- 2U(x,y)	+	U(x-h,y))	/	h2 +	

(U(x,y+h)	- 2U(x,y)	+	U(x,y-h))	/	h2 =	f(x,y)
• Where	the	solution	U	is	approximated	on	a	discrete	grid	of	points	 x=0,	
h,	2h,	3h,	…	,	(1/h)h=1,	 y=0,	h,	2h,	3h,	…	1.

• To	simplify	 the	notation,	U(ih,jh)	 is	denoted	Uij

§ This	is	defined	on	a	discrete	mesh	of	points	(x,y)	=	(ih,jh),	
for	a	mesh	spacing	“h”

15Advanced	MPI,	SC15	(11/16/2015)

The Global Data Structure

§ Each	circle	is	a	mesh	point

§ Difference	equation	evaluated	at	
each	point	involves	the	four	
neighbors

§ The	red	“plus”	is	called	the	
method’s	stencil

§ Good	numerical	algorithms	form	a	
matrix	equation	Au=f;	solving	this	
requires	computing	Bv,	where	B	is	
a	matrix	derived	from	A.	These	
evaluations	involve	computations	
with	the	neighbors	on	the	mesh.

16Advanced	MPI,	SC15	(11/16/2015)

The Global Data Structure

§ Each	circle	is	a	mesh	point

§ Difference	equation	evaluated	at	
each	point	involves	the	four	
neighbors

§ The	red	“plus”	is	called	the	
method’s	stencil

§ Good	numerical	algorithms	form	a	
matrix	equation	Au=f;	solving	this	
requires	computing	Bv,	where	B	is	
a	matrix	derived	from	A.	These	
evaluations	involve	computations	
with	the	neighbors	on	the	mesh.

§ Decompose	mesh	into	equal	sized	
(work)	pieces

17Advanced	MPI,	SC15	(11/16/2015)

Necessary Data Transfers

18Advanced	MPI,	SC15	(11/16/2015)

Necessary Data Transfers

19Advanced	MPI,	SC15	(11/16/2015)

Necessary Data Transfers

§ Provide	access	to	remote	data	through	a	halo exchange	(5	point	stencil)

20Advanced	MPI,	SC15	(11/16/2015)

Necessary Data Transfers

§ Provide	access	to	remote	data	through	a	halo exchange	(9	point	with	
trick)

21Advanced	MPI,	SC15	(11/16/2015)

The Local Data Structure

§ Each	process	has	its	local	“patch”	of	the	global	array
– “bx”	and	“by”	are	the	sizes	of	the	local	array
– Always	allocate	a	halo	around	the	patch
– Array	allocated	of	size	(bx+2)x(by+2)

bx

by

22Advanced	MPI,	SC15	(11/16/2015)

2D Stencil Code Walkthrough

§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc15-mpi-tutorial

Advanced	MPI,	SC15	(11/16/2015) 23

Datatypes

24Advanced	MPI,	SC15	(11/16/2015)

Introduction to Datatypes in MPI

§ Datatypes allow	users	to	serialize	arbitrary data	layouts	into	a	
message	stream
– Networks	provide	serial	channels

– Same	for	block	devices	and	I/O

§ Several	constructors	allow	arbitrary	layouts
– Recursive	specification	possible

– Declarative specification	of	data-layout
• “what”	and	not	“how”,	leaves	optimization	 to	implementation	 (many
unexplored possibilities!)

– Choosing	the	right	constructors	is	not	always	simple

25Advanced	MPI,	SC15	(11/16/2015)

Derived Datatype Example

26Advanced	MPI,	SC15	(11/16/2015)

MPI’s Intrinsic Datatypes

§ Why	intrinsic	types?
– Heterogeneity,	nice	to	send	a	Boolean	from	C	to	Fortran

– Conversion	rules	are	complex,	not	discussed	here	

– Length	matches	to	language	types	
• No	sizeof(int)	 mess

§ Users	should	generally	use	intrinsic	types	as	basic	types	for	
communication	and	type	construction

§ MPI-2.2	added	some	missing	C	types
– E.g.,	unsigned	long	long	

27Advanced	MPI,	SC15	(11/16/2015)

MPI_Type_contiguous

§ Contiguous	array	of	oldtype

§ Should	not	be	used	as	last	type	(can	be	replaced	by	count)

MPI_Type_contiguous(int count, MPI_Datatype
oldtype, MPI_Datatype *newtype)

28Advanced	MPI,	SC15	(11/16/2015)

MPI_Type_vector

§ Specify	strided blocks	of	data	of	oldtype

§ Very	useful	for	Cartesian	arrays

MPI_Type_vector(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

29Advanced	MPI,	SC15	(11/16/2015)

2D Stencil Code with Datatypes Walkthrough

§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc15-mpi-tutorial

Advanced	MPI,	SC15	(11/16/2015) 30

MPI_Type_create_hvector

§ Stride	is	specified	in	bytes,	not	in	units	of	size	of	oldtype

§ Useful	for	composition,	e.g.,	vector	of	structs

MPI_Type_create_hvector(int count, int blocklength, MPI_Aint
stride, MPI_Datatype oldtype, MPI_Datatype *newtype)

31Advanced	MPI,	SC15	(11/16/2015)

MPI_Type_indexed

§ Pulling	irregular	subsets	of	data	from	a	single	array	(cf.	vector	
collectives)
– dynamic	codes	with	index	lists,	expensive	though!

– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

MPI_Type_indexed(int count, int *array_of_blocklengths,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

32Advanced	MPI,	SC15	(11/16/2015)

MPI_Type_create_indexed_block

§ Like	Create_indexed but	blocklength is	the	same

– blen=2

– displs={0,5,9,13,18}

MPI_Type_create_indexed_block(int count, int blocklength,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

33Advanced	MPI,	SC15	(11/16/2015)

MPI_Type_create_hindexed

§ Indexed	with	non-unit-sized	displacements,	e.g.,	pulling	types	
out	of	different	arrays

MPI_Type_create_hindexed(int count, int *arr_of_blocklengths,
MPI_Aint *arr_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)

34Advanced	MPI,	SC15	(11/16/2015)

MPI_Type_create_struct

§ Most	general	constructor,	allows	different	types	and	arbitrary	
arrays	(also	most	costly)

MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[], MPI_Datatype
array_of_types[], MPI_Datatype *newtype)

35Advanced	MPI,	SC15	(11/16/2015)

MPI_Type_create_subarray

§ Specify	subarray of	n-dimensional	array	(sizes)	by	start	(starts)	
and	size	(subsize)

MPI_Type_create_subarray(int ndims, int array_of_sizes[],
int array_of_subsizes[], int array_of_starts[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

36Advanced	MPI,	SC15	(11/16/2015)

MPI_Type_create_darray

§ Create	distributed	array,	supports	block,	cyclic	and	no	
distribution	for	each	dimension
– Very	useful	for	I/O

MPI_Type_create_darray(int size, int rank, int ndims,
int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)

37Advanced	MPI,	SC15	(11/16/2015)

MPI_BOTTOM and MPI_Get_address

§ MPI_BOTTOM	is	the	absolute	zero	address
– Portability	(e.g.,	may	be	non-zero	in	globally	shared	memory)

§ MPI_Get_address
– Returns		address	relative	to	MPI_BOTTOM

– Portability	(do	not	use	“&”	operator	in	C!)

§ Very	important	to	
– build	struct datatypes

– If	data	spans	multiple	arrays

38Advanced	MPI,	SC15	(11/16/2015)

Commit, Free, and Dup

§ Types	must	be	committed	before	use
– Only	the	ones	that	are	used!

– MPI_Type_commit may	perform	heavy	optimizations	(and	will	
hopefully)

§ MPI_Type_free
– Free	MPI	resources	of	datatypes

– Does	not	affect	types	built	from	it

§ MPI_Type_dup
– Duplicates	a	type

– Library	abstraction	(composability)

39Advanced	MPI,	SC15	(11/16/2015)

Other Datatype Functions

§ Pack/Unpack
– Mainly	for	compatibility	to	legacy	libraries

– Avoid	using	it	yourself

§ Get_envelope/contents
– Only	for	expert	library	developers

– Libraries	like	MPITypes1 make	this	easier

§ MPI_Type_create_resized
– Change	extent	and	size	(dangerous	but	useful)

1http://www.mcs.anl.gov/mpitypes/

40Advanced	MPI,	SC15	(11/16/2015)

Datatype Selection Order

§ Simple	and	effective	performance	model:
– More	parameters	==	slower

§ predefined	<	contig <	vector	<	index_block <	index	<	struct

§ Some	(most)	MPIs	are	inconsistent	
– But	this	rule	is	portable

W.	Gropp et	al.:	Performance	Expectations	and	Guidelines	for	MPI	Derived	Datatypes
41Advanced	MPI,	SC15	(11/16/2015)

Advanced Topics: One-sided Communication

One-sided Communication

§ The	basic	idea	of	one-sided	communication	models	is	to	
decouple	data	movement	with	process	synchronization
– Should	be	able	to	move	data	without	requiring	that	the	remote	

process	synchronize

– Each	process	exposes	a	part	of	its	memory	to	other	processes

– Other	processes	can	directly	read	from	or	write	to	this	memory

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Global	
Address	
Space

Private
Memory

Private
Memory

Private
Memory

Private
Memory

43Advanced	MPI,	SC15	(11/16/2015)

Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment

44Advanced	MPI,	SC15	(11/16/2015)

One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

45Advanced	MPI,	SC15	(11/16/2015)

Comparing One-sided and Two-sided Programming

Process	0 Process	1

SEND(data)

RECV(data)

D
E
L
A
Y

Even	the	
sending	
process	is	
delayed

Process	0 Process	1

PUT(data) D
E
L
A
Y

Delay	in	
process	1	
does	not	
affect	

process	0

GET(data)

46Advanced	MPI,	SC15	(11/16/2015)

Why use RMA? It can provide higher performance if
implemented efficiently
§ “Enabling	Highly-Scalable	Remote	Memory	Access	Programming	with	MPI-3	One	Sided”	by	

Robert	Gerstenberger,	Maciej Besta,	Torsten Hoefler (SC13	Best	Paper	Award)

