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About the Speakers

= Pavan Balaji: Computer Scientist, Mathematics and Computer
Science Division, Argonne National Laboratory

= William Gropp: Professor, University of lllinois, Urbana-
Champaign

= Torsten Hoefler: Assistant Professor, ETH Zurich

= Rajeev Thakur: Deputy Director, Mathematics and Computer
Science Division, Argonne National Laboratory

= Allfour of us are deeplyinvolvedin MPI standardization (in
the MPI Forum) and in MPI implementation
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Outline

Morning Afternoon
= Introduction = MPI and Threads
— MPI-1, MPI-2, MPI-3 — Thread safety specification in MPI
= Runningexample: 2D stencil code — How itenables hybrid programming

— Hybrid (MPI + shared memory) version

— Simple point-to-point version
Piep P of 2D stencil code

= Derived datatypes = Nonblockingcollectives
— Use in 2D stencil code — Parallel FFT example
= One-sided communication = Process topologies
— Basicsand new features in MPI-3 ~ 2D stencil example
_ Usein 2D stencil code = Neighborhood collectives

— 2D stencil example

=  Recent efforts of the MPI Forum

— Advanced topics

e Global address space
communication = Conclusions
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MPI-1

= MPIis a message-passing library interface standard.
— Specification, notimplementation
— Library, notalanguage

= MPI-1 supports the classical message-passing programming
model: basic point-to-point communication, collectives,
datatypes, etc

= MPI-1 was defined (1994) by a broadly based group of
parallel computer vendors, computer scientists, and
applications developers.

— 2-year intensive process

= |mplementations appeared quicklyand now MPI is taken
for granted as vendor-supported software on any parallel
machine.

" Free, portable implementations exist for clusters and other
environments (MPICH, Open MPI)
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MPI-2

= Same process of definition by MPI Forum

= MPI-2 is an extension of MPI

— Extendsthe message-passing model
e Parallel 1/0
e Remote memory operations (one-sided)

e Dynamic process management

— Addsotherfunctionality
e C++ and Fortran 90 bindings
— similar to original C and Fortran-77 bindings
e External interfaces
e Language interoperability

e MPI interaction with threads
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Timeline of the MPI Standard

= MPI-1(1994), presented at SC'93
— Basic point-to-point communication, collectives, datatypes, etc
= MPI-2 (1997)

— Added parallel I/0, Remote Memory Access (one-sided operations), dynamic processes,
thread support, C++ bindings, ...

= ----Stable for 10 years ----

= MPI-2.1(2008)

— Minor clarifications and bug fixes to MPI-2
= MPI-2.2 (2009)

— Small updates and additions to MPI 2.1
= MPI-3.0(2012)

— Major new features and additions to MPI

= MPI-3.1(2015)
— Minor updates and fixes to MPI 3.0
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Overview of New Features in MPI-3

=  Major new features
— Nonblocking collectives
— Neighborhood collectives
— Improved one-sided communication interface
— Tools interface
— Fortran 2008 bindings

Other new features
— Matching Probe and Recv for thread-safe probe and receive
— Noncollective communicator creation function
— “const” correct C bindings
—  Comm_split_type function
— Nonblocking Comm_dup

— Type_create_hindexed_block function

C++ bindings removed

Previously deprecated functions removed

MPI 3.1 added nonblocking collective 1/0O functions
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Status of MPI-3.1 Implementations

Open Cray Tianhe | Intel | IBM BG/Q IBM PE IBM SGI Fujitsu MS
MPICH | MVAPICH | \ipy MPI MPI MPI MPI! MPICH? | Platform MPI MPI mpi | MPC
NBC v v v v v v v v v v v (*) : Qa'1s
Nbrhood v v v v v v v v v Q4’15
collectives
RMA v v v v v v v v v i
Shared v v v v v v v v v v .
memory
Tools " ,
Interface v v v v v v v v v Q4’16
Comm-creat v v v v v v v v v "
group
FO8Bindings | v @ v v I v i v Ly : Ly : ' Q2’16
New )
TR v v v v v v v v v (4 Q4’15
Large Counts v v v v v v v v v v Q2’16
Matched v v v v v v v v v v v aqie
Probe
NBC I/O v Q116 Q415 Q216
Release dates are estimates and are subject to change at any time.
Empty cells indicate no publicly announced plan to implement/supportthat feature.
Platform-specific restrictions might apply for all supported features
1 Open Source but unsupported 2 No MPI_T variables exposed * Under development (*) Partly done
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Important considerations while using MPI

