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About the Speakers

§ Pavan Balaji:	Computer	Scientist,	Mathematics	and	Computer	
Science	Division,	Argonne	National	Laboratory

§ William	Gropp:	Professor,	University	of	Illinois,	Urbana-
Champaign

§ Torsten Hoefler:	Assistant	Professor,	ETH	Zurich	

§ Rajeev	Thakur:	Deputy	Director,	Mathematics	and	Computer	
Science	Division,	Argonne	National	Laboratory

§ All	four	of	us	are	deeply	involved	in	MPI	standardization	(in	
the	MPI	Forum)	and	in	MPI	implementation
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Outline

Morning

§ Introduction
– MPI-1,	MPI-2,	MPI-3

§ Running	example:	2D	stencil	code	
– Simple	point-to-point	 version

§ Derived datatypes
– Use	in	2D	stencil	code

§ One-sided	communication
– Basics	and	new	features	in	MPI-3

– Use	in	2D	stencil	code

– Advanced	topics

• Global	address	space	
communication

Afternoon
§ MPI	and	Threads

– Thread	safety	specification	in	MPI
– How	it	enables	hybrid	programming
– Hybrid	(MPI	+	shared	memory)	version	

of	2D	stencil	code

§ Nonblockingcollectives
– Parallel	FFT	example

§ Process	topologies
– 2D	stencil	example

§ Neighborhood	collectives
– 2D	stencil	example

§ Recent	efforts	of	the	MPI	Forum
§ Conclusions
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MPI-1

§ MPI	is	a	message-passing	 library	interface	standard.
– Specification,	not	implementation
– Library,	not	a	language

§ MPI-1	supports	the	classical	message-passing	programming	
model:	basic	point-to-point	communication,	collectives,	
datatypes,	etc

§ MPI-1	was	defined	(1994)	by	a	broadly	based	group	of	
parallel	computer	vendors,	computer	scientists,	and	
applications	developers.
– 2-year	intensive	process

§ Implementations	appeared	quickly	and	now	MPI	is	taken	
for	granted	as	vendor-supported	software	on	any	parallel	
machine.

§ Free,	portable	implementations	exist	for	clusters	and	other	
environments	(MPICH,	Open	MPI)
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MPI-2

§ Same	process	of	definition	by	MPI	Forum

§ MPI-2	is	an	extension	of	MPI
– Extends	the	message-passing	model

• Parallel	I/O

• Remote	memory	operations	 (one-sided)

• Dynamic	process	management

– Adds	other	functionality
• C++	and	Fortran	90	bindings

– similar	to	original	C	and	Fortran-77	bindings

• External	interfaces

• Language	interoperability

• MPI	interaction	with	threads
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Timeline of the MPI Standard
§ MPI-1	(1994),	presented	at	SC’93

– Basic	point-to-point	 communication,	collectives,	datatypes,	etc

§ MPI-2	(1997)
– Added	parallel	I/O, Remote	Memory	Access	(one-sided	operations),	dynamic	processes,

thread	support,	 C++	bindings,	…

§ ---- Stable	for	10	years	----

§ MPI-2.1	(2008)
– Minor	clarifications	and	bug	fixes	to	MPI-2

§ MPI-2.2	(2009)
– Small	updates	and	additions	to	MPI	2.1

§ MPI-3.0	(2012)
– Major	new	features	and	additions	to MPI

§ MPI-3.1	(2015)
– Minor	updates	and	fixes	to	MPI	3.0
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Overview of New Features in MPI-3
§ Major	new	features

– Nonblocking collectives
– Neighborhood	 collectives
– Improved	one-sided	communication	interface
– Tools	interface
– Fortran	2008	bindings

§ Other	new	features
– Matching	Probe	and	Recv for	thread-safe	probe	and	receive	
– Noncollective communicator	creation	function
– “const”	correct	C	bindings
– Comm_split_type function
– Nonblocking Comm_dup
– Type_create_hindexed_block function

§ C++	bindings	 removed
§ Previously	deprecated	functions	 removed
§ MPI	3.1	added	nonblocking collective	I/O	functions
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Status of MPI-3.1 Implementations

MPICH MVAPICH Open
MPI

Cray	
MPI

Tianhe
MPI

Intel	
MPI

IBM	BG/Q	
MPI1

IBM	PE	
MPICH2

IBM	
Platform

SGI	
MPI

Fujitsu	
MPI

MS	
MPI MPC

NBC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ (*) Q4’15

Nbrhood
collectives ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q4’15

RMA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ *

Shared	
memory ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ *

Tools	
Interface ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ * Q4’16

Comm-creat
group ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ *

F08	Bindings ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q2’16

New	
Datatypes ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q4’15

Large	Counts ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q2’16

Matched	
Probe ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q2’16

NBC	I/O ✔ Q1‘16 Q4‘15 Q2‘16

1 Open	Source	but	unsupported 2 No	MPI_T	variables	exposed *	Under	development (*)	Partly	done

Release	dates	are	estimates	and	are	subject	to	change	at	any	time.
Empty	cells	indicate	no	publicly	 announced plan	to	implement/support	that	feature.

Platform-specific	restrictions	might	apply	for	all	supported	features
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Important considerations while using MPI

§ All	parallelism	is	explicit:	the	programmer	is	responsible	for	
correctly	identifying	parallelism	and	implementing	parallel	
algorithms	using	MPI	constructs
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Web Pointers

§ MPI	standard	:	http://www.mpi-forum.org/docs/docs.html

§ MPI	Forum	:	http://www.mpi-forum.org/

§ MPI	implementations:	
– MPICH	:	http://www.mpich.org

– MVAPICH	:	http://mvapich.cse.ohio-state.edu/

– Intel	MPI:	http://software.intel.com/en-us/intel-mpi-library/

– Microsoft	MPI:	https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

– Open	MPI	:	http://www.open-mpi.org/

– IBM	MPI,	Cray	MPI,	HP	MPI,	TH	MPI,	…

§ Several	MPI	tutorials	can	be	found	on	the	web
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New Tutorial Books on MPI
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New Book on Parallel Programming Models
Edited	by	Pavan Balaji
• MPI: W.	Gropp and	R.	Thakur
• GASNet: P.	Hargrove
• OpenSHMEM: J.	Kuehn	and	S.	Poole
• UPC: K.	Yelick and	Y.	Zheng
• Global	Arrays: S.	Krishnamoorthy,	 J.	Daily,	A.	Vishnu,	

and	B.	Palmer
• Chapel: B.	Chamberlain
• Charm++: L.	Kale,	N.	Jain,	 and	J.	Lifflander
• ADLB: E.	Lusk,	R.	Butler,	and	S.	Pieper
• Scioto: J.	Dinan
• SWIFT: T.	Armstrong,	J.	M.	Wozniak,	M.	Wilde,	 and	I.	

Foster
• CnC: K.	Knobe,	M.	Burke,	and	F.	Schlimbach
• OpenMP: B.	Chapman,	D.	Eachempati,	and	S.	

Chandrasekaran
• Cilk Plus: A.	Robison	 and	C.	Leiserson
• Intel	TBB:A.	Kukanov
• CUDA: W.	Hwu and	D.	Kirk
• OpenCL: T.	Mattson

Pre-order	at	https://mitpress.mit.edu/models
Discount	code:	MBALAJI30	(valid	till	 12/31/2015)
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Our Approach in this Tutorial

§ Example	driven
– 2D	stencil	code	used	as	a	running	example	throughout	the	tutorial

– Other	examples	used	to	illustrate	specific	features

§ We	will	walk	through	actual	code

§ We	assume	familiarity	with basic	concepts	of	MPI-1
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Regular Mesh Algorithms

§ Many	scientific	applications	involve	the	solution	of	partial	
differential	equations	(PDEs)

§ Many	algorithms	for	approximating	the	solution	of	PDEs
rely	on	forming	a	set	of	difference	equations
– Finite	difference,	finite	elements,	finite	volume

§ The	exact	form	of	the	difference	equations	depends	on	the	
particular	method
– From	the	point	of	view	of	parallel	programming	for	these	

algorithms,	the	operations	are	the	same
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Poisson Problem

§ To	approximate	the	solution	of	the	Poisson	Problem	∇2u	=	f
on	the	unit	square,	with	u defined	on	the	boundaries	of	the	
domain	(Dirichlet boundary	conditions),	this	simple	2nd	
order	difference	scheme	is	often	used:
– (U(x+h,y)	- 2U(x,y)	+	U(x-h,y))	/	h2 +	

(U(x,y+h)	- 2U(x,y)	+	U(x,y-h))	/	h2 =	f(x,y)
• Where	the	solution	U	is	approximated	on	a	discrete	grid	of	points	 x=0,	
h,	2h,	3h,	…	,	(1/h)h=1,	 y=0,	h,	2h,	3h,	…	1.

• To	simplify	 the	notation,	U(ih,jh)	 is	denoted	Uij

§ This	is	defined	on	a	discrete	mesh	of	points	(x,y)	=	(ih,jh),	
for	a	mesh	spacing	“h”
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The Global Data Structure

§ Each	circle	is	a	mesh	point

§ Difference	equation	evaluated	at	
each	point	involves	the	four	
neighbors

§ The	red	“plus”	is	called	the	
method’s	stencil

§ Good	numerical	algorithms	form	a	
matrix	equation	Au=f;	solving	this	
requires	computing	Bv,	where	B	is	
a	matrix	derived	from	A.	These	
evaluations	involve	computations	
with	the	neighbors	on	the	mesh.
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The Global Data Structure

§ Each	circle	is	a	mesh	point

§ Difference	equation	evaluated	at	
each	point	involves	the	four	
neighbors

§ The	red	“plus”	is	called	the	
method’s	stencil

§ Good	numerical	algorithms	form	a	
matrix	equation	Au=f;	solving	this	
requires	computing	Bv,	where	B	is	
a	matrix	derived	from	A.	These	
evaluations	involve	computations	
with	the	neighbors	on	the	mesh.