§ They	implemented	complete	MPI-3	RMA	for	Cray	Gemini	(XK5,	XE6)	and	Aries	(XC30)	
systems	on	top	of	lowest-level	Cray	APIs

§ Achieved	better	 latency,	bandwidth,	message	rate,	and	application	performance	than	Cray’s	
MPI	RMA,	UPC,	and	Coarray Fortran

Lo
w
er
	is
	b
et
te
r

Hi
gh
er
	is
	b
et
te
r

Advanced	MPI,	SC15	(11/16/2015) 47

Application Performance with Tuned MPI-3 RMA

3D	FFT MILC

Distributed	Hash	Table Dynamic	Sparse	Data	Exchange

Hi
gh
er
	is
	b
et
te
r

Hi
gh
er
	is
	b
et
te
r

Lo
w
er
	is
	b
et
te
r

Lo
w
er
	is
	b
et
te
r

Gerstenberger,	Besta,	Hoefler (SC13)
Advanced	MPI,	SC15	(11/16/2015) 48

MPI RMA is Carefully and Precisely Specified

§ To	work	on	both	cache-coherent	and	non-cache-coherent	systems
– Even	though	 there	aren’t	many	non-cache-coherent	systems,	it	is	designed	

with	the	future	 in	mind

§ There	even	exists	a	formal	model	for	MPI-3	RMA	that	can	be	used	by	tools	
and	compilers	for	optimization,	verification,	etc.
– See	“Remote	Memory	Access	Programming	 in	MPI-3”	by	Hoefler,	 Dinan,	

Thakur,	Barrett,	Balaji,	Gropp,	 Underwood.	ACM	TOPC,	July	2015.

– http://htor.inf.ethz.ch/publications/index.php?pub=201

Advanced	MPI,	SC15	(11/16/2015) 49

What we need to know in MPI RMA

§ How	to	create	remote	accessible	memory?

§ Reading,	Writing	and	Updating	remote	memory

§ Data	Synchronization

§ Memory	Model

50Advanced	MPI,	SC15	(11/16/2015)

Creating Public Memory

§ Any	memory	used	by	a	process	is,	by	default,	only	locally	
accessible
– X	=	malloc(100);

§ Once	the	memory	is	allocated,	the	user	has	to	make	an	
explicit	MPI	call	to	declare	a	memory	region	as	remotely	
accessible
– MPI	terminology	for	remotely	accessible	memory	is	a	“window”

– A	group	of	processes	collectively	create	a	“window”

§ Once	a	memory	region	is	declared	as	remotely	accessible,	all	
processes	in	the	window	can	read/write	data	to	this	memory	
without	explicitly	synchronizing	with	the	target	process

51Advanced	MPI,	SC15	(11/16/2015)

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory
Private
Memory

Private
Memory

Private
Memory

Private
Memory

window window window window

Window creation models

§ Four	models	exist
– MPI_WIN_ALLOCATE

• You	want	to	create	a	buffer	and	directly	make	it	remotely	accessible

– MPI_WIN_CREATE
• You	already	have	an	allocated	buffer	 that	you	would	 like	to	make	
remotely	accessible

– MPI_WIN_CREATE_DYNAMIC
• You	don’t	have	a	buffer	 yet,	but	will	have	one	in	the	future

• You	may	want	to	dynamically	add/remove	buffers	 to/from	 the	window

– MPI_WIN_ALLOCATE_SHARED
• You	want	multiple	processes	on	the	same	node	share	a	buffer

52Advanced	MPI,	SC15	(11/16/2015)

MPI_WIN_ALLOCATE

§ Create	a	remotely	accessible	memory	region	in	an	RMA	window
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– size - size	of	local	data	in	bytes	(nonnegative	integer)

– disp_unit - local	unit	size	for	displacements,	in	bytes	(positive	integer)

– info - info	argument	(handle)

– comm - communicator	(handle)

– baseptr - pointer	to	exposed	local	data

– win												- window	(handle)

53Advanced	MPI,	SC15	(11/16/2015)

MPI_Win_allocate(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)

Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */
MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}

54Advanced	MPI,	SC15	(11/16/2015)

MPI_WIN_CREATE

§ Expose	a	region	of	memory	in	an	RMA	window
– Only	data	exposed	 in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– base - pointer	to	local	data	to	expose
– size - size	of	local	data	in	bytes	(nonnegative	integer)
– disp_unit - local	unit	size	for	displacements,	 in	bytes	(positive	integer)
– info - info	argument	(handle)
– comm - communicator	(handle)
– win													- window	(handle)

55Advanced	MPI,	SC15	(11/16/2015)

MPI_Win_create(void *base, MPI_Aint size,
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)

Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */
MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);
/* use private memory like you normally would */
a[0] = 1; a[1] = 2;

/* collectively declare memory as remotely accessible */
MPI_Win_create(a, 1000*sizeof(int), sizeof(int),

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);
MPI_Free_mem(a);
MPI_Finalize(); return 0;

}

56Advanced	MPI,	SC15	(11/16/2015)

MPI_WIN_CREATE_DYNAMIC

§ Create	an	RMA	window,	to	which	data	can	later	be	attached
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops

§ Initially	“empty”
– Application	can	dynamically	attach/detach	memory	to	this	window	by	

calling	MPI_Win_attach/detach
– Application	can	access	data	on	this	window	only	after	a	memory	

region	has	been	attached

§ Window	origin	is	MPI_BOTTOM
– Displacements	are	segment	addresses	relative	to	MPI_BOTTOM
– Must	tell	others	the	displacement	after	calling	attach

57Advanced	MPI,	SC15	(11/16/2015)

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,
MPI_Win *win)

Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{

int *a; MPI_Win win;

MPI_Init(&argc, &argv);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (int *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1; a[1] = 2;

/* locally declare memory as remotely accessible */
MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */
MPI_Win_detach(win, a); free(a);
MPI_Win_free(&win);

MPI_Finalize(); return 0;
}

58Advanced	MPI,	SC15	(11/16/2015)

Data movement

§ MPI	provides	ability	to	read,	write	and	atomically	modify	data	
in	remotely	accessible	memory	regions
– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE	(atomic)

– MPI_GET_ACCUMULATE	(atomic)

– MPI_COMPARE_AND_SWAP	(atomic)

– MPI_FETCH_AND_OP (atomic)

59Advanced	MPI,	SC15	(11/16/2015)

Data movement: Put

§ Move	data	from origin,	to target

§ Separate	data	description	triples	for	origin and	target

60

Origin

MPI_Put(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)

Advanced	MPI,	SC15	(11/16/2015)

Target

Remotely	
Accessible	
Memory

Private	
Memory

Data movement: Get

§ Move	data	to origin,	from target

§ Separate	data	description	triples	for	origin and	target

61

Origin

MPI_Get(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)

Advanced	MPI,	SC15	(11/16/2015)

Target

Remotely	
Accessible	
Memory

Private	
Memory

Atomic Data Aggregation: Accumulate

§ Atomic	update	operation,	similar	to	a	put
– Reduces	origin	and	target	data	into	target	buffer	using	op	argument	as	combiner

– Op	=	MPI_SUM,	MPI_PROD,	MPI_OR,	MPI_REPLACE,	MPI_NO_OP,	…

– Predefined	ops	only,	no	user-defined	operations

§ Different	data	layouts	between
target/origin	OK
– Basic	type	elements	must	match

§ Op	=	MPI_REPLACE
– Implements	f(a,b)=b

– Atomic	PUT

62

MPI_Accumulate(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

Advanced	MPI,	SC15	(11/16/2015)

Origin Target

Remotely	
Accessible	
Memory

Private	
Memory

+=

Atomic Data Aggregation: Get Accumulate

§ Atomic	read-modify-write
– Op	=	MPI_SUM,	MPI_PROD,	MPI_OR,	MPI_REPLACE,	MPI_NO_OP,	…
– Predefined	ops	only

§ Result	stored	in	target	buffer
§ Original	data	stored	in	result	buf
§ Different	data	layouts	between

target/origin	OK
– Basic	type	elements	must	match

§ Atomic	get	with	MPI_NO_OP
§ Atomic	swap	with	MPI_REPLACE

63

MPI_Get_accumulate(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, void *result_addr,
int result_count, MPI_Datatype result_dtype,
int target_rank, MPI_Aint target_disp,
int target_count, MPI_Datatype target_dype,
MPI_Op op, MPI_Win win)

Advanced	MPI,	SC15	(11/16/2015)

+=

Origin Target

Remotely	
Accessible	
Memory

Private	
Memory

Atomic Data Aggregation: CAS and FOP

§ FOP:	Simpler	version	of	MPI_Get_accumulate
– All	buffers	share	a	single	predefined	datatype

– No	count	argument	(it’s	always	1)

– Simpler	interface	allows	hardware	optimization

§ CAS:	Atomic	swap	if	target	value	is	equal	to	compare	value

64

MPI_Compare_and_swap(void *origin_addr, void *compare_addr,
void *result_addr, MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,
MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Op op, MPI_Win win)

Advanced	MPI,	SC15	(11/16/2015)

Ordering of Operations in MPI RMA

§ No	guaranteed	ordering	for	Put/Get	operations
§ Result	of	concurrent	Puts	to	the	same	location undefined
§ Result	of	Get	concurrent	Put/Accumulate	undefined

– Can	be	garbage	in	both	cases

§ Result	of	concurrent	accumulate	operations	to	the	same	location	
are	defined	according	to	the	order	in	which	the	occurred
– Atomic	put:	Accumulate	with	op	=	MPI_REPLACE
– Atomic	get:	Get_accumulate with	op	=	MPI_NO_OP

§ Accumulate	operations	from	a	given	process	are	ordered	by	default
– User	can	tell	 the	MPI	implementation	 that	(s)he	does	not	require	ordering	

as	optimization	hint
– You	can	ask	for	only	the	needed	orderings:	RAW	(read-after-write),	WAR,	

RAR,	or	WAW

65Advanced	MPI,	SC15	(11/16/2015)

Examples with operation ordering

66

Process	0 Process	1

GET_ACC	(y,	x+=2,	P1)

ACC	(x+=1,	P1) x +=	2

x	+=	1y=2	

x	=	2

PUT(x=2,	P1)