= All parallelism is explicit: the programmer is responsible for
correctly identifying parallelism and implementing parallel
algorithms using MPI constructs
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Web Pointers

= MPI standard : http://www.mpi-forum.org/docs/docs.html

= MPI Forum : http://www.mpi-forum.org/

= MPI implementations:
— MPICH : http://www.mpich.org
— MVAPICH : http://mvapich.cse.ohio-state.edu/

— Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

— Microsoft MPI: https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

— Open MPI : http://www.open-mpi.org/
— IBM MPI, Cray MPI, HP MPI, TH MPI, ...

= Several MPI tutorials can be found on the web
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New Tutorial Books on MPI

SCIENTIFIC SCIENTIFIC

AND AND

ENGINEERING ENGINEERING

COMPUTATION COMPUTATION

SERIES SERIES

Using MPI Using Advanced MPI

Portable Parallel Programming Modern Features of the

with the Message-Passing Interface Message-Passing Interface

third edition

William Gropp

William Gropp Torsten Hoefler

Ewing Lusk Rajeev Thakur

Anthony Skjellum Ewing Lusk

Basic MPI Advanced MPI, including MPI-3
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Released at SC15
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5.
va
=
)
o
D
7y

Edited by Pavan Balaji

*  MPI: W. Gropp and R. Thakur

* GASNet: P. Hargrove

*  OpenSHMEM: ). Kuehn and S. Poole
* UPC: K. Yelick and Y. Zheng

* Global Arrays: S. Krishnamoorthy, J. Daily, A. Vishnu,
and B. Palmer

* Chapel: B. Chamberlain
* Charm++: L. Kale, N. Jain, and J. Lifflander =

* ADLB:E. Lusk, R. Butler, and S. Pieper PROGRAM M ING

* Scioto: ). Dinan

* SWIFT:T. Armstrong, J. M. Wozniak, M. Wilde, and I. — MEI—S ” '
Foster FOR PARALLEL
*  CnC: K. Knobe, M. Burke, and F. Schlimbach C OM P UT' N G

*  OpenMP: B. Chapman, D. Eachempati, and S.
Chandrasekaran

* Cilk Plus: A. Robison and C. Leiserson epiTeD BY PAVAN BALAJI

* Intel TBB: A. Kukanov

* CUDA: W. Hwuand D. Kirk Pre-order at https://mitpress.mit.edu/models

*  OpenCL: T. Mattson Discount code: MBALAJI3O0 (valid till 12/31/2015)
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Our Approach in this Tutorial

= Example driven
— 2D stencil code used as a runningexample throughout the tutorial

— Other examplesused to illustrate specific features

= We will walk through actual code

= We assume familiarity with basic concepts of MPI-1

Advanced MPI, SC15 (11/16/2015)
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Regular Mesh Algorithms

= Many scientific applicationsinvolve the solution of partial
differential equations (PDEs)

= Many algorithms for approximating the solution of PDEs
rely on forming a set of difference equations
— Finite difference, finite elements, finite volume
= The exact form of the difference equations dependson the

particular method

— From the point of view of parallel programmingfor these
algorithms, the operations arethe same

Advanced MPI, SC15 (11/16/2015)
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Poisson Problem

= To approximate the solution of the Poisson Problem V?u = f
on the unit square, with u defined on the boundaries of the
domain (Dirichlet boundary conditions), this simple 2nd
order difference scheme is often used:

— (U(x+h,y) - 2U(x,y) + U(x-h,y)) / h? +
(U(x,y+h) - 2U(x,y) + U(x,y-h)) / h* = f(x,y)

* Where the solution U is approximated on a discrete grid of points x=0,
h, 2h, 3h, ..., (1/h)h=1, y=0, h, 2h, 3h, ... 1.

e To simplify the notation, U(ih,jh) is denoted U

= Thisis defined on a discrete mesh of points (x,y) = (ih,jh),
for a mesh spacing “h”

Advanced MPI, SC15 (11/16/2015)
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The Global Data Structure

= Each circle is a mesh point

= Difference equation evaluated at
each pointinvolvesthe four
neighbors

= Thered “plus”is called the
method’s stencil

=  Goodnumerical algorithmsforma
matrix equation Au=f; solvingthis
requires computing Bv, where B is
a matrixderived from A. These
evaluationsinvolve computations
with the neighbors on the mesh.

Advanced MPI, SC15 (11/16/2015)
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The Global Data Structure

= Each circle is a mesh point

= Difference equation evaluated at
each pointinvolvesthe four
neighbors

= Thered “plus”is called the
method’s stencil

=  Goodnumerical algorithmsforma
matrix equation Au=f; solvingthis
requires computing Bv, where B is
a matrixderived from A. These
evaluationsinvolve computations
with the neighbors on the mesh.

= Decompose mesh into equal sized
(work) pieces
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Necessary Data Transfers
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Necessary Data Transfers
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Necessary Data Transfers

= Provide access to remote data through a halo exchange (5 point stencil)

£
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Necessary Data Transfers

= Provide access to remote data through a halo exchange (9 point with
trick)

e
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The Local Data Structure

Ill

= Each process has its local “patch” of the global array
— “bx” and “by” are the sizes of the local array
— Always allocate a haloaround the patch

— Array allocated of size (bx+2)x(by+2)

Advanced MPI, SC15 (11/16/2015) 22



2D Stencil Code Walkthrough

= Codecan be downloaded from

Www.mcs.anl.gov/~thakur/sclb5-mpi-tutorial
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Datatypes

_ Advanced MPI, SC15 (11/16/2015) 24



Introduction to Datatypes in MPI

= Datatypes allow users to serialize arbitrary data layoutsinto a
message stream

— Networks provide serial channels

— Same for block devices and I/O

= Several constructors allow arbitrary layouts
— Recursive specification possible

— Declarative specification of data-layout

e “what” and not “how”, leaves optimization to implementation (many
unexplored possibilities!)

— Choosingtheright constructorsis not always simple

Advanced MPI, SC15 (11/16/2015)
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Derived Datatype Example

0123456 78 9101112131415161718192021222324

contig.

AN

contig.

vector

contig.

struct

Advanced MPI, SC15 (11/16/2015)

indexed

26



MPI’s Intrinsic Datatypes

= Why intrinsic types?
— Heterogeneity, nice to send a Boolean from C to Fortran

— Conversionrulesare complex, notdiscussed here

— Length matches to language types

* No sizeof(int) mess

= Users should generally use intrinsic types as basic types for
communication and type construction

= MPI-2.2 added some missing C types

— E.g., unsigned longlong

Advanced MPI, SC15 (11/16/2015)
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MPI_Type_contiguous

MPI_Type contiguous(int count, MPI_Datatype
oldtype, MP|_Datatype *newtype)

= Contiguousarray of oldtype

= Shouldnot be used as last type (can be replaced by count)

V g,——)
contig.
\ struct )

contig.