§ Decompose	mesh	into	equal	sized	
(work)	pieces
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Necessary Data Transfers
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Necessary Data Transfers
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Necessary Data Transfers

§ Provide	access	to	remote	data	through	a	halo exchange	(5	point	stencil)

20Advanced	MPI,	SC15	(11/16/2015)



Necessary Data Transfers

§ Provide	access	to	remote	data	through	a	halo exchange	(9	point	with	
trick)
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The Local Data Structure

§ Each	process	has	its	local	“patch”	of	the	global	array
– “bx”	and	“by”	are	the	sizes	of	the	local	array
– Always	allocate	a	halo	around	the	patch
– Array	allocated	of	size	(bx+2)x(by+2)

bx

by
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2D Stencil Code Walkthrough

§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc15-mpi-tutorial
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Datatypes
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Introduction to Datatypes in MPI

§ Datatypes allow	users	to	serialize	arbitrary data	layouts	into	a	
message	stream
– Networks	provide	serial	channels

– Same	for	block	devices	and	I/O

§ Several	constructors	allow	arbitrary	layouts
– Recursive	specification	possible

– Declarative specification	of	data-layout
• “what”	and	not	“how”,	leaves	optimization	 to	implementation	 (many
unexplored possibilities!)

– Choosing	the	right	constructors	is	not	always	simple
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Derived Datatype Example

26Advanced	MPI,	SC15	(11/16/2015)



MPI’s Intrinsic Datatypes

§ Why	intrinsic	types?
– Heterogeneity,	nice	to	send	a	Boolean	from	C	to	Fortran

– Conversion	rules	are	complex,	not	discussed	here	

– Length	matches	to	language	types	
• No	sizeof(int)	 mess

§ Users	should	generally	use	intrinsic	types	as	basic	types	for	
communication	and	type	construction

§ MPI-2.2	added	some	missing	C	types
– E.g.,	unsigned	long	long	
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MPI_Type_contiguous

§ Contiguous	array	of	oldtype

§ Should	not	be	used	as	last	type	(can	be	replaced	by	count)

MPI_Type_contiguous(int count, MPI_Datatype
oldtype, MPI_Datatype *newtype)
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MPI_Type_vector

§ Specify	strided blocks	of	data	of	oldtype

§ Very	useful	for	Cartesian	arrays

MPI_Type_vector(int count, int blocklength, int stride, 
MPI_Datatype oldtype, MPI_Datatype *newtype)
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2D Stencil Code with Datatypes Walkthrough

§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc15-mpi-tutorial
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MPI_Type_create_hvector

§ Stride	is	specified	in	bytes,	not	in	units	of	size	of	oldtype

§ Useful	for	composition,	e.g.,	vector	of	structs

MPI_Type_create_hvector(int count, int blocklength, MPI_Aint
stride, MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_Type_indexed

§ Pulling	irregular	subsets	of	data	from	a	single	array	(cf.	vector	
collectives)
– dynamic	codes	with	index	lists,	expensive	though!

– blen={1,1,2,1,2,1}

– displs={0,3,5,9,13,17}

MPI_Type_indexed(int count, int *array_of_blocklengths,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)
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MPI_Type_create_indexed_block

§ Like	Create_indexed but	blocklength is	the	same

– blen=2

– displs={0,5,9,13,18}

MPI_Type_create_indexed_block(int count, int blocklength,
int *array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype)
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MPI_Type_create_hindexed

§ Indexed	with	non-unit-sized	displacements,	e.g.,	pulling	types	
out	of	different	arrays

MPI_Type_create_hindexed(int count, int *arr_of_blocklengths, 
MPI_Aint *arr_of_displacements, MPI_Datatype oldtype, 
MPI_Datatype *newtype)
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MPI_Type_create_struct

§ Most	general	constructor,	allows	different	types	and	arbitrary	
arrays	(also	most	costly)

MPI_Type_create_struct(int count, int array_of_blocklengths[],
MPI_Aint array_of_displacements[], MPI_Datatype
array_of_types[], MPI_Datatype *newtype)
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MPI_Type_create_subarray

§ Specify	subarray of	n-dimensional	array	(sizes)	by	start	(starts)	
and	size	(subsize)

MPI_Type_create_subarray(int ndims, int array_of_sizes[],
int array_of_subsizes[], int array_of_starts[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_Type_create_darray

§ Create	distributed	array,	supports	block,	cyclic	and	no	
distribution	for	each	dimension
– Very	useful	for	I/O

MPI_Type_create_darray(int size, int rank, int ndims,
int array_of_gsizes[], int array_of_distribs[], int
array_of_dargs[], int array_of_psizes[], int order,
MPI_Datatype oldtype, MPI_Datatype *newtype)
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MPI_BOTTOM and MPI_Get_address

§ MPI_BOTTOM	is	the	absolute	zero	address
– Portability	(e.g.,	may	be	non-zero	in	globally	shared	memory)

§ MPI_Get_address
– Returns		address	relative	to	MPI_BOTTOM

– Portability	(do	not	use	“&”	operator	in	C!)

§ Very	important	to	
– build	struct datatypes

– If	data	spans	multiple	arrays
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Commit, Free, and Dup

§ Types	must	be	committed	before	use
– Only	the	ones	that	are	used!

– MPI_Type_commit may	perform	heavy	optimizations	(and	will	
hopefully)

§ MPI_Type_free
– Free	MPI	resources	of	datatypes

– Does	not	affect	types	built	from	it

§ MPI_Type_dup
– Duplicates	a	type

– Library	abstraction	(composability)
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Other Datatype Functions

§ Pack/Unpack
– Mainly	for	compatibility	to	legacy	libraries

– Avoid	using	it	yourself

§ Get_envelope/contents
– Only	for	expert	library	developers

– Libraries	like	MPITypes1 make	this	easier

§ MPI_Type_create_resized
– Change	extent	and	size	(dangerous	but	useful)

1http://www.mcs.anl.gov/mpitypes/
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Datatype Selection Order

§ Simple	and	effective	performance	model:
– More	parameters	==	slower

§ predefined	<	contig <	vector	<	index_block <	index	<	struct

§ Some	(most)	MPIs	are	inconsistent	
– But	this	rule	is	portable

W.	Gropp et	al.:	Performance	Expectations	and	Guidelines	for	MPI	Derived	Datatypes
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One-sided Communication

§ The	basic	idea	of	one-sided	communication	models	is	to	
decouple	data	movement	with	process	synchronization
– Should	be	able	to	move	data	without	requiring	that	the	remote	

process	synchronize

– Each	process	exposes	a	part	of	its	memory	to	other	processes

– Other	processes	can	directly	read	from	or	write	to	this	memory

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Remotely
Accessible 

Memory

Remotely
Accessible 

Memory

Global	
Address	
Space

Private
Memory

Private
Memory

Private
Memory

Private
Memory
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Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment
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One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment
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Comparing One-sided and Two-sided Programming

Process	0 Process	1

SEND(data)

RECV(data)

D
E
L
A
Y

Even	the	
sending	
process	is	
delayed

Process	0 Process	1

PUT(data) D
E
L
A
Y

Delay	in	
process	1	
does	not	
affect	

process	0

GET(data)
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Why use RMA? It can provide higher performance if  
implemented efficiently
§ “Enabling	Highly-Scalable	Remote	Memory	Access	Programming	with	MPI-3	One	Sided”	by	

Robert	Gerstenberger,	Maciej Besta,	Torsten Hoefler (SC13	Best	Paper	Award)

§ They	implemented	complete	MPI-3	RMA	for	Cray	Gemini	(XK5,	XE6)	and	Aries	(XC30)	
systems	on	top	of	lowest-level	Cray	APIs

§ Achieved	better	 latency,	bandwidth,	message	rate,	and	application	performance	than	Cray’s	
MPI	RMA,	UPC,	and	Coarray Fortran
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	b
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Application Performance with Tuned MPI-3 RMA

3D	FFT MILC

Distributed	Hash	Table Dynamic	Sparse	Data	Exchange
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Gerstenberger,	Besta,	Hoefler (SC13)
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MPI RMA is Carefully and Precisely Specified

§ To	work	on	both	cache-coherent	and	non-cache-coherent	systems
– Even	though	 there	aren’t	many	non-cache-coherent	systems,	it	is	designed	

with	the	future	 in	mind

§ There	even	exists	a	formal	model	for	MPI-3	RMA	that	can	be	used	by	tools	
and	compilers	for	optimization,	verification,	etc.
– See	“Remote	Memory	Access	Programming	 in	MPI-3”	by	Hoefler,	 Dinan,	

Thakur,	Barrett,	Balaji,	Gropp,	 Underwood.	ACM	TOPC,	July	2015.

– http://htor.inf.ethz.ch/publications/index.php?pub=201
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What we need to know in MPI RMA

§ How	to	create	remote	accessible	memory?

§ Reading,	Writing	and	Updating	remote	memory

§ Data	Synchronization

§ Memory	Model
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Creating Public Memory

§ Any	memory	used	by	a	process	is,	by	default,	only	locally	
accessible
– X	=	malloc(100);

§ Once	the	memory	is	allocated,	the	user	has	to	make	an	
explicit	MPI	call	to	declare	a	memory	region	as	remotely	
accessible
– MPI	terminology	for	remotely	accessible	memory	is	a	“window”

– A	group	of	processes	collectively	create	a	“window”

§ Once	a	memory	region	is	declared	as	remotely	accessible,	all	
processes	in	the	window	can	read/write	data	to	this	memory	
without	explicitly	synchronizing	with	the	target	process
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Window creation models

§ Four	models	exist
– MPI_WIN_ALLOCATE

• You	want	to	create	a	buffer	and	directly	make	it	remotely	accessible

– MPI_WIN_CREATE
• You	already	have	an	allocated	buffer	 that	you	would	 like	to	make	
remotely	accessible

– MPI_WIN_CREATE_DYNAMIC
• You	don’t	have	a	buffer	 yet,	but	will	have	one	in	the	future

• You	may	want	to	dynamically	add/remove	buffers	 to/from	 the	window

– MPI_WIN_ALLOCATE_SHARED
• You	want	multiple	processes	on	the	same	node	share	a	buffer
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MPI_WIN_ALLOCATE

§ Create	a	remotely	accessible	memory	region	in	an	RMA	window
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– size - size	of	local	data	in	bytes	(nonnegative	integer)

– disp_unit - local	unit	size	for	displacements,	in	bytes	(positive	integer)

– info - info	argument	(handle)

– comm - communicator	(handle)

– baseptr - pointer	to	exposed	local	data

– win												- window	(handle)
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MPI_Win_allocate(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr,
MPI_Win *win)



Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */
MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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MPI_WIN_CREATE

§ Expose	a	region	of	memory	in	an	RMA	window
– Only	data	exposed	 in	a	window	can	be	accessed	with	RMA	ops.