GET(y,	x,	P1)

x	=	2y=1

x	=	1

PUT(x=1,	P1)

PUT(x=2,	P1)

x	=	1

x	=	0

x	=	2
1.	Concurrent	Puts:	undefined

2.	Concurrent	Get	and	
Put/Accumulates:	undefined

3.	Concurrent	Accumulate	operations	
to	the	same	location	:	 ordering	is	
guaranteed

Advanced	MPI,	SC15	(11/16/2015)

RMA Synchronization Models

§ RMA	data	access	model
– When	is	a	process	allowed	to	read/write	remotely	accessible	memory?
– When	is	data	written	by	process	X	is	available	for	process	Y	to	read?
– RMA	synchronization	models	define	these semantics

§ Three	synchronization	models	provided	by	MPI:
– Fence	(active	target)
– Post-start-complete-wait	 (generalized	active	target)
– Lock/Unlock	(passive	target)

§ Data	accesses	occur	within	“epochs”
– Access	epochs:	contain	a	set	of	operations	 issued	by	an	origin	process
– Exposure	epochs:	enable	remote	processes	to	update	a	target’s	window
– Epochs	define	ordering	and	completion	semantics
– Synchronization	models	provide	mechanisms	for	establishing	 epochs

• E.g.,	starting,	ending,	and	synchronizing	epochs

67Advanced	MPI,	SC15	(11/16/2015)

Fence: Active Target Synchronization

§ Collective	synchronization	model

§ Starts	and ends	access	and	exposure	
epochs	on	all	processes	in	the	window

§ All	processes	in	group	of	“win”	do	an	
MPI_WIN_FENCE	to	open	an	epoch

§ Everyone	can	issue	PUT/GET	operations	
to	read/write	data

§ Everyone	does	an	MPI_WIN_FENCE	to	
close	the	epoch

§ All	operations	complete	at	the	second	
fence	synchronization

68

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

Advanced	MPI,	SC15	(11/16/2015)

P0 P1 P2

Implementing Stencil Computation with RMA Fence

69

Origin	buffers

Target	buffers

RMA	window

PUT

PUT

PUT

PU
T

Advanced	MPI,	SC15	(11/16/2015)

70

Code Example

§ stencil_mpi_ddt_rma.c

§ Use	MPI_PUTs	to	move	data,	explicit	receives	are	not	needed

§ Data	location	specified	by	MPI	datatypes

§ Manual	packing	of	data	no	longer	required

Advanced	MPI,	SC15	(11/16/2015)

PSCW: Generalized Active Target Synchronization

§ Like	FENCE,	but	origin	and	target	specify	
who	they	communicate	with

§ Target:	Exposure	epoch
– Opened	with	MPI_Win_post

– Closed	by	MPI_Win_wait

§ Origin:	Access	epoch
– Opened	by	MPI_Win_start

– Closed	by	MPI_Win_complete

§ All	synchronization	operations	may	block,	
to	enforce	P-S/C-W	ordering
– Processes	can	be	both	origins	and	targets

71

Start

Complete

Post

Wait

Target Origin

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)
MPI_Win_complete/wait(MPI_Win win)

Advanced	MPI,	SC15	(11/16/2015)

Lock/Unlock: Passive Target Synchronization

§ Passive	mode:	One-sided,	asynchronous communication

– Target	does	not	participate	in	communication	operation

§ Shared	memory-like	model

72

Active	Target	Mode Passive	Target	Mode

Lock

Unlock

Start

Complete

Post

Wait

Advanced	MPI,	SC15	(11/16/2015)

Passive Target Synchronization

§ Lock/Unlock:	Begin/end	passive	mode	epoch
– Target	process	does	not	make	a	corresponding	MPI	call
– Can	initiate	multiple	passive	target	epochs	 to	different	 processes
– Concurrent	epochs	to	same	process	not	allowed	(affects	threads)

§ Lock	type
– SHARED:	Other	processes	using	shared	can	access	concurrently
– EXCLUSIVE:	No	other	processes	can	access	concurrently

§ Flush:	Remotely	complete	RMA	operations	to	the	target	process
– After	completion,	 data	can	be	read	by	target	process	or	a	different	process

§ Flush_local:	Locally	complete	RMA	operations	to	the	target	process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

73Advanced	MPI,	SC15	(11/16/2015)

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)

Advanced Passive Target Synchronization

§ Lock_all:	Shared	lock,	passive	target	epoch	to	all	other	
processes
– Expected	usage	is	long-lived:	lock_all,	put/get,	flush,	…,	unlock_all

§ Flush_all – remotely	complete	RMA	operations	to	all	
processes

§ Flush_local_all – locally	complete	RMA	operations	to	all	
processes

74

MPI_Win_lock_all(int assert, MPI_Win win)

Advanced	MPI,	SC15	(11/16/2015)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)

Implementing PGAS-like Computation by RMA Lock/Unlock

75

GET GET atomic	ACC atomic	ACCGETGET

local	buffer	on	P0 local	buffer	on	P1
DGEMM DGEMM

Advanced	MPI,	SC15	(11/16/2015)

Code Example

§ ga_mpi_ddt_rma.c

§ Only	synchronization	from	origin	processes,	no	
synchronization	from	target	processes

76Advanced	MPI,	SC15	(11/16/2015)

Which synchronization mode should I use, when?

§ RMA	communication	has	low	overheads	versus	send/recv
– Two-sided:	Matching,	queuing,	buffering,	unexpected	 receives,	etc…
– One-sided:	No	matching,	no	buffering,	always	ready	to	receive
– Utilize	RDMA	provided	by	high-speed	 interconnects	(e.g.	InfiniBand)

§ Active	mode:	bulk	synchronization
– E.g.	ghost	cell	exchange

§ Passive	mode:	asynchronous	data	movement
– Useful	when	dataset	 is	large,	requiring	memory	of	multiple	nodes
– Also,	when	data	access	and	synchronization	pattern	is	dynamic
– Common	use	case:	distributed,	shared	arrays

§ Passive	target	locking	mode
– Lock/unlock	– Useful	when	exclusive	epochs	are	needed
– Lock_all/unlock_all – Useful	when	only	shared	epochs	are	needed

77Advanced	MPI,	SC15	(11/16/2015)

MPI RMA Memory Model

§ MPI-3	provides	two	memory	models:	
separate	and	unified

§ MPI-2:	Separate	Model
– Logical	public	and	private	copies
– MPI	provides	software	coherence	between	

window	copies
– Extremely	portable,	to	systems	that	don’t	

provide	hardware	coherence

§ MPI-3:	New	Unified	Model
– Single	copy	of	the	window
– System	must	provide	coherence
– Superset	of	separate	semantics

• E.g.	allows	concurrent	local/remote	access
– Provides	access	to	full	performance	

potential	of	hardware

78

Public
Copy

Private
Copy

Unified
Copy

Advanced	MPI,	SC15	(11/16/2015)

MPI RMA Memory Model (separate windows)

§ Very	portable,	compatible	with	non-coherent	memory	systems
§ Limits	concurrent	accesses	to	enable	software	coherence

Public
Copy

Private
Copy

Same	source
Same	epoch Diff.	Sources

load store store

X

79

X

Advanced	MPI,	SC15	(11/16/2015)

MPI RMA Memory Model (unified windows)

§ Allows	concurrent	local/remote	accesses
§ Concurrent,	conflicting	operations	are	allowed	(not	invalid)

– Outcome	is	not	defined	by	MPI	(defined	by	the	hardware)

§ Can	enable	better	performance	by	reducing	synchronization

80

Unified
Copy

Same	source
Same	epoch Diff.	Sources

load store store

X

Advanced	MPI,	SC15	(11/16/2015)

MPI RMA Operation Compatibility (Separate)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

This	matrix	shows	the	compatibility	of	MPI-RMA	operations	when	two	or	more	
processes	access	a	window	at	the	same	target	concurrently.

OVL	 – Overlapping	operations	permitted
NOVL	 – Nonoverlapping operations	permitted
X	 – Combining	 these	operations	is	OK,	but	data	might	be	garbage

81Advanced	MPI,	SC15	(11/16/2015)

MPI RMA Operation Compatibility (Unified)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL OVL+NOVL

This	matrix	shows	the	compatibility	of	MPI-RMA	operations	when	two	or	more	
processes	access	a	window	at	the	same	target	concurrently.

OVL	 – Overlapping	operations	permitted
NOVL	 – Nonoverlapping operations	permitted

82Advanced	MPI,	SC15	(11/16/2015)

Hybrid Programming with Threads, Shared
Memory, and GPUs

MPI and Threads

§ MPI	describes	parallelism	between	processes	 (with	separate	
address	spaces)

§ Thread parallelism	provides	a	shared-memory	model	within	a	
process

§ OpenMPand	Pthreads are	common	models
– OpenMP provides	convenient	features	for	loop-level	parallelism.	

Threads	are	created	and	managed	by	the	compiler,	based	on	user	
directives.

– Pthreads provide	more	complex	and	dynamic	approaches.	Threads	are	
created	and	managed	explicitly	by	the	user.