Advanced MPI, SC15 (11/16/2015)
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MPI_Type_vector

MPI_Type vector(int count, int blocklength, int stride,
MPI|_Datatype oldtype, MPI_Datatype *newtype)

= Specify strided blocks of data of oldtype

= Very useful for Cartesian arrays

Ve struct  struct struct struct
vector N e

vector
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2D Stencil Code with Datatypes Walkthrough

= Codecan be downloaded from

Www.mcs.anl.gov/~thakur/sclb5-mpi-tutorial

Advanced MPI, SC15 (11/16/2015) 30



MPI_Type_create_hvector

MPI_Type create hvector(int count, int blocklength, MPI_Aint
stride, MPI_Datatype oldtype, MPI|_Datatype *newtype)

= Stride is specified in bytes, not in units of size of oldtype

= Useful for composition, e.g., vector of structs

AR HNNNND R

\ I\ ) \ L )
"4 "4 "4 "4
struct struct struct struct

N

Hvector

Advanced MPI, SC15 (11/16/2015)
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MPI_Type_indexed

MPI_Type indexed(int count, int *array_of blocklengths,
int *array_of displacements, MP|_Datatype oldtype,
MP|_Datatype *newtype)

= Pullingirregular subsets of data from a single array (cf. vector
collectives)

— dynamiccodes with index lists, expensive though!

— blen={1,1,2,1,2,1}
— displs={0,3,5,9,13,17}

Advanced MPI, SC15 (11/16/2015)
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MPI_Type_create_indexed_block

MPI|_Type create indexed block(int count, int blocklength,
int *array_of displacements, MP|_Datatype oldtype,
MP|_Datatype *newtype)

= Like Create_indexed but blocklengthis the same

— blen=2
— displs={0,5,9,13,18}

Advanced MPI, SC15 (11/16/2015)
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MPI_Type_create_hindexed

MPI|_Type create hindexed(int count, int *arr_of blocklengths,
MPI1_Aint *arr_of displacements, MPI|_Datatype oldtype,
MP|_Datatype *newtype)

* |ndexed with non-unit-sized displacements, e.g., pullingtypes
out of different arrays

— ) —

struct struct struct
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MPI_Type_create_struct

MPI|_Type create_struct(int count, int array_of blocklengths]],
MPI_Aint array_of displacements[], MPI_Datatype

array_of types[], MPI_Datatype *newtype)

= Most general constructor, allows different types and arbitrary
arrays (also most costly)

0l
.

struct

Advanced MPI, SC15 (11/16/2015)
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MPI_Type_create_subarray

MPI|_Type create subarray(int ndims, int array_of sizes[],
int array_of subsizes[], int array_of_starts][], int order,

MPI|_Datatype oldtype, MPI_Datatype *newtype)

= Specify subarray of n-dimensional array (sizes) by start (starts)
and size (subsize)

(0,0)

(1,0)

(2,0)

(3,0)

(0,1)

(1,1)

(2,1)

(3,1)

(1,2)

(2,2)

(3,2)

(0,2)
(0,3)

(1,3)

(2,3)

(3,3)

Advanced MPI, SC15 (11/16/2015)

36



MPI_Type_create_darray

MPI|_ Type create darray(int size, int rank, int ndims,
int array_of gsizes][], int array_of distribs[], int

array_of dargs[], int array_of psizes|[], int order,

MPI_Datatype oldtype, MPI_Datatype *newtype)

= Create distributed array, supports block, cyclicand no

distribution for each dimension

— Very useful for 1/0O

(0,0)

(1,0)

(2,0)

(3,0)

(0,1)

(1,1)

(2,1)

(3,1)

(0,2) [(1,2)

(2,2)

(3,2)

(0,3) [i(1,3)

(2,3)

(3,3)
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MPI_BOTTOM and MPI_Get_address

= MPI_BOTTOM is the absolute zero address

— Portability (e.g., may be non-zero in globally shared memory)
= MPI_Get_address

— Returns addressrelativeto MPI_BOTTOM

— Portability (do not use “&” operatorin C!)

= Veryimportantto
— build struct datatypes

— If data spans multiple arrays

Advanced MPI, SC15 (11/16/2015)
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Commit, Free, and Dup

= Types must be committed before use
— Only the onesthatare used!