§ Arguments:
– base - pointer	to	local	data	to	expose
– size - size	of	local	data	in	bytes	(nonnegative	integer)
– disp_unit - local	unit	size	for	displacements,	 in	bytes	(positive	integer)
– info - info	argument	(handle)
– comm - communicator	(handle)
– win													- window	(handle)
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MPI_Win_create(void *base, MPI_Aint size, 
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)



Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */
MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);
/* use private memory like you normally would */
a[0] = 1;  a[1] = 2;

/* collectively declare memory as remotely accessible */
MPI_Win_create(a, 1000*sizeof(int), sizeof(int), 

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM_WORLD */

MPI_Win_free(&win);
MPI_Free_mem(a);
MPI_Finalize(); return 0;

}
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MPI_WIN_CREATE_DYNAMIC

§ Create	an	RMA	window,	to	which	data	can	later	be	attached
– Only	data	exposed	in	a	window	can	be	accessed	with	RMA	ops

§ Initially	“empty”
– Application	can	dynamically	attach/detach	memory	to	this	window	by	

calling	MPI_Win_attach/detach
– Application	can	access	data	on	this	window	only	after	a	memory	

region	has	been	attached

§ Window	origin	is	MPI_BOTTOM
– Displacements	are	segment	addresses	relative	to	MPI_BOTTOM
– Must	tell	others	the	displacement	after	calling	attach
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MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,
MPI_Win *win)



Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */
a = (int *) malloc(1000 * sizeof(int));
/* use private memory like you normally would */
a[0] = 1;  a[1] = 2;

/* locally declare memory as remotely accessible */
MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */
MPI_Win_detach(win, a);  free(a);
MPI_Win_free(&win);

MPI_Finalize(); return 0;
}
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Data movement

§ MPI	provides	ability	to	read,	write	and	atomically	modify	data	
in	remotely	accessible	memory	regions
– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE	(atomic)

– MPI_GET_ACCUMULATE	(atomic)

– MPI_COMPARE_AND_SWAP	(atomic)

– MPI_FETCH_AND_OP (atomic)
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Data movement: Put

§ Move	data	from origin,	to target

§ Separate	data	description	triples	for	origin and	target
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Origin

MPI_Put(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)
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Data movement: Get

§ Move	data	to origin,	from target

§ Separate	data	description	triples	for	origin and	target
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Origin

MPI_Get(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Win win)
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Atomic Data Aggregation: Accumulate

§ Atomic	update	operation,	similar	to	a	put
– Reduces	origin	and	target	data	into	target	buffer	using	op	argument	as	combiner

– Op	=	MPI_SUM,	MPI_PROD,	MPI_OR,	MPI_REPLACE,	MPI_NO_OP,	…

– Predefined	ops	only,	no	user-defined	operations

§ Different	data	layouts	between
target/origin	OK
– Basic	type	elements	must	match

§ Op	=	MPI_REPLACE
– Implements	f(a,b)=b

– Atomic	PUT
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MPI_Accumulate(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)
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Atomic Data Aggregation: Get Accumulate

§ Atomic	read-modify-write
– Op	=	MPI_SUM,	MPI_PROD,	MPI_OR,	MPI_REPLACE,	MPI_NO_OP,	…
– Predefined	ops	only

§ Result	stored	in	target	buffer
§ Original	data	stored	in	result	buf
§ Different	data	layouts	between

target/origin	OK
– Basic	type	elements	must	match

§ Atomic	get	with	MPI_NO_OP
§ Atomic	swap	with	MPI_REPLACE
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MPI_Get_accumulate(void *origin_addr, int origin_count,
MPI_Datatype origin_dtype, void *result_addr,
int result_count, MPI_Datatype result_dtype,
int target_rank, MPI_Aint target_disp,
int target_count, MPI_Datatype target_dype,
MPI_Op op, MPI_Win win)
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Atomic Data Aggregation: CAS and FOP

§ FOP:	Simpler	version	of	MPI_Get_accumulate
– All	buffers	share	a	single	predefined	datatype

– No	count	argument	(it’s	always	1)

– Simpler	interface	allows	hardware	optimization

§ CAS:	Atomic	swap	if	target	value	is	equal	to	compare	value
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MPI_Compare_and_swap(void *origin_addr, void *compare_addr,
void *result_addr, MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,
MPI_Datatype dtype, int target_rank,
MPI_Aint target_disp, MPI_Op op, MPI_Win win)
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Ordering of Operations in MPI RMA

§ No	guaranteed	ordering	for	Put/Get	operations
§ Result	of	concurrent	Puts	to	the	same	location undefined
§ Result	of	Get	concurrent	Put/Accumulate	undefined

– Can	be	garbage	in	both	cases

§ Result	of	concurrent	accumulate	operations	to	the	same	location	
are	defined	according	to	the	order	in	which	the	occurred
– Atomic	put:	Accumulate	with	op	=	MPI_REPLACE
– Atomic	get:	Get_accumulate with	op	=	MPI_NO_OP

§ Accumulate	operations	from	a	given	process	are	ordered	by	default
– User	can	tell	 the	MPI	implementation	 that	(s)he	does	not	require	ordering	

as	optimization	hint
– You	can	ask	for	only	the	needed	orderings:	RAW	(read-after-write),	WAR,	

RAR,	or	WAW
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Examples with operation ordering

66

Process	0 Process	1

GET_ACC	(y,	x+=2,	P1)

ACC	(x+=1,	P1) x +=	2

x	+=	1y=2	

x	=	2

PUT(x=2,	P1)

GET(y,	x,	P1)

x	=	2y=1

x	=	1

PUT(x=1,	P1)

PUT(x=2,	P1)

x	=	1

x	=	0

x	=	2
1.	Concurrent	Puts:	undefined

2.	Concurrent	Get	and	
Put/Accumulates:	undefined

3.	Concurrent	Accumulate	operations	
to	the	same	location	:	 ordering	is	
guaranteed
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RMA Synchronization Models

§ RMA	data	access	model
– When	is	a	process	allowed	to	read/write	remotely	accessible	memory?
– When	is	data	written	by	process	X	is	available	for	process	Y	to	read?
– RMA	synchronization	models	define	these semantics

§ Three	synchronization	models	provided	by	MPI:
– Fence	(active	target)
– Post-start-complete-wait	 (generalized	active	target)
– Lock/Unlock	(passive	target)

§ Data	accesses	occur	within	“epochs”
– Access	epochs:	contain	a	set	of	operations	 issued	by	an	origin	process
– Exposure	epochs:	enable	remote	processes	to	update	a	target’s	window
– Epochs	define	ordering	and	completion	semantics
– Synchronization	models	provide	mechanisms	for	establishing	 epochs

• E.g.,	starting,	ending,	and	synchronizing	epochs
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Fence: Active Target Synchronization

§ Collective	synchronization	model

§ Starts	and ends	access	and	exposure	
epochs	on	all	processes	in	the	window

§ All	processes	in	group	of	“win”	do	an	
MPI_WIN_FENCE	to	open	an	epoch

§ Everyone	can	issue	PUT/GET	operations	
to	read/write	data

§ Everyone	does	an	MPI_WIN_FENCE	to	
close	the	epoch

§ All	operations	complete	at	the	second	
fence	synchronization
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Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)
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Implementing Stencil Computation with RMA Fence
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Origin	buffers

Target	buffers

RMA	window

PUT

PUT

PUT

PU
T
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70

Code Example

§ stencil_mpi_ddt_rma.c

§ Use	MPI_PUTs	to	move	data,	explicit	receives	are	not	needed

§ Data	location	specified	by	MPI	datatypes

§ Manual	packing	of	data	no	longer	required
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PSCW: Generalized Active Target Synchronization

§ Like	FENCE,	but	origin	and	target	specify	
who	they	communicate	with

§ Target:	Exposure	epoch
– Opened	with	MPI_Win_post

– Closed	by	MPI_Win_wait

§ Origin:	Access	epoch
– Opened	by	MPI_Win_start

– Closed	by	MPI_Win_complete

§ All	synchronization	operations	may	block,	
to	enforce	P-S/C-W	ordering
– Processes	can	be	both	origins	and	targets
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Start

Complete

Post

Wait

Target Origin

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)
MPI_Win_complete/wait(MPI_Win win)
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Lock/Unlock: Passive Target Synchronization

§ Passive	mode:	One-sided,	asynchronous communication

– Target	does	not	participate	in	communication	operation

§ Shared	memory-like	model
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Active	Target	Mode Passive	Target	Mode

Lock

Unlock

Start

Complete

Post

Wait
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Passive Target Synchronization

§ Lock/Unlock:	Begin/end	passive	mode	epoch
– Target	process	does	not	make	a	corresponding	MPI	call
– Can	initiate	multiple	passive	target	epochs	 to	different	 processes
– Concurrent	epochs	to	same	process	not	allowed	(affects	threads)

§ Lock	type
– SHARED:	Other	processes	using	shared	can	access	concurrently
– EXCLUSIVE:	No	other	processes	can	access	concurrently

§ Flush:	Remotely	complete	RMA	operations	to	the	target	process
– After	completion,	 data	can	be	read	by	target	process	or	a	different	process

§ Flush_local:	Locally	complete	RMA	operations	to	the	target	process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)
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MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)



Advanced Passive Target Synchronization

§ Lock_all:	Shared	lock,	passive	target	epoch	to	all	other	
processes
– Expected	usage	is	long-lived:	lock_all,	put/get,	flush,	…,	unlock_all

§ Flush_all – remotely	complete	RMA	operations	to	all	
processes

§ Flush_local_all – locally	complete	RMA	operations	to	all	
processes
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MPI_Win_lock_all(int assert, MPI_Win win)

Advanced	MPI,	SC15	(11/16/2015)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)



Implementing PGAS-like Computation by RMA Lock/Unlock
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GET GET atomic	ACC atomic	ACCGETGET

local	buffer	on	P0 local	buffer	on	P1
DGEMM DGEMM
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Code Example

§ ga_mpi_ddt_rma.c

§ Only	synchronization	from	origin	processes,	no	
synchronization	from	target	processes
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Which synchronization mode should I use, when?