Advanced	MPI,	SC15	(11/16/2015) 84

Programming for Multicore

§ Common	options	for	programming	multicore	clusters
– All	MPI

• MPI	between	processes	both	within	a	node	and	across	nodes
• MPI	internally	uses	shared	memory	 to	communicate	within	a	node

– MPI	+	OpenMP
• Use	OpenMP within	a	node	and	MPI	across	nodes

– MPI	+	Pthreads
• Use	Pthreads within	a	node	and	MPI	across	nodes	

§ The	latter	two	approaches	are	known	as	“hybrid	programming”

85Advanced	MPI,	SC15	(11/16/2015)

Hybrid Programming with MPI+Threads

§ In	MPI-only	programming,	
each	MPI	process	has	a	single	
program	counter

§ In	MPI+threads hybrid	
programming,	there	can	be	
multiple	threads	executing	
simultaneously
– All	threads	share	all	MPI	

objects	(communicators,	
requests)

– The	MPI	implementation	might	
need	to	take	precautions	to	
make	sure	the	state	of	the	MPI	
stack	is	consistent

Advanced	MPI,	SC15	(11/16/2015)

Rank	0 Rank	1

MPI-only	Programming

Rank	0 Rank	1

MPI+Threads Hybrid	Programming

86

MPI’s Four Levels of Thread Safety

§ MPI	defines	four	levels	of	thread	safety	-- these	are	
commitments	the	application	makes	to	the	MPI
– MPI_THREAD_SINGLE:	only	one	thread	exists	in	the	application
– MPI_THREAD_FUNNELED:	multithreaded,	but	only	the	main	thread	

makes	MPI	calls	(the	one	that	called	MPI_Init_thread)
– MPI_THREAD_SERIALIZED:	multithreaded,	but	only	one	thread	at	a	time

makes	MPI	calls
– MPI_THREAD_MULTIPLE:	multithreaded	and	any	thread	can	make	MPI	

calls	at	any	time	(with	some	restrictions	to	avoid	races	– see	next	slide)

§ Thread	levels	are	in	increasing	order
– If	an	application	works	in	FUNNELED	mode,	it	can	work	in	SERIALIZED

§ MPI	defines	an	alternative	to	MPI_Init
– MPI_Init_thread(requested,	provided)

• Application	specifies	level	it	needs;	MPI	implementation	returns	level	it	supports

Advanced	MPI,	SC15	(11/16/2015) 87

MPI_THREAD_SINGLE

§ There	are	no	additional	user	threads	in	the	system
– E.g.,	there	are	no	OpenMP parallel	regions

Advanced	MPI,	SC15	(11/16/2015)

int main(int argc, char ** argv)
{

int buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (i = 0; i < 100; i++)
compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();

return 0;
}

88

MPI_THREAD_FUNNELED

§ All	MPI	calls	are	made	by	the	master thread
– Outside	the	OpenMP parallel	regions
– In	OpenMPmaster	regions

Advanced	MPI,	SC15	(11/16/2015)

int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);
if (provided < MPI_THREAD_FUNNELED) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++)

compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();
return 0;

}

89

MPI	Process

COMP.

COMP.

MPI	COMM.

MPI_THREAD_SERIALIZED

§ Only	one thread	can	make	MPI	calls	at	a	time
– Protected	by	OpenMP critical	regions

Advanced	MPI,	SC15	(11/16/2015)

int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);
if (provided < MPI_THREAD_SERIALIZED) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

compute(buf[i]);
#pragma omp critical

/* Do MPI stuff */
}

MPI_Finalize();
return 0;

}

90

MPI	Process

COMP.

COMP.

MPI	COMM.

MPI_THREAD_MULTIPLE

§ Any thread	can	make	MPI	calls	any	time	(restrictions	apply)

Advanced	MPI,	SC15	(11/16/2015)

int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
if (provided < MPI_THREAD_MULTIPLE) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

compute(buf[i]);
/* Do MPI stuff */

}

MPI_Finalize();
return 0;

}

91

MPI	Process

COMP.

COMP.

MPI	COMM.

Threads and MPI

§ An	implementation	is	not	required	to	support	levels	higher	
than	MPI_THREAD_SINGLE;	that	is,	an	implementation	is	not	
required	to	be	thread	safe

§ A	fully	thread-safe	implementation	will	support	
MPI_THREAD_MULTIPLE

§ A	program	that	calls	MPI_Init (instead	of	MPI_Init_thread)	
should	assume	that	only	MPI_THREAD_SINGLE	is	supported
– MPI	Standard	mandatesMPI_THREAD_SINGLE	for	MPI_Init

§ A	threaded	MPI	program	that	does	not	call	MPI_Init_thread is	
an	incorrect	program	(common	user	error	we	see)

Advanced	MPI,	SC15	(11/16/2015) 92

Implementing Stencil Computation using
MPI_THREAD_FUNNELED

93Advanced	MPI,	SC15	(11/16/2015)

Code Examples

§ stencil_mpi_ddt_funneled.c

§ Parallelize	computation	(OpenMP parallel	for)

§ Main	thread	does	all	communication

94Advanced	MPI,	SC15	(11/16/2015)

Specification of MPI_THREAD_MULTIPLE

§ Ordering:When	multiple	threads	make	MPI	calls	concurrently,	
the	outcome	will	be	as	if	the	calls	executed	sequentially	in	some	
(any)	order
– Ordering	is	maintained	within	each	thread
– User	must	ensure	that	collective	operations	on	the	same	communicator,	

window,	or	file	handle	are	correctly	ordered	among	threads
• E.g.,	cannot	call	a	broadcast	on	one	thread	and	a	reduce	on	another	thread	on	
the	same	communicator

– It	is	the	user's	responsibility	to	prevent	races	when	threads	in	the	same	
application	post	conflicting	MPI	calls	
• E.g.,	accessing	an	info	object	from	one	thread	and	freeing	 it	from	another	
thread

§ Blocking: Blocking	MPI	calls	will	block	only	the	calling	thread	and	
will	not	prevent	other	threads	from	running	or	executing	MPI	
functions

Advanced	MPI,	SC15	(11/16/2015) 95

Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with Collectives

§ P0	and	P1	can	have	different	orderings	of	Bcast and	Barrier
§ Here	the	user	must	use	some	kind	of	synchronization	to	

ensure	that	either	thread	1	or	thread	2	gets	scheduled	first	on	
both	processes	

§ Otherwise	a	broadcast	may	get	matched	with	a	barrier	on	the	
same	communicator,	which	is	not	allowed	in	MPI

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)

Thread 1

Thread 2

Advanced	MPI,	SC15	(11/16/2015) 96

Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with RMA

Advanced	MPI,	SC15	(11/16/2015) 97

int main(int argc, char ** argv)
{

/* Initialize MPI and RMA window */

#pragma omp parallel for
for (i = 0; i < 100; i++) {

target = rand();
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target, 0, win);
MPI_Put(..., win);
MPI_Win_unlock(target, win);

}

/* Free MPI and RMA window */

return 0;
}

Different	threads	can	lock	the	same	process	causing	multiple	locks	to	the	same	target	before	
the	first	lock	is	unlocked

Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with Object Management

§ The	user	has	to	make	sure	that	one	thread	is	not	using	an	
object	while	another	thread	is	freeing	it
– This	is	essentially	an	ordering	issue;	the	object	might	get	freed	before	

it	is	used

Advanced	MPI,	SC15	(11/16/2015)

Process 0

MPI_Bcast(comm)

MPI_Comm_free(comm)

Process 1

MPI_Bcast(comm)

MPI_Comm_free(comm)

Thread 1

Thread 2

98

Blocking Calls in MPI_THREAD_MULTIPLE: Correct
Example

§ An	implementation	must	ensure	that	the	above	example	
never	deadlocks	for	any	ordering	of	thread	execution

§ That	means	the	implementation	cannot	simply	acquire	a	
thread	lock	and	block	within	an	MPI	function.	It	must	
release	the	lock	to	allow	other	threads	to	make	progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2

Advanced	MPI,	SC15	(11/16/2015) 99

Implementing Stencil Computation using
MPI_THREAD_MULTIPLE

100Advanced	MPI,	SC15	(11/16/2015)

Code Examples

§ stencil_mpi_ddt_multiple.c

§ Divide	the	process	memory	among	OpenMP threads

§ Each	thread	responsible	for	communication	and	computation

101Advanced	MPI,	SC15	(11/16/2015)

The Current Situation

§ All	MPI	implementations	support	MPI_THREAD_SINGLE	(duh).

§ They	probably	support	MPI_THREAD_FUNNELED	even	if	they	
don’t	admit	it.
– Does	require	thread-safe	malloc

– Probably	OK	in	OpenMP programs

§ Many	(but	not	all)	implementations	support	
THREAD_MULTIPLE
– Hard	to	implement	efficiently	though	(lock	granularity	issue)

§ “Easy”	OpenMPprograms	(loops	parallelized	with	OpenMP,	
communication	in	between	loops)	only	need	FUNNELED
– So	don’t	need	“thread-safe”	MPI	for	many	hybrid	programs

– But	watch	out	for	Amdahl’s	Law!

Advanced	MPI,	SC15	(11/16/2015) 102

Performance with MPI_THREAD_MULTIPLE

§ Thread	safety	does	not	come	for	free

§ The	implementation	must	protect	certain	data	structures	or	
parts	of	code	with	mutexes or	critical	sections

§ To	measure	the	performance	impact,	we	ran	tests	to	measure	
communication	performance	when	using	multiple	threads	
versus	multiple	processes
– For	results,	see	Thakur/Gropppaper:	“Test	Suite	for	Evaluating	

Performance	of	Multithreaded	MPI	Communication,”	Parallel	
Computing,	2009

Advanced	MPI,	SC15	(11/16/2015) 103

Message Rate Results on BG/P

Message	Rate	Benchmark

Advanced	MPI,	SC15	(11/16/2015) 104

“Enabling	Concurrent	Multithreaded	MPI	
Communication	on	Multicore Petascale
Systems”	EuroMPI 2010

Why is it hard to optimize MPI_THREAD_MULTIPLE

§ MPI	internally	maintains	several	resources

§ Because	of	MPI	semantics,	it	is	required	that	all	threads	have	
access	to	some	of	the	data	structures
– E.g.,	thread	1	can	post	an	Irecv,	and	thread	2	can	wait	for	its	

completion	– thus	the	request	queue	has	to	be	shared	between	both	
threads

– Since	multiple	threads	are	accessing	this	shared	queue,	it	needs	to	be	
locked	– adds	a	lot	of	overhead

Advanced	MPI,	SC15	(11/16/2015) 105

Hybrid Programming: Correctness Requirements

§ Hybrid	programming	with	MPI+threads does	not	do	much	to	
reduce	the	complexity	of	thread	programming
– Your	application	still	has	to	be	a	correct	multi-threaded	application

– On	top	of	that,	you	also	need	to	make	sure	you	are	correctly	following	
MPI	semantics

§ Many	commercial	debuggers	offer	support	for	debugging	
hybrid	MPI+threads applications	(mostly	for	MPI+Pthreads
and	MPI+OpenMP)

Advanced	MPI,	SC15	(11/16/2015) 106

An Example we encountered

§ We	received	a	bug	report	about	a	very	simple	
multithreaded	MPI	program	that	hangs