— MPI_Type_commit may perform heavy optimizations (and will
hopefully)

= MPI_Type_free
— Free MPI resources of datatypes

— Does not affect types built from it
= MPI _Type dup
— Duplicatesa type

— Library abstraction (composability)

Advanced MPI, SC15 (11/16/2015)
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Other Datatype Functions

= Pack/Unpack
— Mainlyfor compatibility to legacy libraries
— Avoid usingit yourself

= Get_envelope/contents

— Only for expert library developers

— Libraries like MPITypes! make this easier

= MPI _Type create_resized

— Change extentand size (dangerous but useful)

Ihttp://www.mcs.anl.qgov/mpitypes/

Advanced MPI, SC15 (11/16/2015)
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Datatype Selection Order

= Simple and effective performance model:

— More parameters == slower
= predefined < contig < vector < index_block < index < struct

= Some (most) MPIs are inconsistent

— But thisruleis portable

W. Gropp et al.: Performance Expectations and Guidelines for MPI Derived Datatypes
Advanced MPI, SC15 (11/16/2015) 41



Advanced Topics: One-sided Communication
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One-sided Communication

= The basicidea of one-sided communication models is to
decouple data movement with process synchronization

— Should be able to move data without requiringthattheremote
process synchronize

— Each process exposes a part of its memory to other processes

— Other processes can directly read from or write to this memory

Global
Address
Space

Private ] P_l_'iy.ate"‘ Private
Memory - Y ~Memory ..Memory
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Two-sided Communication Example

Processor Processor

MPI implementation MPI implementation
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One-sided Communication Example

Processor Processor

MPI implementation MPI implementation
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Even the
sending
process is
delayed

Delay in
process 1
does not
affect
process O

e
Comparing One-sided and Two-sided Programming

Process O Process 1
SEND(data) D
E
L
n A
Y

RECV(data)

Process O Process 1
PUT(data) — ; D
E
GET(data) L
‘ >
<« Y
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Lower is better

Why use RMA? It can provide higher performance if

implemented efficiently

100~

Latency [us]

“Enabling Highly-Scalable Remote Memory Access Programming with MPI-3 One Sided” by

Robert Gerstenberger, Maciej Besta, Torsten Hoefler (SC13 Best Paper Award)

They implemented complete MPI-3 RMA for Cray Gemini (XK5, XE6) and Aries (XC30)

systems on top of lowest-level Cray APIs

Achieved better latency, bandwidth, message rate, and application performance than Cray’s
MPI RMA, UPC, and Coarray Fortran
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Higher is better

Higher is better

\

Application Performance with Tuned MPI-3 RMA
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MPI RMA is Carefully and Precisely Specified

= To workon both cache-coherentand non-cache-coherent systems

— Even though there aren’t many non-cache-coherent systems, it is designed
with the future in mind

= There even exists a formal model for MPI-3 RMA that can be used by tools
and compilers for optimization, verification, etc.

— See “Remote Memory Access Programming in MPI-3” by Hoefler, Dinan,
Thakur, Barrett, Balaji, Gropp, Underwood. ACM TOPC, July 2015.

— http://htor.inf.ethz.ch/publications/index.php?pub=201
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What we need to know in MPI RMA

= How to create remote accessible memory?
= Reading, Writing and Updating remote memory
= Data Synchronization

= Memory Model

Advanced MPI, SC15 (11/16/2015) 50



Creating Public Memory

= Any memory used by a process is, by default, only locally
acceSS| b | e Process 0 Process 1 Process 2 Process 3

— X =malloc(100); l

= Once the memory is allocated, the user has to make an
explicit MPI call to declare a memory region as remotely
accessible
— MPI terminology for remotely accessible memory is a “window”
— A group of processes collectively create a “window”

= Once a memory region is declared as remotely accessible, all

processes in the window can read/write data to this memory
without explicitly synchronizing with the target process

Advanced MPI, SC15 (11/16/2015) 51



Window creation models

= Four models exist
— MPI_WIN_ALLOCATE

e You want to create a buffer and directly make it remotely accessible
— MPI_WIN_CREATE

* You already have an allocated buffer that you would like to make
remotely accessible

— MPI_WIN_CREATE_DYNAMIC

e You don’t have a buffer yet, but will have one in the future

e You may want to dynamically add/remove buffers to/from the window

— MPI_WIN_ALLOCATE_SHARED

e You want multiple processes on the same node share a buffer

Advanced MPI, SC15 (11/16/2015)
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MPI_WIN_ALLOCATE

MPI Win allocate (MPI_Aint size, int disp unit,

MPI Info info, MPI_Comm comm, void *baseptr,
MPI Win *win)

= Create a remotely accessible memory region in an RMA window

Only data exposedina window can be accessed with RMA ops.