§ RMA	communication	has	low	overheads	versus	send/recv
– Two-sided:	Matching,	queuing,	buffering,	unexpected	 receives,	etc…
– One-sided:	No	matching,	no	buffering,	always	ready	to	receive
– Utilize	RDMA	provided	by	high-speed	 interconnects	(e.g.	InfiniBand)

§ Active	mode:	bulk	synchronization
– E.g.	ghost	cell	exchange

§ Passive	mode:	asynchronous	data	movement
– Useful	when	dataset	 is	large,	requiring	memory	of	multiple	nodes
– Also,	when	data	access	and	synchronization	pattern	is	dynamic
– Common	use	case:	distributed,	shared	arrays

§ Passive	target	locking	mode
– Lock/unlock	– Useful	when	exclusive	epochs	are	needed
– Lock_all/unlock_all – Useful	when	only	shared	epochs	are	needed
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MPI RMA Memory Model

§ MPI-3	provides	two	memory	models:	
separate	and	unified

§ MPI-2:	Separate	Model
– Logical	public	and	private	copies
– MPI	provides	software	coherence	between	

window	copies
– Extremely	portable,	to	systems	that	don’t	

provide	hardware	coherence

§ MPI-3:	New	Unified	Model
– Single	copy	of	the	window
– System	must	provide	coherence
– Superset	of	separate	semantics

• E.g.	allows	concurrent	local/remote	access
– Provides	access	to	full	performance	

potential	of	hardware
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MPI RMA Memory Model (separate windows)

§ Very	portable,	compatible	with	non-coherent	memory	systems
§ Limits	concurrent	accesses	to	enable	software	coherence

Public
Copy

Private
Copy

Same	source
Same	epoch Diff.	Sources

load store store

X
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X
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MPI RMA Memory Model (unified windows)

§ Allows	concurrent	local/remote	accesses
§ Concurrent,	conflicting	operations	are	allowed	(not	invalid)

– Outcome	is	not	defined	by	MPI	(defined	by	the	hardware)

§ Can	enable	better	performance	by	reducing	synchronization
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Unified
Copy

Same	source
Same	epoch Diff.	Sources

load store store

X
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MPI RMA Operation Compatibility (Separate)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

This	matrix	shows	the	compatibility	of	MPI-RMA	operations	when	two	or	more	
processes	access	a	window	at	the	same	target	concurrently.

OVL	 – Overlapping	operations	permitted
NOVL	 – Nonoverlapping operations	permitted
X	 – Combining	 these	operations	is	OK,	but	data	might	be	garbage
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MPI RMA Operation Compatibility (Unified)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL OVL+NOVL

This	matrix	shows	the	compatibility	of	MPI-RMA	operations	when	two	or	more	
processes	access	a	window	at	the	same	target	concurrently.

OVL	 – Overlapping	operations	permitted
NOVL	 – Nonoverlapping operations	permitted
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MPI and Threads

§ MPI	describes	parallelism	between	processes	 (with	separate	
address	spaces)

§ Thread parallelism	provides	a	shared-memory	model	within	a	
process

§ OpenMPand	Pthreads are	common	models
– OpenMP provides	convenient	features	for	loop-level	parallelism.	

Threads	are	created	and	managed	by	the	compiler,	based	on	user	
directives.

– Pthreads provide	more	complex	and	dynamic	approaches.	Threads	are	
created	and	managed	explicitly	by	the	user.
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Programming for Multicore

§ Common	options	for	programming	multicore	clusters
– All	MPI

• MPI	between	processes	both	within	a	node	and	across	nodes
• MPI	internally	uses	shared	memory	 to	communicate	within	a	node

– MPI	+	OpenMP
• Use	OpenMP within	a	node	and	MPI	across	nodes

– MPI	+	Pthreads
• Use	Pthreads within	a	node	and	MPI	across	nodes	

§ The	latter	two	approaches	are	known	as	“hybrid	programming”

85Advanced	MPI,	SC15	(11/16/2015)



Hybrid Programming with MPI+Threads

§ In	MPI-only	programming,	
each	MPI	process	has	a	single	
program	counter

§ In	MPI+threads hybrid	
programming,	there	can	be	
multiple	threads	executing	
simultaneously
– All	threads	share	all	MPI	

objects	(communicators,	
requests)

– The	MPI	implementation	might	
need	to	take	precautions	to	
make	sure	the	state	of	the	MPI	
stack	is	consistent
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Rank	0 Rank	1

MPI-only	Programming

Rank	0 Rank	1

MPI+Threads Hybrid	Programming
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MPI’s Four Levels of Thread Safety

§ MPI	defines	four	levels	of	thread	safety	-- these	are	
commitments	the	application	makes	to	the	MPI
– MPI_THREAD_SINGLE:	only	one	thread	exists	in	the	application
– MPI_THREAD_FUNNELED:	multithreaded,	but	only	the	main	thread	

makes	MPI	calls	(the	one	that	called	MPI_Init_thread)
– MPI_THREAD_SERIALIZED:	multithreaded,	but	only	one	thread	at	a	time

makes	MPI	calls
– MPI_THREAD_MULTIPLE:	multithreaded	and	any	thread	can	make	MPI	

calls	at	any	time	(with	some	restrictions	to	avoid	races	– see	next	slide)

§ Thread	levels	are	in	increasing	order
– If	an	application	works	in	FUNNELED	mode,	it	can	work	in	SERIALIZED

§ MPI	defines	an	alternative	to	MPI_Init
– MPI_Init_thread(requested,	provided)

• Application	specifies	level	it	needs;	MPI	implementation	returns	level	it	supports
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MPI_THREAD_SINGLE

§ There	are	no	additional	user	threads	in	the	system
– E.g.,	there	are	no	OpenMP parallel	regions
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int main(int argc, char ** argv)
{

int buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (i = 0; i < 100; i++)
compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();

return 0;
}
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MPI_THREAD_FUNNELED

§ All	MPI	calls	are	made	by	the	master thread
– Outside	the	OpenMP parallel	regions
– In	OpenMPmaster	regions
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int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);
if (provided < MPI_THREAD_FUNNELED) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++)

compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();
return 0;

}
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MPI_THREAD_SERIALIZED

§ Only	one thread	can	make	MPI	calls	at	a	time
– Protected	by	OpenMP critical	regions
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int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);
if (provided < MPI_THREAD_SERIALIZED) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

compute(buf[i]);
#pragma omp critical

/* Do MPI stuff */
}

MPI_Finalize();
return 0;

}
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MPI_THREAD_MULTIPLE

§ Any thread	can	make	MPI	calls	any	time	(restrictions	apply)

Advanced	MPI,	SC15	(11/16/2015)

int main(int argc, char ** argv)
{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
if (provided < MPI_THREAD_MULTIPLE) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for
for (i = 0; i < 100; i++) {

compute(buf[i]);
/* Do MPI stuff */

}

MPI_Finalize();
return 0;

}
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Threads and MPI

§ An	implementation	is	not	required	to	support	levels	higher	
than	MPI_THREAD_SINGLE;	that	is,	an	implementation	is	not	
required	to	be	thread	safe

§ A	fully	thread-safe	implementation	will	support	
MPI_THREAD_MULTIPLE

§ A	program	that	calls	MPI_Init (instead	of	MPI_Init_thread)	
should	assume	that	only	MPI_THREAD_SINGLE	is	supported
– MPI	Standard	mandatesMPI_THREAD_SINGLE	for	MPI_Init

§ A	threaded	MPI	program	that	does	not	call	MPI_Init_thread is	
an	incorrect	program	(common	user	error	we	see)
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Implementing Stencil Computation using 
MPI_THREAD_FUNNELED
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Code Examples

§ stencil_mpi_ddt_funneled.c

§ Parallelize	computation	(OpenMP parallel	for)

§ Main	thread	does	all	communication
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Specification of MPI_THREAD_MULTIPLE

§ Ordering:When	multiple	threads	make	MPI	calls	concurrently,	
the	outcome	will	be	as	if	the	calls	executed	sequentially	in	some	
(any)	order
– Ordering	is	maintained	within	each	thread
– User	must	ensure	that	collective	operations	on	the	same	communicator,	

window,	or	file	handle	are	correctly	ordered	among	threads
• E.g.,	cannot	call	a	broadcast	on	one	thread	and	a	reduce	on	another	thread	on	
the	same	communicator

– It	is	the	user's	responsibility	to	prevent	races	when	threads	in	the	same	
application	post	conflicting	MPI	calls	
• E.g.,	accessing	an	info	object	from	one	thread	and	freeing	 it	from	another	
thread

§ Blocking: Blocking	MPI	calls	will	block	only	the	calling	thread	and	
will	not	prevent	other	threads	from	running	or	executing	MPI	
functions
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with Collectives

§ P0	and	P1	can	have	different	orderings	of	Bcast and	Barrier
§ Here	the	user	must	use	some	kind	of	synchronization	to	

ensure	that	either	thread	1	or	thread	2	gets	scheduled	first	on	
both	processes	

§ Otherwise	a	broadcast	may	get	matched	with	a	barrier	on	the	
same	communicator,	which	is	not	allowed	in	MPI

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)

Thread 1

Thread 2
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with RMA
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int main(int argc, char ** argv)
{

/* Initialize MPI and RMA window */

#pragma omp parallel for
for (i = 0; i < 100; i++) {

target = rand();
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target, 0, win);
MPI_Put(..., win);
MPI_Win_unlock(target, win);

}

/* Free MPI and RMA window */

return 0;
}

Different	threads	can	lock	the	same	process	causing	multiple	locks	to	the	same	target	before	
the	first	lock	is	unlocked



Ordering in MPI_THREAD_MULTIPLE: Incorrect 
Example with Object Management

§ The	user	has	to	make	sure	that	one	thread	is	not	using	an	
object	while	another	thread	is	freeing	it
– This	is	essentially	an	ordering	issue;	the	object	might	get	freed	before	

it	is	used

Advanced	MPI,	SC15	(11/16/2015)

Process 0

MPI_Bcast(comm)

MPI_Comm_free(comm)

Process 1

MPI_Bcast(comm)

MPI_Comm_free(comm)

Thread 1

Thread 2
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Blocking Calls in MPI_THREAD_MULTIPLE: Correct 
Example

§ An	implementation	must	ensure	that	the	above	example	
never	deadlocks	for	any	ordering	of	thread	execution

§ That	means	the	implementation	cannot	simply	acquire	a	
thread	lock	and	block	within	an	MPI	function.	It	must	
release	the	lock	to	allow	other	threads	to	make	progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2
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Implementing Stencil Computation using 
MPI_THREAD_MULTIPLE
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Code Examples

§ stencil_mpi_ddt_multiple.c

§ Divide	the	process	memory	among	OpenMP threads

§ Each	thread	responsible	for	communication	and	computation
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The Current Situation

§ All	MPI	implementations	support	MPI_THREAD_SINGLE	(duh).