§ Run	with	2	processes

§ Each	process	has	2	threads

§ Both	threads	communicate	with	threads	on	the	other	
process	as	shown	in	the	next	slide

§ We	spent	several	hours	trying	to	debug	MPICH	before	
discovering	that	the	bug	is	actually	in	the	user’s	program	L

Advanced	MPI,	SC15	(11/16/2015) 107

2 Proceses, 2 Threads, Each Thread Executes this
Code

for	(j	=	0;	j	<	2;	j++)	{

if	(rank	==	1)	{

for	 (i	=	0;	i	<	2;	i++)

MPI_Send(NULL,	0,	MPI_CHAR,	0,	0,	MPI_COMM_WORLD);

for	 (i	=	0;	i	<	2;	i++)

MPI_Recv(NULL,	0,	MPI_CHAR,	0,	0,	MPI_COMM_WORLD,	&stat);

}

else	{		/*	rank	==	0	*/

for	 (i	=	0;	i	<	2;	i++)

MPI_Recv(NULL,	0,	MPI_CHAR,	1,	0,	MPI_COMM_WORLD,	&stat);

for	 (i	=	0;	i	<	2;	i++)

MPI_Send(NULL,	0,	MPI_CHAR,	1,	0,	MPI_COMM_WORLD);

}

}
Advanced	MPI,	SC15	(11/16/2015) 108

Intended Ordering of Operations

§ Every	send	matches	a	receive	on	the	other	rank

Advanced	MPI,	SC15	(11/16/2015)

2	recvs (T2)
2 sends	(T2)
2 recvs (T2)
2 sends	(T2)

2	recvs (T1)
2 sends	(T1)
2 recvs (T1)
2 sends	(T1)

Rank	0

2	sends	(T2)
2	recvs (T2)
2	sends	(T2)
2	recvs (T2)

2	sends	(T1)
2	recvs (T1)
2	sends	(T1)
2	recvs (T1)

Rank	1

109

Possible Ordering of Operations in Practice

§ Because	the	MPI	operations	can	be	issued	in	an	arbitrary	
order	across	threads,	all	threads	could	block	in	a	RECV	call

1 recv (T2)

1	recv (T2)

2	sends	(T2)
2 recvs (T2)
2 sends	(T2)

2	recvs (T1)
2 sends	(T1)
1 recv (T1)

1	recv (T1)

2	sends	(T1)

Rank	0

2	sends	(T2)
1 recv (T2)

1	recv (T2)

2	sends	(T2)
2	recvs (T2)

2	sends	(T1)
1 recv (T1)

1	recv (T1)

2	sends	(T1)
2	recvs (T1)

Rank	1

110Advanced	MPI,	Argonne	(06/05/2015)

Some Things to Watch for in OpenMP

§ Limited	thread	and	no	explicit	memory	affinity	control	(but	
see	OpenMP	4.0	and	the	4.1	Draft)
– “First	touch”	(have	intended	“owning”	thread	perform	first	access)	

provides	initial	static	mapping	of	memory
• Next	touch	(move	ownership	 to	most	recent	thread)	could	help

– No	portable	way	to	reassign	memory	affinity	– reduces	the	
effectiveness	of	OpenMP	when	used	to	improve	load	balancing.

§ Memory	model	can	require	explicit	“memory	flush”	
operations
– Defaults	allow	race	conditions

– Humans	notoriously	poor	at	recognizing	all	races
• It	only	takes	one	mistake	to	create	a	hard-to-find	 bug

Advanced	MPI,	SC15	(11/16/2015) 111

Some Things to Watch for in
MPI + OpenMP
§ No	interface	for	apportioning	resources	between	MPI	and	

OpenMP
– On	an	SMP	node,	how	many	MPI	processes	and	how	many	OpenMP	

Threads?
• Note	the	static	nature	assumed	by	this	question

– Note	that	having	more	threads	than	cores	can	be	important	for	hiding	
latency
• Requires	very	lightweight	 threads

§ Competition	for	resources
– Particularly	memory	bandwidth	and	network	access

– Apportionment	of	network	access	between	threads	and	processes	is	
also	a	problem,	as	we’ve	already	seen.

Advanced	MPI,	SC15	(11/16/2015) 112

Where Does the MPI + OpenMP Hybrid Model Work
Well?
§ Compute-bound	loops

– Many	operations	per	memory	load

§ Fine-grain	parallelism
– Algorithms	that	are	latency-sensitive

§ Load	balancing
– Similar	to	fine-grain	parallelism;	ease	of	

§ Memory	bound	loops

Advanced	MPI,	SC15	(11/16/2015) 113

Compute-Bound Loops

§ Loops	that	involve	many	operations	per	load	from	memory	
– This	can	happen	in	some	kinds	of	matrix	assembly,	for	example.

– Jacobi	update	not	compute	bound

Advanced	MPI,	SC15	(11/16/2015) 114

Fine-Grain Parallelism

§ Algorithms	that	require	frequent	exchanges	of	small	amounts	
of	data

§ E.g.,	in	blocked	preconditioners,	where	fewer,	larger	blocks,	
each	managed	with	OpenMP,	as	opposed	to	more,	smaller,	
single-threaded	blocks	in	the	all-MPI	version,	gives	you	an	
algorithmic	advantage	(e.g.,	fewer	iterations	in	a	
preconditioned	linear	solution	algorithm).

§ Even	if	memory	bound

Advanced	MPI,	SC15	(11/16/2015) 115

Load Balancing

§ Where	the	computational	load	isn't	exactly	the	same	in	all	
threads/processes;	this	can	be	viewed	as	a	variation	on	fine-
grained	access.

§ OpenMP	schedules	can	handle	some	of	this
– For	very	fine	grain	cases,	a	mix	of	static	and	dynamic	scheduling	may	

be	more	efficient

– Current	research	looking	at	more	elaborate	and	efficient	schedules	for	
this	case

Advanced	MPI,	SC15	(11/16/2015) 116

Memory-Bound Loops

§ Where	read	data	is	shared,	so	that	cache	memory	can	be	
used	more	efficiently.

§ Example:	Table	lookup	for	evaluating	equations	of	state
– Table	can	be	shared

– If	table	evaluated	as	necessary,	evaluations	can	be	shared				

Advanced	MPI,	SC15	(11/16/2015) 117

Where is Pure MPI Better?

§ Trying	to	use	OpenMP	+	MPI	on	very	regular,	memory-
bandwidth-bound	computations	is	likely	to	lose	because	of	
the	better,	programmer-enforced	memory	locality	
management	in	the	pure	MPI	version.

§ Another	reason	to	use	more	than	one	MPI	process	- if	a	single	
process	(or	thread)	can't	saturate	the	interconnect	- then	use	
multiple	communicating	processes	or	threads.
– Note	that	threads	and	processes	are	not	equal

Advanced	MPI,	SC15	(11/16/2015) 118

Hybrid Programming with Shared Memory

§ MPI-3	allows	different	processes	to	allocate	shared	memory	
through	MPI
– MPI_Win_allocate_shared

§ Uses	many	of	the	concepts	of	one-sided	communication

§ Applications	can	do	hybrid	programming	using	MPI	or	
load/store	accesses	on	the	shared	memory	window

§ Other	MPI	functions	can	be	used	to	synchronize	access	to	
shared	memory	regions

§ Can	be	simpler	to	program	than	threads

Advanced	MPI,	SC15	(11/16/2015) 119

Creating Shared Memory Regions in MPI

Advanced	MPI,	SC15	(11/16/2015)

MPI_COMM_WORLD

MPI_Comm_split_type (COMM_TYPE_SHARED)

Shared	memory	
communicator

MPI_Win_allocate_shared

Shared	memory	
window

Shared	memory	
window

Shared	memory	
window

Shared	memory	
communicator

Shared	memory	
communicator

120

Load/store

Regular RMA windows vs. Shared memory windows

§ Shared	memory	windows	allow	
application	processes	to	directly	
perform	load/store	accesses	on	
all	of	the	window	memory
– E.g.,	x[100]	=	10

§ All	of	the	existing	RMA	functions	
can	also	be	used	on	such	
memory	for	more	advanced	
semantics	such	as	atomic	
operations

§ Can	be	very	useful	when	
processes	want	to	use	threads	
only	to	get	access	to	all	of	the	
memory	on	the	node
– You	can	create	a	shared	memory	

window	 and	put	your	shared	data

Advanced	MPI,	SC15	(11/16/2015)

Local	
memory

P0

Local	
memory

P1

Load/store
PUT/GET

Traditional	RMA	windows

Load/store

Local	memory

P0 P1

Load/store

Shared	memory	windows

Load/store

121

Memory allocation and placement

§ Shared	memory	allocation	does	not	need	to	be	uniform	
across	processes
– Processes	can	allocate	a	different	amount	of	memory	(even	zero)

§ The	MPI	standard	does	not	specify	where	the	memory	would	
be	placed	(e.g.,	which	physical	memory	it	will	be	pinned	to)
– Implementations	can	choose	their	own	strategies,	though	it	is	

expected	that	an	implementation	will	try	to	place	shared	memory	
allocated	by	a	process	“close	to	it”

§ The	total	allocated	shared	memory	on	a	communicator	is	
contiguous	by	default
– Users	can	pass	an	info	hint	called	“noncontig”	that	will	allow	the	MPI	

implementation	to	align	memory	allocations	from	each	process	to	
appropriate	boundaries	to	assist	with	placement

Advanced	MPI,	SC15	(11/16/2015) 122

Shared Arrays with Shared memory windows

Advanced	MPI,	SC15	(11/16/2015)

int main(int argc, char ** argv)
{

int buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);
MPI_Win_allocate_shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */
MPI_Win_sync(win);

/* use shared memory */

MPI_Win_unlock_all(win);

MPI_Win_free(&win);
MPI_Finalize();
return 0;

}

123

Walkthrough of 2D Stencil Code with Shared
Memory Windows
§ stencil_mpi_shmem.c

§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc15-mpi-tutorial

Advanced	MPI,	SC15	(11/16/2015) 124

Accelerators in Parallel Computing

§ General	purpose,	highly
parallel	processors
– High	FLOPs/Watt	and	FLOPs/$
– Unit	of	execution	Kernel
– Separate	memory	subsystem
– Prog.	Models:	CUDA,	OpenCL,	…