= Arguments:

size - size of local datain bytes (honnegative integer)

disp_unit - local unitsize for displacements, in bytes (positive integer)
info - infoargument (handle)

comm - communicator (handle)

baseptr - pointertoexposedlocaldata

win - window (handle)

Advanced MPI, SC15 (11/16/2015) 53



Example with MPI_WIN_ALLOCATE

int main (int argc, char ** argv)
{
int *a; MPI Win win;
MPI Init(&argc, &argv);
/* collectively create remote accessible memory in a window */
MPI Win allocate(1000*sizeof (int), sizeof (int), MPI_ INFO NULL,
MPI_COMM WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM WORLD */

MPI Win free (&win);

MPI Finalize(); return O;

Advanced MPI, SC15 (11/16/2015) 54



MPI_WIN_CREATE

MPI Win create(void *base, MPI Aint size,
int disp unit, MPI Info info,
MPI Comm comm, MPI Win *win)

= Exposea region of memoryinan RMA window

Only data exposed in a window can be accessed with RMA ops.

= Arguments:

base - pointer to local data to expose
Size - size of local data in bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)

info - info argument (handle)
comm - communicator (handle)
win - window (handle)
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Example with MPI_WIN_CREATE

int main (int argc, char ** argv)

{

int *a; MPI Win win;
MPI Init(&argc, &argv);

/* create private memory */

MPI Alloc mem(1000*sizeof (int) , MPI_ INFO NULL, &a);
/* use private memory like you normally would */
a[0] = 1; al[l] = 2;

/* collectively declare memory as remotely accessible */
MPI Win create(a, 1000*sizeof(int), sizeof(int),
MPI_INFO NULL, MPI_COMM WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI COMM WORLD */

MPI Win free (&win) ;

MPI Free mem(a) ;
MPI Finalize(); return O;
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MPI_WIN_CREATE_DYNAMIC

MPI Win create dynamic (MPI Info info, MPI Comm comm,
MPI Win *win)

= Create an RMA window, to which data can later be attached

— Only data exposedina window can be accessed with RMA ops
" [nitially “empty”

— Applicationcan dynamically attach/detach memoryto this window by
calling MPI_Win_attach/detach

— Applicationcan access data on this window only after a memory
region has been attached

= Window origin is MPI_BOTTOM

— Displacements are segment addresses relative to MPI_BOTTOM

— Must tell others the displacement after calling attach

Advanced MPI, SC15 (11/16/2015)
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Example with MPI_WIN_CREATE_DYNAMIC

int main (int argc, char ** argv)

{

int *a; MPI_Win win;

MPI Init(&argc, &argv);
MPI Win create dynamic (MPI_INFO NULL, MPI COMM WORLD, &win) ;

/* create private memory */
a = (int *) malloc(1000 * sizeof(int)) ;
/* use private memory like you normally would */

a[0] = 1; al[l] = 2;

/* locally declare memory as remotely accessible */
MPI Win attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */
/* undeclare remotely accessible memory */
MPI Win detach(win, a); free(a);

MPI Win free (&win);

MPI Finalize(); return O;
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Data movement

= MPI provides ability to read, write and atomically modify data

in remotely accessible memory regions

MPI_PUT

MPI_GET

MPI_ACCUMULATE (atomic)
MPI_GET_ACCUMULATE (atomic)
MPI_COMPARE_AND_SWAP (atomic)
MPI_FETCH_AND_OP (atomic)