§ They	probably	support	MPI_THREAD_FUNNELED	even	if	they	
don’t	admit	it.
– Does	require	thread-safe	malloc

– Probably	OK	in	OpenMP programs

§ Many	(but	not	all)	implementations	support	
THREAD_MULTIPLE
– Hard	to	implement	efficiently	though	(lock	granularity	issue)

§ “Easy”	OpenMPprograms	(loops	parallelized	with	OpenMP,	
communication	in	between	loops)	only	need	FUNNELED
– So	don’t	need	“thread-safe”	MPI	for	many	hybrid	programs

– But	watch	out	for	Amdahl’s	Law!
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Performance with MPI_THREAD_MULTIPLE

§ Thread	safety	does	not	come	for	free

§ The	implementation	must	protect	certain	data	structures	or	
parts	of	code	with	mutexes or	critical	sections

§ To	measure	the	performance	impact,	we	ran	tests	to	measure	
communication	performance	when	using	multiple	threads	
versus	multiple	processes
– For	results,	see	Thakur/Gropppaper:	“Test	Suite	for	Evaluating	

Performance	of	Multithreaded	MPI	Communication,”	Parallel	
Computing,	2009
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Message Rate Results on BG/P 

Message	Rate	Benchmark
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“Enabling	Concurrent	Multithreaded	MPI	
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Systems”	EuroMPI 2010



Why is it hard to optimize MPI_THREAD_MULTIPLE

§ MPI	internally	maintains	several	resources

§ Because	of	MPI	semantics,	it	is	required	that	all	threads	have	
access	to	some	of	the	data	structures
– E.g.,	thread	1	can	post	an	Irecv,	and	thread	2	can	wait	for	its	

completion	– thus	the	request	queue	has	to	be	shared	between	both	
threads

– Since	multiple	threads	are	accessing	this	shared	queue,	it	needs	to	be	
locked	– adds	a	lot	of	overhead

Advanced	MPI,	SC15	(11/16/2015) 105



Hybrid Programming: Correctness Requirements

§ Hybrid	programming	with	MPI+threads does	not	do	much	to	
reduce	the	complexity	of	thread	programming
– Your	application	still	has	to	be	a	correct	multi-threaded	application

– On	top	of	that,	you	also	need	to	make	sure	you	are	correctly	following	
MPI	semantics

§ Many	commercial	debuggers	offer	support	for	debugging	
hybrid	MPI+threads applications	(mostly	for	MPI+Pthreads
and	MPI+OpenMP)
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An Example we encountered

§ We	received	a	bug	report	about	a	very	simple	
multithreaded	MPI	program	that	hangs

§ Run	with	2	processes

§ Each	process	has	2	threads

§ Both	threads	communicate	with	threads	on	the	other	
process	as	shown	in	the	next	slide

§ We	spent	several	hours	trying	to	debug	MPICH	before	
discovering	that	the	bug	is	actually	in	the	user’s	program	L
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2 Proceses, 2 Threads, Each Thread Executes this 
Code

for	(j	=	0;	j	<	2;	j++)	{

if	(rank	==	1)	{

for	 (i	=	0;	i	<	2;	i++)

MPI_Send(NULL,	0,	MPI_CHAR,	0,	0,	MPI_COMM_WORLD);

for	 (i	=	0;	i	<	2;	i++)

MPI_Recv(NULL,	0,	MPI_CHAR,	0,	0,	MPI_COMM_WORLD,	&stat);

}

else	{		/*	rank	==	0	*/

for	 (i	=	0;	i	<	2;	i++)

MPI_Recv(NULL,	0,	MPI_CHAR,	1,	0,	MPI_COMM_WORLD,	&stat);

for	 (i	=	0;	i	<	2;	i++)

MPI_Send(NULL,	0,	MPI_CHAR,	1,	0,	MPI_COMM_WORLD);

}

}
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Intended Ordering of Operations

§ Every	send	matches	a	receive	on	the	other	rank

Advanced	MPI,	SC15	(11/16/2015)

2	recvs (T2)
2 sends	(T2)
2 recvs (T2)
2 sends	(T2)

2	recvs (T1)
2 sends	(T1)
2 recvs (T1)
2 sends	(T1)

Rank	0

2	sends	(T2)
2	recvs (T2)
2	sends	(T2)
2	recvs (T2)

2	sends	(T1)
2	recvs (T1)
2	sends	(T1)
2	recvs (T1)

Rank	1
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Possible Ordering of Operations in Practice

§ Because	the	MPI	operations	can	be	issued	in	an	arbitrary	
order	across	threads,	all	threads	could	block	in	a	RECV	call

1 recv (T2)

1	recv (T2)

2	sends	(T2)
2 recvs (T2)
2 sends	(T2)

2	recvs (T1)
2 sends	(T1)
1 recv (T1)

1	recv (T1)

2	sends	(T1)

Rank	0

2	sends	(T2)
1 recv (T2)

1	recv (T2)

2	sends	(T2)
2	recvs (T2)

2	sends	(T1)
1 recv (T1)

1	recv (T1)

2	sends	(T1)
2	recvs (T1)

Rank	1
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Some Things to Watch for in OpenMP

§ Limited	thread	and	no	explicit	memory	affinity	control	(but	
see	OpenMP	4.0	and	the	4.1	Draft)
– “First	touch”	(have	intended	“owning”	thread	perform	first	access)	

provides	initial	static	mapping	of	memory
• Next	touch	(move	ownership	 to	most	recent	thread)	could	help

– No	portable	way	to	reassign	memory	affinity	– reduces	the	
effectiveness	of	OpenMP	when	used	to	improve	load	balancing.

§ Memory	model	can	require	explicit	“memory	flush”	
operations
– Defaults	allow	race	conditions

– Humans	notoriously	poor	at	recognizing	all	races
• It	only	takes	one	mistake	to	create	a	hard-to-find	 bug
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Some Things to Watch for in 
MPI + OpenMP
§ No	interface	for	apportioning	resources	between	MPI	and	

OpenMP
– On	an	SMP	node,	how	many	MPI	processes	and	how	many	OpenMP	

Threads?
• Note	the	static	nature	assumed	by	this	question

– Note	that	having	more	threads	than	cores	can	be	important	for	hiding	
latency
• Requires	very	lightweight	 threads

§ Competition	for	resources
– Particularly	memory	bandwidth	and	network	access

– Apportionment	of	network	access	between	threads	and	processes	is	
also	a	problem,	as	we’ve	already	seen.
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Where Does the MPI + OpenMP Hybrid Model Work 
Well?
§ Compute-bound	loops

– Many	operations	per	memory	load

§ Fine-grain	parallelism
– Algorithms	that	are	latency-sensitive

§ Load	balancing
– Similar	to	fine-grain	parallelism;	ease	of	

§ Memory	bound	loops
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Compute-Bound Loops

§ Loops	that	involve	many	operations	per	load	from	memory	
– This	can	happen	in	some	kinds	of	matrix	assembly,	for	example.

– Jacobi	update	not	compute	bound
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Fine-Grain Parallelism

§ Algorithms	that	require	frequent	exchanges	of	small	amounts	
of	data

§ E.g.,	in	blocked	preconditioners,	where	fewer,	larger	blocks,	
each	managed	with	OpenMP,	as	opposed	to	more,	smaller,	
single-threaded	blocks	in	the	all-MPI	version,	gives	you	an	
algorithmic	advantage	(e.g.,	fewer	iterations	in	a	
preconditioned	linear	solution	algorithm).

§ Even	if	memory	bound
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Load Balancing

§ Where	the	computational	load	isn't	exactly	the	same	in	all	
threads/processes;	this	can	be	viewed	as	a	variation	on	fine-
grained	access.

§ OpenMP	schedules	can	handle	some	of	this
– For	very	fine	grain	cases,	a	mix	of	static	and	dynamic	scheduling	may	

be	more	efficient

– Current	research	looking	at	more	elaborate	and	efficient	schedules	for	
this	case
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Memory-Bound Loops

§ Where	read	data	is	shared,	so	that	cache	memory	can	be	
used	more	efficiently.

§ Example:	Table	lookup	for	evaluating	equations	of	state
– Table	can	be	shared

– If	table	evaluated	as	necessary,	evaluations	can	be	shared				
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Where is Pure MPI Better?

§ Trying	to	use	OpenMP	+	MPI	on	very	regular,	memory-
bandwidth-bound	computations	is	likely	to	lose	because	of	
the	better,	programmer-enforced	memory	locality	
management	in	the	pure	MPI	version.