§ Clusters	with	accelerators	are	
becoming	common

§ New	programmability	and	
performance	challenges	for	
programming	models	and	runtime	
systems

Advanced	MPI,	SC15	(11/16/2015) 125

Hybrid Programming with Accelerators

§ Many	users	are	looking	to	use	accelerators	within	their	MPI	
applications

§ The	MPI	standard	does	not	provide	any	special	semantics	to	
interact	with	accelerators
– Current	MPI	threading	semantics	are	considered	sufficient	by	most	

users

– There	are	some	research	efforts	for	making	accelerator	memory	
directly	accessibly	by	MPI,	but	those	are	not	a	part	of	the	MPI	standard

Advanced	MPI,	SC15	(11/16/2015) 126

Current Model for MPI+Accelerator Applications

Advanced	MPI,	SC15	(11/16/2015) 127

GPU
P0

GPU

GPU

P2
GPU

P3

P1

Alternate MPI+Accelerator models being studied

§ Some	MPI	implementations	(MPICH,	Open	MPI,	MVAPICH)	
are	investigating	how	the	MPI	implementation	can	directly	
send/receive	data	from	accelerators
– Unified	virtual	address	(UVA)	space	techniques	where	all	memory	

(including	accelerator	memory)	is	represented	with	a	“void	*”

– Communicator	and	datatype attribute	models	where	users	can	inform	
the	MPI	implementation	of	where	the	data	resides

§ Clear	performance	advantages	demonstrated	in	research	
papers,	but	these	features	are	not	yet	a	part	of	the	MPI	
standard	(as	of	MPI-3)
– Could	be	incorporated	in	a	future	version	of	the	standard

Advanced	MPI,	SC15	(11/16/2015) 128

Advanced Topics: Nonblocking Collectives,
Topologies, and Neighborhood Collectives

Nonblocking Collective Communication

§ Nonblocking	(send/recv)	communication
– Deadlock	avoidance

– Overlapping	communication/computation

§ Collective	communication
– Collection	of	pre-defined	optimized	routines

§ à Nonblocking	collective	communication
– Combines	both	techniques	(more	than	the	sum	of	the	parts	J)

– System	noise/imbalance	resiliency

– Semantic	advantages

– Examples

130Advanced	MPI,	SC15	(11/16/2015)

Nonblocking Collective Communication

§ Nonblocking	variants	of	all	collectives
– MPI_Ibcast(<bcast args>,	MPI_Request *req);

§ Semantics
– Function	returns	no	matter	what
– No	guaranteed	progress	(quality	of	implementation)
– Usual	completion	calls	 (wait,	test)	+	mixing
– Out-of	order	completion

§ Restrictions
– No	tags,	in-order	matching
– Send	and	vector	buffers	may	not	be	touched	during	operation
– MPI_Cancel not	supported
– No	matching	with	blocking	collectives

Hoefler	et	al.:	Implementation	and	Performance	Analysis	 of	Non-Blocking	 Collective	Operations	for	MPI
131Advanced	MPI,	SC15	(11/16/2015)

Nonblocking Collective Communication

§ Semantic	advantages
– Enable	asynchronous	progression	(and	manual)

• Software	pipelinling

– Decouple	data	transfer	and	synchronization
• Noise	resiliency!

– Allow	overlapping	communicators
• See	also	neighborhood	 collectives

– Multiple	outstanding	operations	at	any	time
• Enables	pipelining	 window

Hoefler	et	al.:	Implementation	and	Performance	Analysis	 of	Non-Blocking	 Collective	Operations	for	MPI
132Advanced	MPI,	SC15	(11/16/2015)

Nonblocking Collectives Overlap

§ Software	pipelining
– More	complex	parameters	

– Progression	issues

– Not	scale-invariant

Hoefler:	Leveraging	Non-blocking	 Collective	Communication	 in	High-performance	Applications
133Advanced	MPI,	SC15	(11/16/2015)

A Non-Blocking Barrier?

§ What	can	that	be	good	for?	Well,	quite	a	bit!

§ Semantics:
– MPI_Ibarrier()	– calling	process	entered	the	barrier,	no

synchronization	happens

– Synchronization	may happen	asynchronously

– MPI_Test/Wait()	– synchronization	happens if	necessary

§ Uses:	
– Overlap	barrier	latency	(small	benefit)

– Use	the	split	semantics!	Processes	notify non-collectively	but	
synchronize collectively!

134Advanced	MPI,	SC15	(11/16/2015)

A Semantics Example: DSDE

§ Dynamic	Sparse	Data	Exchange
– Dynamic:	comm.	pattern	varies	across	iterations

– Sparse:	number	of	neighbors	is	limited	()

– Data	exchange:	only	senders	know	neighbors

Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
135Advanced	MPI,	SC15	(11/16/2015)

Dynamic Sparse Data Exchange (DSDE)

§ Main	Problem:	metadata
– Determine	who	wants	to	send	how	much	data	to	me	

(I	must	post	receive	and	reserve	memory)
OR:
– Use	MPI	semantics:

• Unknown	sender	
– MPI_ANY_SOURCE

• Unknown	message	size
– MPI_PROBE

• Reduces	problem	to	counting
the	number	of	neighbors	

• Allow	faster	implementation!

T.	Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
136Advanced	MPI,	SC15	(11/16/2015)

Using Alltoall (PEX)

§ Based	on	Personalized	Exchange	()
– Processes	exchange

metadata	(sizes)	
about	neighborhoods	
with	all-to-all

– Processes	post	
receives	afterwards

– Most	intuitive	but	
least	performance	
and	scalability!

T.	Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
137Advanced	MPI,	SC15	(11/16/2015)

Reduce_scatter (PCX)

§ Bases	on	Personalized	Census	()
– Processes	exchange

metadata	(counts)	about	
neighborhoods	with
reduce_scatter

– Receivers	checks	with
wildcard	MPI_IPROBE
and	receives	messages

– Better	than	PEX	but
non-deterministic!

T.	Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
138Advanced	MPI,	SC15	(11/16/2015)

MPI_Ibarrier (NBX)

§ Complexity	- census	(barrier):			()
– Combines	metadata	with	actual	transmission
– Point-to-point

synchronization
– Continue	receiving

until	barrier	completes
– Processes	start	coll.

synch.	(barrier)	when
p2p	phase	ended
• barrier	=	distributed	

marker!
– Better	than	PEX,

PCX,	RSX!

T.	Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
139Advanced	MPI,	SC15	(11/16/2015)

Parallel Breadth First Search

§ On	a	clustered	Erdős-Rényi graph,	weak	scaling
– 6.75	million	edges	per	node	(filled	1	GiB)

§ HW	barrier	support	is	significant	at	large	scale!

BlueGene/P	– with	HW	barrier! Myrinet 2000	with	LibNBC

T.	Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
140Advanced	MPI,	SC15	(11/16/2015)

Parallel Fast Fourier Transform

§ 1D	FFTs	in	all	three	dimensions
– Assume	1D	decomposition	(each	process	holds	a	set	of	planes)

– Best	way:	call	optimized	1D	FFTs	in	parallel	à alltoall

– Red/yellow/green	are	the	(three)	different	processes!

à Alltoall

141Advanced	MPI,	SC15	(11/16/2015)

A Complex Example: FFT

for(int x=0; x<n/p; ++x) 1d_fft(/* x-th stencil */);

// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

Hoefler:	Leveraging	Non-blocking	 Collective	Communication	 in	High-performance	Applications
142Advanced	MPI,	SC15	(11/16/2015)

Parallel Fast Fourier Transform

§ Data	already	transformed	in	y-direction	

143Advanced	MPI,	SC15	(11/16/2015)

Parallel Fast Fourier Transform

§ Transform	first	y plane	in	z

144Advanced	MPI,	SC15	(11/16/2015)

Parallel Fast Fourier Transform

§ Start	ialltoall and	transform	second	plane

145Advanced	MPI,	SC15	(11/16/2015)

Parallel Fast Fourier Transform

§ Start	ialltoall (second	plane)	and	transform	third

146Advanced	MPI,	SC15	(11/16/2015)

Parallel Fast Fourier Transform

§ Start	ialltoall of	third	plane	and	…

147Advanced	MPI,	SC15	(11/16/2015)

Parallel Fast Fourier Transform

§ Finish	ialltoall of	first	plane,	start	x transform

148Advanced	MPI,	SC15	(11/16/2015)

Parallel Fast Fourier Transform

§ Finish	second	ialltoall,	transform	second	plane

149Advanced	MPI,	SC15	(11/16/2015)

Parallel Fast Fourier Transform

§ Transform	last	plane	→	done

150Advanced	MPI,	SC15	(11/16/2015)

FFT Software Pipelining

MPI_Request req[nb];
for(int b=0; b<nb; ++b) { // loop over blocks
for(int x=b*n/p/nb; x<(b+1)n/p/nb; ++x) 1d_fft(/* x-th stencil*/);

// pack b-th block of data for alltoall
MPI_Ialltoall(&in, n/p*n/p/bs, cplx_t, &out, n/p*n/p, cplx_t, comm, &req[b]);

}
MPI_Waitall(nb, req, MPI_STATUSES_IGNORE);

// modified unpack data from alltoall and transpose
for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);
// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

Hoefler:	Leveraging	Non-blocking	 Collective	Communication	 in	High-performance	Applications
151Advanced	MPI,	SC15	(11/16/2015)

Nonblocking And Collective Summary

§ Nonblocking	comm does	two	things:
– Overlap	and	relax	synchronization

§ Collective	comm does	one	thing
– Specialized	pre-optimized	routines	

– Performance	portability

– Hopefully	transparent	performance

§ They	can	be	composed
– E.g.,	software	pipelining

152Advanced	MPI,	SC15	(11/16/2015)

Topologies and Topology Mapping

Advanced	MPI,	SC15	(11/16/2015) 153

Topology Mapping and Neighborhood Collectives

§ Topology	mapping	basics
– Allocation	mapping	vs.	rank	reordering

– Ad-hoc	solutions	vs.	portability

§ MPI	topologies
– Cartesian

– Distributed	graph

§ Collectives	on	topologies	– neighborhood	collectives
– Use-cases

154Advanced	MPI,	SC15	(11/16/2015)