§ Another	reason	to	use	more	than	one	MPI	process	- if	a	single	
process	(or	thread)	can't	saturate	the	interconnect	- then	use	
multiple	communicating	processes	or	threads.
– Note	that	threads	and	processes	are	not	equal
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Hybrid Programming with Shared Memory

§ MPI-3	allows	different	processes	to	allocate	shared	memory	
through	MPI
– MPI_Win_allocate_shared

§ Uses	many	of	the	concepts	of	one-sided	communication

§ Applications	can	do	hybrid	programming	using	MPI	or	
load/store	accesses	on	the	shared	memory	window

§ Other	MPI	functions	can	be	used	to	synchronize	access	to	
shared	memory	regions

§ Can	be	simpler	to	program	than	threads
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Creating Shared Memory Regions in MPI

Advanced	MPI,	SC15	(11/16/2015)

MPI_COMM_WORLD

MPI_Comm_split_type (COMM_TYPE_SHARED)

Shared	memory	
communicator

MPI_Win_allocate_shared

Shared	memory	
window

Shared	memory	
window

Shared	memory	
window

Shared	memory	
communicator

Shared	memory	
communicator
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Load/store

Regular RMA windows vs. Shared memory windows

§ Shared	memory	windows	allow	
application	processes	to	directly	
perform	load/store	accesses	on	
all	of	the	window	memory
– E.g.,	x[100]	=	10

§ All	of	the	existing	RMA	functions	
can	also	be	used	on	such	
memory	for	more	advanced	
semantics	such	as	atomic	
operations

§ Can	be	very	useful	when	
processes	want	to	use	threads	
only	to	get	access	to	all	of	the	
memory	on	the	node
– You	can	create	a	shared	memory	

window	 and	put	your	shared	data

Advanced	MPI,	SC15	(11/16/2015)

Local	
memory

P0

Local	
memory

P1

Load/store
PUT/GET

Traditional	RMA	windows

Load/store

Local	memory

P0 P1

Load/store

Shared	memory	windows

Load/store
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Memory allocation and placement

§ Shared	memory	allocation	does	not	need	to	be	uniform	
across	processes
– Processes	can	allocate	a	different	amount	of	memory	(even	zero)

§ The	MPI	standard	does	not	specify	where	the	memory	would	
be	placed	(e.g.,	which	physical	memory	it	will	be	pinned	to)
– Implementations	can	choose	their	own	strategies,	though	it	is	

expected	that	an	implementation	will	try	to	place	shared	memory	
allocated	by	a	process	“close	to	it”

§ The	total	allocated	shared	memory	on	a	communicator	is	
contiguous	by	default
– Users	can	pass	an	info	hint	called	“noncontig”	that	will	allow	the	MPI	

implementation	to	align	memory	allocations	from	each	process	to	
appropriate	boundaries	to	assist	with	placement
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Shared Arrays with Shared memory windows

Advanced	MPI,	SC15	(11/16/2015)

int main(int argc, char ** argv)
{

int buf[100];

MPI_Init(&argc, &argv);
MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);
MPI_Win_allocate_shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */
MPI_Win_sync(win);

/* use shared memory */

MPI_Win_unlock_all(win);

MPI_Win_free(&win);
MPI_Finalize();
return 0;

}
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Walkthrough of 2D Stencil Code with Shared 
Memory Windows
§ stencil_mpi_shmem.c

§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc15-mpi-tutorial
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Accelerators in Parallel Computing

§ General	purpose,	highly
parallel	processors
– High	FLOPs/Watt	and	FLOPs/$
– Unit	of	execution	Kernel
– Separate	memory	subsystem
– Prog.	Models:	CUDA,	OpenCL,	…

§ Clusters	with	accelerators	are	
becoming	common

§ New	programmability	and	
performance	challenges	for	
programming	models	and	runtime	
systems
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Hybrid Programming with Accelerators

§ Many	users	are	looking	to	use	accelerators	within	their	MPI	
applications

§ The	MPI	standard	does	not	provide	any	special	semantics	to	
interact	with	accelerators
– Current	MPI	threading	semantics	are	considered	sufficient	by	most	

users

– There	are	some	research	efforts	for	making	accelerator	memory	
directly	accessibly	by	MPI,	but	those	are	not	a	part	of	the	MPI	standard
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Current Model for MPI+Accelerator Applications
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Alternate MPI+Accelerator models being studied

§ Some	MPI	implementations	(MPICH,	Open	MPI,	MVAPICH)	
are	investigating	how	the	MPI	implementation	can	directly	
send/receive	data	from	accelerators
– Unified	virtual	address	(UVA)	space	techniques	where	all	memory	

(including	accelerator	memory)	is	represented	with	a	“void	*”

– Communicator	and	datatype attribute	models	where	users	can	inform	
the	MPI	implementation	of	where	the	data	resides

§ Clear	performance	advantages	demonstrated	in	research	
papers,	but	these	features	are	not	yet	a	part	of	the	MPI	
standard	(as	of	MPI-3)
– Could	be	incorporated	in	a	future	version	of	the	standard
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Advanced Topics: Nonblocking Collectives, 
Topologies, and Neighborhood Collectives



Nonblocking Collective Communication

§ Nonblocking	(send/recv)	communication
– Deadlock	avoidance

– Overlapping	communication/computation

§ Collective	communication
– Collection	of	pre-defined	optimized	routines

§ à Nonblocking	collective	communication
– Combines	both	techniques	(more	than	the	sum	of	the	parts	J)

– System	noise/imbalance	resiliency

– Semantic	advantages

– Examples
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Nonblocking Collective Communication

§ Nonblocking	variants	of	all	collectives
– MPI_Ibcast(<bcast args>,	MPI_Request *req);

§ Semantics
– Function	returns	no	matter	what
– No	guaranteed	progress	(quality	of	implementation)
– Usual	completion	calls	 (wait,	test)	+	mixing
– Out-of	order	completion

§ Restrictions
– No	tags,	in-order	matching
– Send	and	vector	buffers	may	not	be	touched	during	operation
– MPI_Cancel not	supported
– No	matching	with	blocking	collectives

Hoefler	et	al.:	Implementation	and	Performance	Analysis	 of	Non-Blocking	 Collective	Operations	for	MPI
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Nonblocking Collective Communication

§ Semantic	advantages
– Enable	asynchronous	progression	(and	manual)

• Software	pipelinling

– Decouple	data	transfer	and	synchronization
• Noise	resiliency!

– Allow	overlapping	communicators
• See	also	neighborhood	 collectives

– Multiple	outstanding	operations	at	any	time
• Enables	pipelining	 window

Hoefler	et	al.:	Implementation	and	Performance	Analysis	 of	Non-Blocking	 Collective	Operations	for	MPI
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Nonblocking Collectives Overlap

§ Software	pipelining
– More	complex	parameters	

– Progression	issues

– Not	scale-invariant

Hoefler:	Leveraging	Non-blocking	 Collective	Communication	 in	High-performance	Applications
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A Non-Blocking Barrier?

§ What	can	that	be	good	for?	Well,	quite	a	bit!

§ Semantics:
– MPI_Ibarrier()	– calling	process	entered	the	barrier,	no

synchronization	happens

– Synchronization	may happen	asynchronously

– MPI_Test/Wait()	– synchronization	happens if	necessary

§ Uses:	
– Overlap	barrier	latency	(small	benefit)

– Use	the	split	semantics!	Processes	notify non-collectively	but	
synchronize collectively!
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A Semantics Example: DSDE

§ Dynamic	Sparse	Data	Exchange
– Dynamic:	comm.	pattern	varies	across	iterations

– Sparse:	number	of	neighbors	is	limited	(																		)

– Data	exchange:	only	senders	know	neighbors

Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
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Dynamic Sparse Data Exchange (DSDE)

§ Main	Problem:	metadata
– Determine	who	wants	to	send	how	much	data	to	me	

(I	must	post	receive	and	reserve	memory)
OR:
– Use	MPI	semantics:

• Unknown	sender	
– MPI_ANY_SOURCE

• Unknown	message	size
– MPI_PROBE

• Reduces	problem	to	counting
the	number	of	neighbors	

• Allow	faster	implementation!

T.	Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
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Using Alltoall (PEX) 

§ Based	on	Personalized	Exchange	(											)
– Processes	exchange

metadata	(sizes)	
about	neighborhoods	
with	all-to-all

– Processes	post	
receives	afterwards

– Most	intuitive	but	
least	performance	
and	scalability!

T.	Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
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Reduce_scatter (PCX)

§ Bases	on	Personalized	Census	(													)
– Processes	exchange

metadata	(counts)	about	
neighborhoods	with
reduce_scatter

– Receivers	checks	with
wildcard	MPI_IPROBE
and	receives	messages

– Better	than	PEX	but
non-deterministic!

T.	Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
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MPI_Ibarrier (NBX)

§ Complexity	- census	(barrier):			(																					)
– Combines	metadata	with	actual	transmission
– Point-to-point

synchronization
– Continue	receiving

until	barrier	completes
– Processes	start	coll.

synch.	(barrier)	when
p2p	phase	ended
• barrier	=	distributed	

marker!
– Better	than	PEX,

PCX,	RSX!

T.	Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
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Parallel Breadth First Search

§ On	a	clustered	Erdős-Rényi graph,	weak	scaling
– 6.75	million	edges	per	node	(filled	1	GiB)

§ HW	barrier	support	is	significant	at	large	scale!

BlueGene/P	– with	HW	barrier! Myrinet 2000	with	LibNBC

T.	Hoefler	et	al.:	Scalable	Communication	 Protocols	for	Dynamic	Sparse	Data	Exchange
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Parallel Fast Fourier Transform

§ 1D	FFTs	in	all	three	dimensions
– Assume	1D	decomposition	(each	process	holds	a	set	of	planes)

– Best	way:	call	optimized	1D	FFTs	in	parallel	à alltoall

– Red/yellow/green	are	the	(three)	different	processes!