Topology Mapping Basics

§ MPI	supports	rank	reordering	
– Change	numbering	in	a	given	allocation	to	reduce	congestion	or	

dilation

– Sometimes	automatic	(early	IBM	SP	machines)

§ Properties
– Always	possible,	but	effect	may	be	limited	(e.g.,	in	a	bad	allocation)

– Portable	way:	MPI	process	topologies
• Network	topology	 is	not	exposed

– Manual	data	shuffling	after	remapping	step

155Advanced	MPI,	SC15	(11/16/2015)

Example: On-Node Reordering

Naïve	Mapping Optimized	Mapping

Topomap

Gottschling et	al.:	Productive	Parallel	Linear	Algebra	Programming	with	Unstructured	Topology	Adaption
156Advanced	MPI,	SC15	(11/16/2015)

Off-Node (Network) Reordering

Application	Topology Network	Topology

Naïve	Mapping Optimal	Mapping

Topomap

157Advanced	MPI,	SC15	(11/16/2015)

MPI Topology Intro

§ Convenience	functions	(in	MPI-1)
– Create	a	graph	and	query	it,	nothing	else

– Useful	especially	for	Cartesian	topologies
• Query	neighbors	 in	n-dimensional	 space

– Graph	topology:	each	rank	specifies	full	graph	L

§ Scalable	Graph	topology	(MPI-2.2)
– Graph	topology:	each	rank	specifies	its	neighbors	or an	arbitrary	

subset	of	the	graph

§ Neighborhood	collectives	(MPI-3.0)
– Adding	communication	functions	defined	on	graph	topologies	

(neighborhood	of	distance	one)

158Advanced	MPI,	SC15	(11/16/2015)

MPI_Cart_create

§ Specify	ndims-dimensional	topology
– Optionally	periodic	in	each	dimension	(Torus)

§ Some	processes	may	return	MPI_COMM_NULL
– Product	sum	of	dims	must	be	<=	P

§ Reorder	argument	allows	for	topology	mapping
– Each	calling	process	may	have	a	new	rank	in	the	created	communicator

– Data	has	to	be	remapped	manually

MPI_Cart_create(MPI_Commcomm_old,	int	ndims,	const	int	*dims,
const int	*periods,	int	reorder,	MPI_Comm*comm_cart)

159Advanced	MPI,	SC15	(11/16/2015)

MPI_Cart_create Example

§ Creates	logical	3-d	Torus	of	size	5x5x5

§ But	we’re	starting	MPI	processes	with	a	one-dimensional	
argument	(-p	X)
– User	has	to	determine	size	of	each	dimension

– Often	as	“square”	as	possible,	MPI	can	help!

int	dims[3]	=	{5,5,5};
int	periods[3]	=	{1,1,1};
MPI_Commtopocomm;
MPI_Cart_create(comm,	3,	dims,	periods,	0,	&topocomm);

160Advanced	MPI,	SC15	(11/16/2015)

MPI_Dims_create

§ Create	dims	array	for	Cart_create with	nnodes and	ndims
– Dimensions	are	as	close	as	possible	(well,	in	theory)

§ Non-zero	entries	in	dims	will	not	be	changed
– nnodesmust	be	multiple	of	all	non-zeroes

MPI_Dims_create(int	nnodes,	int	ndims,	int	*dims)

161Advanced	MPI,	SC15	(11/16/2015)

MPI_Dims_create Example

§ Makes	life	a	little	bit	easier
– Some	problems	may	be	better	with	a	non-square	layout	though

int	p;
MPI_Comm_size(MPI_COMM_WORLD,	&p);
MPI_Dims_create(p,	3,	dims);

int	periods[3]	=	{1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm,	3,	dims,	periods,	0,	&topocomm);

162Advanced	MPI,	SC15	(11/16/2015)

Cartesian Query Functions

§ Library	support	and	convenience!

§ MPI_Cartdim_get()
– Gets	dimensions	of	a	Cartesian	communicator

§ MPI_Cart_get()
– Gets	size	of	dimensions

§ MPI_Cart_rank()
– Translate	coordinates	to	rank

§ MPI_Cart_coords()
– Translate	rank	to	coordinates

163Advanced	MPI,	SC15	(11/16/2015)

Cartesian Communication Helpers

§ Shift	in	one	dimension
– Dimensions	are	numbered	from	0	to	ndims-1

– Displacement	indicates	neighbor	distance	(-1,	1,	…)

– May	return	MPI_PROC_NULL

§ Very	convenient,	all	you	need	for	nearest	neighbor	
communication
– No	“over	the	edge”	though

MPI_Cart_shift(MPI_Comm comm,	int	direction,	int	disp,
int *rank_source,	int	*rank_dest)

164Advanced	MPI,	SC15	(11/16/2015)

Code Example

§ stencil-mpi-carttopo.c

§ Adds	calculation	of	neighbors	with	topology

Advanced	MPI,	SC15	(11/16/2015) 165

bx

by

MPI_Graph_create

§ Don’t	use!!!!!

§ nnodes is	the	total	number	of	nodes

§ index	i stores	the	total	number	of	neighbors	for	the	first	i
nodes	(sum)
– Acts	as	offset	into	edges	array

§ edges	stores	the	edge	list	for	all	processes
– Edge	list	for	process	j	starts	at	index[j]	in	edges

– Process	j	has	index[j+1]-index[j]	edges

MPI_Graph_create(MPI_Comm comm_old,	int	nnodes,
const int	*index,	const	int	*edges,	int	reorder,
MPI_Comm *comm_graph)

166Advanced	MPI,	SC15	(11/16/2015)

Distributed graph constructor

§ MPI_Graph_create is	discouraged
– Not	scalable

– Not	deprecated	yet	but	hopefully	soon

§ New	distributed	interface:
– Scalable,	allows	distributed	graph	specification

• Either	local	neighbors	 or any	edge	 in	the	graph

– Specify	edge	weights
• Meaning	undefined	 but	optimization	 opportunity	 for	vendors!

– Info	arguments
• Communicate	assertions	of	semantics	to	the	MPI	library

• E.g.,	semantics	of	edge	weights

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
167Advanced	MPI,	SC15	(11/16/2015)

MPI_Dist_graph_create_adjacent

§ indegree,	sources,	~weights	– source	proc.	Spec.
§ outdegree,	destinations,	~weights	– dest.	proc.	spec.
§ info,	reorder,	comm_dist_graph – as	usual
§ directed	graph
§ Each	edge	is	specified	twice,	once	as	out-edge	(at	the	source)	

and	once	as	in-edge	(at	the	dest)

MPI_Dist_graph_create_adjacent(MPI_Commcomm_old,
int indegree,	const	int	sources[],	const	int	sourceweights[],
int outdegree,	const	int	destinations[],
const int	destweights[],	MPI_Info info,	int reorder,
MPI_Comm *comm_dist_graph)

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
168Advanced	MPI,	SC15	(11/16/2015)

MPI_Dist_graph_create_adjacent

§ Process	0:
– Indegree:	0

– Outdegree:	2

– Dests:	{3,1}

§ Process	1:
– Indegree:	3

– Outdegree:	2

– Sources:	{4,0,2}

– Dests:	{3,4}

§ …

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
169Advanced	MPI,	SC15	(11/16/2015)

MPI_Dist_graph_create

§ n	– number	of	source	nodes
§ sources	– n	source	nodes	
§ degrees	– number	of	edges	for	each	source
§ destinations,	weights	– dest.	processor	specification
§ info,	reorder	– as	usual
§ More	flexible	and	convenient	

– Requires	global	communication
– Slightly	more	expensive	than	adjacent	specification

MPI_Dist_graph_create(MPI_Commcomm_old,	int	n,
const int	sources[],	const	int	degrees[],
const int	destinations[],	const int weights[],	MPI_Info info,
int reorder,	MPI_Comm *comm_dist_graph)

170Advanced	MPI,	SC15	(11/16/2015)

MPI_Dist_graph_create

§ Process	0:
– N:	2

– Sources:	{0,1}

– Degrees:	{2,1} *

– Dests:		{3,1,4}

§ Process	1:
– N:	2

– Sources:	{2,3}

– Degrees:	{1,1}

– Dests:	{1,2}

§ …

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
171

*	Note	that	in	this	example,	process	 0	specifies	 only	 one	of	the	two	outgoing	edges
of	process	 1;	the	second	outgoing	edge	needs	to	be	specified	 by	another	process

Advanced	MPI,	SC15	(11/16/2015)

Distributed Graph Neighbor Queries

§ Query	the	number	of	neighbors	of	calling	process
§ Returns	indegree and	outdegree!
§ Also	info	if	weighted

MPI_Dist_graph_neighbors_count(MPI_Commcomm,
int *indegree,int *outdegree,	int	*weighted)

MPI_Dist_graph_neighbors(MPI_Commcomm,	int	maxindegree,
int sources[],	int	sourceweights[],	int	maxoutdegree,
int destinations[],int	destweights[])

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
172Advanced	MPI,	SC15	(11/16/2015)

§ Query	the	neighbor	list	of	calling	process

§ Optionally	return	weights

Further Graph Queries

§ Status	is	either:
– MPI_GRAPH	(ugs)

– MPI_CART

– MPI_DIST_GRAPH

– MPI_UNDEFINED	(no	topology)

§ Enables	to	write	libraries	on	top	of	MPI	topologies!

MPI_Topo_test(MPI_Commcomm,	int	*status)

173Advanced	MPI,	SC15	(11/16/2015)

Neighborhood Collectives

Advanced	MPI,	SC15	(11/16/2015) 174

Neighborhood Collectives

§ Topologies	implement	no	communication!
– Just	helper	functions

§ Collective	communications	only	cover	some	patterns
– E.g.,	no	stencil	pattern

§ Several	requests	for	“build	your	own	collective”	functionality	in	
MPI
– Neighborhood	collectives	are	a	simplified	version

– Cf.	Datatypes	for	communication	patterns!