à Alltoall
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A Complex Example: FFT

for(int x=0; x<n/p; ++x) 1d_fft(/* x-th stencil */);

// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

Hoefler:	Leveraging	Non-blocking	 Collective	Communication	 in	High-performance	Applications
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Parallel Fast Fourier Transform

§ Data	already	transformed	in	y-direction	
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Parallel Fast Fourier Transform

§ Transform	first	y plane	in	z
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Parallel Fast Fourier Transform

§ Start	ialltoall and	transform	second	plane

145Advanced	MPI,	SC15	(11/16/2015)



Parallel Fast Fourier Transform

§ Start	ialltoall (second	plane)	and	transform	third
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Parallel Fast Fourier Transform

§ Start	ialltoall of	third	plane	and	…
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Parallel Fast Fourier Transform

§ Finish	ialltoall of	first	plane,	start	x transform
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Parallel Fast Fourier Transform

§ Finish	second	ialltoall,	transform	second	plane
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Parallel Fast Fourier Transform

§ Transform	last	plane	→	done
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FFT Software Pipelining

MPI_Request req[nb];
for(int b=0; b<nb; ++b) { // loop over blocks
for(int x=b*n/p/nb; x<(b+1)n/p/nb; ++x) 1d_fft(/* x-th stencil*/);

// pack b-th block of data for alltoall
MPI_Ialltoall(&in, n/p*n/p/bs, cplx_t, &out, n/p*n/p, cplx_t, comm, &req[b]);

}
MPI_Waitall(nb, req, MPI_STATUSES_IGNORE);

// modified unpack data from alltoall and transpose
for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);
// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

Hoefler:	Leveraging	Non-blocking	 Collective	Communication	 in	High-performance	Applications
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Nonblocking And Collective Summary

§ Nonblocking	comm does	two	things:
– Overlap	and	relax	synchronization

§ Collective	comm does	one	thing
– Specialized	pre-optimized	routines	

– Performance	portability

– Hopefully	transparent	performance

§ They	can	be	composed
– E.g.,	software	pipelining
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Topologies and Topology Mapping
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Topology Mapping and Neighborhood Collectives

§ Topology	mapping	basics
– Allocation	mapping	vs.	rank	reordering

– Ad-hoc	solutions	vs.	portability

§ MPI	topologies
– Cartesian

– Distributed	graph

§ Collectives	on	topologies	– neighborhood	collectives
– Use-cases
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Topology Mapping Basics

§ MPI	supports	rank	reordering	
– Change	numbering	in	a	given	allocation	to	reduce	congestion	or	

dilation

– Sometimes	automatic	(early	IBM	SP	machines)

§ Properties
– Always	possible,	but	effect	may	be	limited	(e.g.,	in	a	bad	allocation)

– Portable	way:	MPI	process	topologies
• Network	topology	 is	not	exposed

– Manual	data	shuffling	after	remapping	step
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Example: On-Node Reordering

Naïve	Mapping Optimized	Mapping

Topomap

Gottschling et	al.:	Productive	Parallel	Linear	Algebra	Programming	with	Unstructured	Topology	Adaption
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Off-Node (Network) Reordering

Application	Topology Network	Topology

Naïve	Mapping Optimal	Mapping

Topomap
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MPI Topology Intro

§ Convenience	functions	(in	MPI-1)
– Create	a	graph	and	query	it,	nothing	else

– Useful	especially	for	Cartesian	topologies
• Query	neighbors	 in	n-dimensional	 space

– Graph	topology:	each	rank	specifies	full	graph	L

§ Scalable	Graph	topology	(MPI-2.2)
– Graph	topology:	each	rank	specifies	its	neighbors	or an	arbitrary	

subset	of	the	graph

§ Neighborhood	collectives	(MPI-3.0)
– Adding	communication	functions	defined	on	graph	topologies	

(neighborhood	of	distance	one)
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MPI_Cart_create

§ Specify	ndims-dimensional	topology
– Optionally	periodic	in	each	dimension	(Torus)

§ Some	processes	may	return	MPI_COMM_NULL
– Product	sum	of	dims	must	be	<=	P

§ Reorder	argument	allows	for	topology	mapping
– Each	calling	process	may	have	a	new	rank	in	the	created	communicator

– Data	has	to	be	remapped	manually

MPI_Cart_create(MPI_Commcomm_old,	int	ndims,	const	int	*dims,
const int	*periods,	int	reorder,	MPI_Comm*comm_cart)
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MPI_Cart_create Example

§ Creates	logical	3-d	Torus	of	size	5x5x5

§ But	we’re	starting	MPI	processes	with	a	one-dimensional	
argument	(-p	X)
– User	has	to	determine	size	of	each	dimension

– Often	as	“square”	as	possible,	MPI	can	help!

int	dims[3]	=	{5,5,5};
int	periods[3]	=	{1,1,1};
MPI_Commtopocomm;
MPI_Cart_create(comm,	3,	dims,	periods,	0,	&topocomm);
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MPI_Dims_create

§ Create	dims	array	for	Cart_create with	nnodes and	ndims
– Dimensions	are	as	close	as	possible	(well,	in	theory)

§ Non-zero	entries	in	dims	will	not	be	changed
– nnodesmust	be	multiple	of	all	non-zeroes

MPI_Dims_create(int	nnodes,	int	ndims,	int	*dims)
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MPI_Dims_create Example

§ Makes	life	a	little	bit	easier
– Some	problems	may	be	better	with	a	non-square	layout	though

int	p;
MPI_Comm_size(MPI_COMM_WORLD,	&p);
MPI_Dims_create(p,	3,	dims);

int	periods[3]	=	{1,1,1};
MPI_Comm topocomm;
MPI_Cart_create(comm,	3,	dims,	periods,	0,	&topocomm);
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Cartesian Query Functions

§ Library	support	and	convenience!

§ MPI_Cartdim_get()
– Gets	dimensions	of	a	Cartesian	communicator

§ MPI_Cart_get()
– Gets	size	of	dimensions

§ MPI_Cart_rank()
– Translate	coordinates	to	rank

§ MPI_Cart_coords()
– Translate	rank	to	coordinates
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Cartesian Communication Helpers

§ Shift	in	one	dimension
– Dimensions	are	numbered	from	0	to	ndims-1

– Displacement	indicates	neighbor	distance	(-1,	1,	…)

– May	return	MPI_PROC_NULL

§ Very	convenient,	all	you	need	for	nearest	neighbor	
communication
– No	“over	the	edge”	though

MPI_Cart_shift(MPI_Comm comm,	int	direction,	int	disp,
int *rank_source,	int	*rank_dest)
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Code Example

§ stencil-mpi-carttopo.c

§ Adds	calculation	of	neighbors	with	topology
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MPI_Graph_create

§ Don’t	use!!!!!

§ nnodes is	the	total	number	of	nodes

§ index	i stores	the	total	number	of	neighbors	for	the	first	i
nodes	(sum)
– Acts	as	offset	into	edges	array

§ edges	stores	the	edge	list	for	all	processes
– Edge	list	for	process	j	starts	at	index[j]	in	edges

– Process	j	has	index[j+1]-index[j]	edges

MPI_Graph_create(MPI_Comm comm_old,	int	nnodes,
const int	*index,	const	int	*edges,	int	reorder,
MPI_Comm *comm_graph)
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Distributed graph constructor

§ MPI_Graph_create is	discouraged
– Not	scalable

– Not	deprecated	yet	but	hopefully	soon

§ New	distributed	interface:
– Scalable,	allows	distributed	graph	specification

• Either	local	neighbors	 or any	edge	 in	the	graph

– Specify	edge	weights
• Meaning	undefined	 but	optimization	 opportunity	 for	vendors!

– Info	arguments
• Communicate	assertions	of	semantics	to	the	MPI	library

• E.g.,	semantics	of	edge	weights

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
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MPI_Dist_graph_create_adjacent

§ indegree,	sources,	~weights	– source	proc.	Spec.
§ outdegree,	destinations,	~weights	– dest.	proc.	spec.
§ info,	reorder,	comm_dist_graph – as	usual
§ directed	graph
§ Each	edge	is	specified	twice,	once	as	out-edge	(at	the	source)	

and	once	as	in-edge	(at	the	dest)

MPI_Dist_graph_create_adjacent(MPI_Commcomm_old,
int indegree,	const	int	sources[],	const	int	sourceweights[],
int outdegree,	const	int	destinations[],
const int	destweights[],	MPI_Info info,	int reorder,
MPI_Comm *comm_dist_graph)

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
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MPI_Dist_graph_create_adjacent

§ Process	0:
– Indegree:	0

– Outdegree:	2

– Dests:	{3,1}

§ Process	1:
– Indegree:	3

– Outdegree:	2

– Sources:	{4,0,2}

– Dests:	{3,4}

§ …

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
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MPI_Dist_graph_create

§ n	– number	of	source	nodes
§ sources	– n	source	nodes	
§ degrees	– number	of	edges	for	each	source
§ destinations,	weights	– dest.	processor	specification
§ info,	reorder	– as	usual
§ More	flexible	and	convenient	

– Requires	global	communication
– Slightly	more	expensive	than	adjacent	specification

MPI_Dist_graph_create(MPI_Commcomm_old,	int	n,
const int	sources[],	const	int	degrees[],
const int	destinations[],	const int weights[],	MPI_Info info,
int reorder,	MPI_Comm *comm_dist_graph)

170Advanced	MPI,	SC15	(11/16/2015)



MPI_Dist_graph_create

§ Process	0:
– N:	2

– Sources:	{0,1}

– Degrees:	{2,1} *

– Dests:		{3,1,4}

§ Process	1:
– N:	2

– Sources:	{2,3}

– Degrees:	{1,1}

– Dests:	{1,2}

§ …

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
171

*	Note	that	in	this	example,	process	 0	specifies	 only	 one	of	the	two	outgoing	edges
of	process	 1;	the	second	outgoing	edge	needs	to	be	specified	 by	another	process
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Distributed Graph Neighbor Queries

§ Query	the	number	of	neighbors	of	calling	process
§ Returns	indegree and	outdegree!
§ Also	info	if	weighted

MPI_Dist_graph_neighbors_count(MPI_Commcomm,
int *indegree,int *outdegree,	int	*weighted)

MPI_Dist_graph_neighbors(MPI_Commcomm,	int	maxindegree,
int sources[],	int	sourceweights[],	int	maxoutdegree,
int destinations[],int	destweights[])

Hoefler	et	al.:	The	Scalable	Process	Topology	Interface	of	MPI	2.2
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§ Query	the	neighbor	list	of	calling	process

§ Optionally	return	weights



Further Graph Queries

§ Status	is	either:
– MPI_GRAPH	(ugs)

– MPI_CART

– MPI_DIST_GRAPH

– MPI_UNDEFINED	(no	topology)

§ Enables	to	write	libraries	on	top	of	MPI	topologies!