175Advanced	MPI,	SC15	(11/16/2015)

Cartesian Neighborhood Collectives

§ Communicate	with	direct	neighbors	in	Cartesian	topology
– Corresponds	to	cart_shift with	disp=1

– Collective	(all	processes	in	commmust	call	it,	including	processes	
without	neighbors)

– Buffers	are	laid	out	as	neighbor	sequence:
• Defined	by	order	of	dimensions,	 first	negative,	then	positive

• 2*ndims sources	and	destinations

• Processes	at	borders	 	(MPI_PROC_NULL)	leave	holes	in	buffers	 (will	not	
be	updated	or	communicated)!

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
176Advanced	MPI,	SC15	(11/16/2015)

Cartesian Neighborhood Collectives

§ Buffer	ordering	example:

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
177Advanced	MPI,	SC15	(11/16/2015)

Graph Neighborhood Collectives

§ Collective	Communication	along	arbitrary	neighborhoods
– Order	is	determined	by	order	of	neighbors	as	returned	by	

(dist_)graph_neighbors.

– Distributed	graph	is	directed,	may	have	different	numbers	of	
send/recv neighbors

– Can	express	dense	collective	operations	J

– Any	persistent	communication	pattern!

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
178Advanced	MPI,	SC15	(11/16/2015)

MPI_Neighbor_allgather

§ Sends	the	same	message	to	all	neighbors

§ Receives	indegree distinct	messages

§ Similar	to	MPI_Gather
– The	all	prefix	expresses	that	each	process	is	a	“root”	of	his	

neighborhood

§ Vector	version	for	full	flexibility

MPI_Neighbor_allgather(const	void*	sendbuf,	int	sendcount,
MPI_Datatype sendtype,	void*	recvbuf,	int	recvcount,
MPI_Datatype recvtype,	MPI_Comm comm)

179Advanced	MPI,	SC15	(11/16/2015)

MPI_Neighbor_alltoall

§ Sends	outdegree distinct	messages

§ Received	indegree distinct	messages

§ Similar	to	MPI_Alltoall
– Neighborhood	specifies	full	communication	relationship

§ Vector	and	w	versions	for	full	flexibility

MPI_Neighbor_alltoall(const	void*	sendbuf,	int	sendcount,
MPI_Datatype sendtype,	void*	recvbuf,	int	recvcount,
MPI_Datatype recvtype,	MPI_Comm comm)

180Advanced	MPI,	SC15	(11/16/2015)

Nonblocking Neighborhood Collectives

§ Very	similar	to	nonblocking	collectives

§ Collective	invocation

§ Matching	in-order	(no	tags)
– No	wild	tricks	with	neighborhoods!	In	order	matching	per	

communicator!

MPI_Ineighbor_allgather(…,	MPI_Request *req);	
MPI_Ineighbor_alltoall(…,	MPI_Request*req);

181Advanced	MPI,	SC15	(11/16/2015)

Walkthrough of 2D Stencil Code with Neighborhood
Collectives
§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc15-mpi-tutorial

Advanced	MPI,	SC15	(11/16/2015) 182

Why is Neighborhood Reduce Missing?

§ Was	originally	proposed	(see	original	paper)

§ High	optimization	opportunities
– Interesting	tradeoffs!

– Research	topic

§ Not	standardized	due	to	missing	use-cases
– My	team	is	working	on	an	implementation

– Offering	the	obvious	interface

MPI_Ineighbor_allreducev(…);

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
183Advanced	MPI,	SC15	(11/16/2015)

Topology Summary

§ Topology	functions	allow	to	specify	application	
communication	patterns/topology
– Convenience	functions	(e.g.,	Cartesian)

– Storing	neighborhood	relations	(Graph)

§ Enables	topology	mapping	(reorder=1)
– Not	widely	implemented	yet

– May	requires	manual	data	re-distribution	(according	to	new	rank	
order)

§ MPI	does	not	expose	information	about	the	network	topology	
(would	be	very	complex)

184Advanced	MPI,	SC15	(11/16/2015)

Neighborhood Collectives Summary

§ Neighborhood	collectives	add	communication	functions	to	
process	topologies
– Collective	optimization	potential!

§ Allgather
– One	item	to	all	neighbors

§ Alltoall
– Personalized	item	to	each	neighbor

§ High	optimization	potential	(similar	to	collective	operations)
– Interface	encourages	use	of	topology	mapping!

185Advanced	MPI,	SC15	(11/16/2015)

Section Summary

§ Process	topologies	enable:
– High-abstraction	to	specify	communication	pattern

– Has	to	be	relatively	static	(temporal	locality)
• Creation	is	expensive	(collective)

– Offers	basic	communication	functions

§ Library	can	optimize:
– Communication	schedule	for	neighborhood	colls

– Topology	mapping

186Advanced	MPI,	SC15	(11/16/2015)

Recent Efforts of the MPI Forum for MPI-4
and Future MPI Standards

Introduction

§ The	MPI	Forum	continues	to	meet	once	every	3	months	to	
define	future	versions	of	the	MPI	Standard
– The	next	Forum	meeting	is	December	7-10,	2014,	in	San	Jose

§ We	describe	some	of	the	proposals	the	Forum	is	currently	
considering

Advanced	MPI,	SC15	(11/16/2015) 188

189

Improved Support for Fault Tolerance

§ MPI	always	had	support	for	error	handlers	and	allows	implementations	
to	return	an	error	code	and	remain	alive

§ MPI	Forum	working	on	additional	support	for	MPI-4

§ Current	proposal	handles	fail-stop	process	failures	(not	silent	data	
corruption	or	Byzantine	failures)
§ If	a	communication	operation	fails	because	the	other	process	has	failed,	the	function	

returns	error	code	MPI_ERR_PROC_FAILED

§ User	can	call	MPI_Comm_shrink to	create	a	new	communicator	that	excludes	failed	
processes

§ Collective	communication	can	be	performed	on	the	new	communicator

§ Lots	of	other	details	in	the	proposal…

Advanced	MPI,	SC15	(11/16/2015)

190

Better Hybrid Programming: Extending MPI to Support
Multiple Endpoints Per Process

§ In	MPI	today,	each	process	has	a	single	communication	endpoint	
(rank	in	MPI_COMM_WORLD)

§ Multiple	threads	of	a	process	communicate	through	that	single	
endpoint,	requiring	the	implementation	to	use	locks	etc.,	which	are	
expensive

§ MPI	Forum	is	discussing	a	proposal	(for	MPI-4)	that	allows	a	process	
to	have	multiple	endpoints

§ Threads	within	a	process	can	attach	to	different	endpoints	and	
communicate	through	those	endpoints	as	if	they	are	separate	ranks

§ The	MPI	implementation	can	avoid	using	locks	if	each	thread	
communicates	on	a	separate	endpoint

§ This	allows	the	MPI standard	to	support	“MPI	+	X”	more	efficiently	
without	specifying	what	X	is

Advanced	MPI,	SC15	
(11/16/2015)

Other concepts being considered

§ MPI	Streams	interface
– Streaming	data	between	sender	and	receiver

§ NonblockingFile	Manipulation	routines
– Nonblockingversions	of	file	open,	close,	set_view,	etc.

§ Active	Messages
– Initiate	operations	on	remote	processes
– Possibly	as	an	addition	to	MPI	RMA

§ Tools	Interface
– Scalable	process	acquisition	interface
– Introspection	of	MPI	handles

Advanced	MPI,	SC15	(11/16/2015) 191

Concluding Remarks

Conclusions

§ Parallelism	is	critical	today,	given	that	it	is	the	only	way	to	
achieve	performance	improvement	with	modern	hardware

§ MPI	is	an	industry	standard	model	for	parallel	programming
– A	large	number	of	implementations	of	MPI	exist	(both	commercial	and	

public	domain)

– Virtually	every	system	in	the	world	supports	MPI

§ Gives	user	explicit	control	on	data	management

§ Widely	used	by	many	scientific	applications	with	great	success

§ Your	application	can	be	next!

Advanced	MPI,	SC15	(11/16/2015) 193

Web Pointers

§ MPI	standard	:	http://www.mpi-forum.org/docs/docs.html

§ MPI	Forum	:	http://www.mpi-forum.org/

§ MPI	implementations:	
– MPICH	:	http://www.mpich.org

– MVAPICH	:	http://mvapich.cse.ohio-state.edu/

– Intel	MPI:	http://software.intel.com/en-us/intel-mpi-library/

– Microsoft	MPI:	https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

– Open	MPI	:	http://www.open-mpi.org/

– IBM	MPI,	Cray	MPI,	HP	MPI,	TH	MPI,	…

§ Several	MPI	tutorials	can	be	found	on	the	web

Advanced	MPI,	SC15	(11/16/2015) 194

New Tutorial Books on MPI

Advanced	MPI,	SC15	(11/16/2015) 195

Basic MPI AdvancedMPI,	includingMPI-3

New Book on Parallel Programming Models
Edited	by	Pavan Balaji
• MPI: W.	Gropp and	R.	Thakur
• GASNet: P.	Hargrove
• OpenSHMEM: J.	Kuehn	and	S.	Poole
• UPC: K.	Yelick and	Y.	Zheng
• Global	Arrays: S.	Krishnamoorthy,	 J.	Daily,	A.	Vishnu,	

and	B.	Palmer
• Chapel: B.	Chamberlain
• Charm++: L.	Kale,	N.	Jain,	 and	J.	Lifflander
• ADLB: E.	Lusk,	R.	Butler,	and	S.	Pieper
• Scioto: J.	Dinan
• SWIFT: T.	Armstrong,	J.	M.	Wozniak,	M.	Wilde,	 and	I.	

Foster
• CnC: K.	Knobe,	M.	Burke,	and	F.	Schlimbach
• OpenMP: B.	Chapman,	D.	Eachempati,	and	S.	

Chandrasekaran
• Cilk Plus: A.	Robison	 and	C.	Leiserson
• Intel	TBB:A.	Kukanov
• CUDA: W.	Hwu and	D.	Kirk
• OpenCL: T.	Mattson

Pre-order	at	https://mitpress.mit.edu/models
Discount	code:	MBALAJI30	(valid	till	 12/31/2015)

196Advanced	MPI,	SC15	(11/16/2015)

Released	at	SC15