MPI_Topo_test(MPI_Commcomm,	int	*status)
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Neighborhood Collectives

Advanced	MPI,	SC15	(11/16/2015) 174



Neighborhood Collectives 

§ Topologies	implement	no	communication!
– Just	helper	functions

§ Collective	communications	only	cover	some	patterns
– E.g.,	no	stencil	pattern

§ Several	requests	for	“build	your	own	collective”	functionality	in	
MPI
– Neighborhood	collectives	are	a	simplified	version

– Cf.	Datatypes	for	communication	patterns!
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Cartesian Neighborhood Collectives

§ Communicate	with	direct	neighbors	in	Cartesian	topology
– Corresponds	to	cart_shift with	disp=1

– Collective	(all	processes	in	commmust	call	it,	including	processes	
without	neighbors)

– Buffers	are	laid	out	as	neighbor	sequence:
• Defined	by	order	of	dimensions,	 first	negative,	then	positive

• 2*ndims sources	and	destinations

• Processes	at	borders	 	(MPI_PROC_NULL)	leave	holes	in	buffers	 (will	not	
be	updated	or	communicated)!

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
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Cartesian Neighborhood Collectives

§ Buffer	ordering	example:

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
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Graph Neighborhood Collectives

§ Collective	Communication	along	arbitrary	neighborhoods
– Order	is	determined	by	order	of	neighbors	as	returned	by	

(dist_)graph_neighbors.

– Distributed	graph	is	directed,	may	have	different	numbers	of	
send/recv neighbors

– Can	express	dense	collective	operations	J

– Any	persistent	communication	pattern!

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
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MPI_Neighbor_allgather

§ Sends	the	same	message	to	all	neighbors

§ Receives	indegree distinct	messages

§ Similar	to	MPI_Gather
– The	all	prefix	expresses	that	each	process	is	a	“root”	of	his	

neighborhood

§ Vector	version	for	full	flexibility

MPI_Neighbor_allgather(const	void*	sendbuf,	int	sendcount,
MPI_Datatype sendtype,	void*	recvbuf,	int	recvcount,
MPI_Datatype recvtype,	MPI_Comm comm)
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MPI_Neighbor_alltoall

§ Sends	outdegree distinct	messages

§ Received	indegree distinct	messages

§ Similar	to	MPI_Alltoall
– Neighborhood	specifies	full	communication	relationship

§ Vector	and	w	versions	for	full	flexibility

MPI_Neighbor_alltoall(const	void*	sendbuf,	int	sendcount,
MPI_Datatype sendtype,	void*	recvbuf,	int	recvcount,
MPI_Datatype recvtype,	MPI_Comm comm)
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Nonblocking Neighborhood Collectives

§ Very	similar	to	nonblocking	collectives

§ Collective	invocation

§ Matching	in-order	(no	tags)
– No	wild	tricks	with	neighborhoods!	In	order	matching	per	

communicator!

MPI_Ineighbor_allgather(…,	MPI_Request *req);	
MPI_Ineighbor_alltoall(…,	MPI_Request*req);
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Walkthrough of 2D Stencil Code with Neighborhood 
Collectives
§ Code	can	be	downloaded	from	
www.mcs.anl.gov/~thakur/sc15-mpi-tutorial
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Why is Neighborhood Reduce Missing?

§ Was	originally	proposed	(see	original	paper)

§ High	optimization	opportunities
– Interesting	tradeoffs!

– Research	topic

§ Not	standardized	due	to	missing	use-cases
– My	team	is	working	on	an	implementation

– Offering	the	obvious	interface

MPI_Ineighbor_allreducev(…); 

T.	Hoefler	and	J.	L.	Traeff:	Sparse	Collective	Operations	for	MPI
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Topology Summary

§ Topology	functions	allow	to	specify	application	
communication	patterns/topology
– Convenience	functions	(e.g.,	Cartesian)

– Storing	neighborhood	relations	(Graph)

§ Enables	topology	mapping	(reorder=1)
– Not	widely	implemented	yet

– May	requires	manual	data	re-distribution	(according	to	new	rank	
order)

§ MPI	does	not	expose	information	about	the	network	topology	
(would	be	very	complex)
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Neighborhood Collectives Summary

§ Neighborhood	collectives	add	communication	functions	to	
process	topologies
– Collective	optimization	potential!

§ Allgather
– One	item	to	all	neighbors

§ Alltoall
– Personalized	item	to	each	neighbor

§ High	optimization	potential	(similar	to	collective	operations)
– Interface	encourages	use	of	topology	mapping!
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Section Summary

§ Process	topologies	enable:
– High-abstraction	to	specify	communication	pattern

– Has	to	be	relatively	static	(temporal	locality)
• Creation	is	expensive	(collective)

– Offers	basic	communication	functions

§ Library	can	optimize:
– Communication	schedule	for	neighborhood	colls

– Topology	mapping

186Advanced	MPI,	SC15	(11/16/2015)



Recent Efforts of the MPI Forum for MPI-4 
and Future MPI Standards



Introduction

§ The	MPI	Forum	continues	to	meet	once	every	3	months	to	
define	future	versions	of	the	MPI	Standard
– The	next	Forum	meeting	is	December	7-10,	2014,	in	San	Jose

§ We	describe	some	of	the	proposals	the	Forum	is	currently	
considering
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Improved Support for Fault Tolerance

§ MPI	always	had	support	for	error	handlers	and	allows	implementations	
to	return	an	error	code	and	remain	alive

§ MPI	Forum	working	on	additional	support	for	MPI-4

§ Current	proposal	handles	fail-stop	process	failures	(not	silent	data	
corruption	or	Byzantine	failures)
§ If	a	communication	operation	fails	because	the	other	process	has	failed,	the	function	

returns	error	code	MPI_ERR_PROC_FAILED

§ User	can	call	MPI_Comm_shrink to	create	a	new	communicator	that	excludes	failed	
processes

§ Collective	communication	can	be	performed	on	the	new	communicator

§ Lots	of	other	details	in	the	proposal…
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Better Hybrid Programming: Extending MPI to Support 
Multiple Endpoints Per Process

§ In	MPI	today,	each	process	has	a	single	communication	endpoint	
(rank	in	MPI_COMM_WORLD)

§ Multiple	threads	of	a	process	communicate	through	that	single	
endpoint,	requiring	the	implementation	to	use	locks	etc.,	which	are	
expensive

§ MPI	Forum	is	discussing	a	proposal	(for	MPI-4)	that	allows	a	process	
to	have	multiple	endpoints

§ Threads	within	a	process	can	attach	to	different	endpoints	and	
communicate	through	those	endpoints	as	if	they	are	separate	ranks

§ The	MPI	implementation	can	avoid	using	locks	if	each	thread	
communicates	on	a	separate	endpoint

§ This	allows	the	MPI standard	to	support	“MPI	+	X”	more	efficiently	
without	specifying	what	X	is
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Other concepts being considered

§ MPI	Streams	interface
– Streaming	data	between	sender	and	receiver

§ NonblockingFile	Manipulation	routines
– Nonblockingversions	of	file	open,	close,	set_view,	etc.

§ Active	Messages
– Initiate	operations	on	remote	processes
– Possibly	as	an	addition	to	MPI	RMA

§ Tools	Interface
– Scalable	process	acquisition	interface
– Introspection	of	MPI	handles
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Concluding Remarks



Conclusions

§ Parallelism	is	critical	today,	given	that	it	is	the	only	way	to	
achieve	performance	improvement	with	modern	hardware

§ MPI	is	an	industry	standard	model	for	parallel	programming
– A	large	number	of	implementations	of	MPI	exist	(both	commercial	and	

public	domain)

– Virtually	every	system	in	the	world	supports	MPI

§ Gives	user	explicit	control	on	data	management

§ Widely	used	by	many	scientific	applications	with	great	success

§ Your	application	can	be	next!
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Web Pointers

§ MPI	standard	:	http://www.mpi-forum.org/docs/docs.html

§ MPI	Forum	:	http://www.mpi-forum.org/

§ MPI	implementations:	
– MPICH	:	http://www.mpich.org

– MVAPICH	:	http://mvapich.cse.ohio-state.edu/

– Intel	MPI:	http://software.intel.com/en-us/intel-mpi-library/

– Microsoft	MPI:	https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

– Open	MPI	:	http://www.open-mpi.org/

– IBM	MPI,	Cray	MPI,	HP	MPI,	TH	MPI,	…

§ Several	MPI	tutorials	can	be	found	on	the	web
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New Tutorial Books on MPI
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New Book on Parallel Programming Models
Edited	by	Pavan Balaji
• MPI: W.	Gropp and	R.	Thakur
• GASNet: P.	Hargrove
• OpenSHMEM: J.	Kuehn	and	S.	Poole
• UPC: K.	Yelick and	Y.	Zheng
• Global	Arrays: S.	Krishnamoorthy,	 J.	Daily,	A.	Vishnu,	

and	B.	Palmer
• Chapel: B.	Chamberlain
• Charm++: L.	Kale,	N.	Jain,	 and	J.	Lifflander
• ADLB: E.	Lusk,	R.	Butler,	and	S.	Pieper
• Scioto: J.	Dinan
• SWIFT: T.	Armstrong,	J.	M.	Wozniak,	M.	Wilde,	 and	I.	

Foster
• CnC: K.	Knobe,	M.	Burke,	and	F.	Schlimbach
• OpenMP: B.	Chapman,	D.	Eachempati,	and	S.	

Chandrasekaran
• Cilk Plus: A.	Robison	 and	C.	Leiserson
• Intel	TBB:A.	Kukanov
• CUDA: W.	Hwu and	D.	Kirk
• OpenCL: T.	Mattson

Pre-order	at	https://mitpress.mit.edu/models
Discount	code:	MBALAJI30	(valid	till	 12/31/2015)
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