Advanced MPI, SC15 (11/16/2015)
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Data movement: Put

MPI Put(void *origin_ addr, int origin_ count, R
MPI Datatype origin_dtype, int target_rank,
MPI Aint target disp, int target count,
MPI Datatype target dtype, MPI_Win win)
- /
= Move data from origin, to target
= Separate data description triples for origin and target
Remotely
Accessible
Memory
Private
Memory

Origin Target
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Data movement: Get

MPI Get(void *origin_ addr, int origin count, R
MPI Datatype origin_dtype, int target_rank,
MPI Aint target disp, int target count,
MPI Datatype target dtype, MPI_Win win)
- /
= Move data to origin, from target
= Separate data description triples for origin and target
Remotely
Accessible
Memory
Private
Memory

Origin Target
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Atomic Data Aggregation: Accumulate

\

MPI Accumulate (void *origin_ addr, int origin_ count,
MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target_ count,

MPI Datatype target_dtype, , MPI_Win win)

o

= Atomicupdateoperation, similartoa put

— Reduces origin and target data into target buffer using op argument as combiner
— Op =MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, ...

— Predefined ops only, no user-defined operations

= Different datalayouts between

o Remotely
target/origin OK Accessible
— Basic type elements must match Memory
= Op=MPI_REPLACE ]
Private
— Implements f(a,b)=b Memory

— Atomic PUT Origin Target
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Atomic Data Aggregation: Get Accumulate

MPI Datatype origin dtype, void *result addr,
int result count, MPI Datatype result_ dtype,
int target rank, MPI Aint target_disp,

int target count, MPI Datatype target dype,

k , MPI Win win)

/MPI_Get_accumulate(void *origin addr, int origin_count,\

/

= Atomic read-modify-write
— Op=MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, ...
— Predefined ops only

= Result stored in target buffer
= QOriginal data stored in result buf

= Different data layouts between
target/origin OK
— Basic type elements must match

= Atomic get with MPI_NO_OP
= Atomic swap with MPI_REPLACE Origin Target
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Atomic Data Aggregation: CAS and FOP

MPI Fetch_and op(void *origin_addr, void *result_ addr,
MPI Datatype dtype, int target rank,
MPI Aint target disp, , MPI_Win win)

MPI Compare_ and swap (void *origin_ addr, void *compare addr,
void *result addr, MPI Datatype dtype, int target rank,
MPI Aint target disp, MPI_Win win)

= FOP: Simpler version of MPI_Get_accumulate
— All buffers share a single predefined datatype
— No countargument (it’s always 1)

— Simplerinterface allows hardware optimization

= CAS: Atomic swap if target value is equal to compare value
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Ordering of Operations in MPI RMA

= No guaranteed orderingfor Put/Get operations
= Result of concurrent Puts to the same location undefined

= Result of Get concurrent Put/Accumulate undefined
— Can be garbage in both cases

= Result of concurrentaccumulate operations to the same location
are defined according to the orderin which the occurred
— Atomic put: Accumulate with op = MPI_REPLACE
— Atomic get: Get_accumulate with op = MPI_NO_OP
= Accumulate operationsfroma given process are ordered by default

— User can tell the MPI implementation that (s)he does not require ordering
as optimization hint

— You can ask for only the needed orderings: RAW (read-after-write), WAR,
RAR, or WAW
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Process O Process 1
PUT(x=1, P1) x=0
PUT(x=2, P1) l— N
x=1
PUT(x=2, P1)
x=1
GET(y, x, P1)
y=1| X =2
GET_ACC (y, x+=2, P1) X=2
ACC (x+=1, P1) =2
y=2 X += 1

Examples with operation ordering

1. Concurrent Puts: undefined

2. Concurrent Get and
Put/Accumulates: undefined

3. Concurrent Accumulate operations
to the same location : ordering is
guaranteed
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RMA Synchronization Models

RMA data access model
— When is a process allowed to read/write remotely accessible memory?
— When is data written by process X is available for process Y to read?

— RMA synchronization models define these semantics

Three synchronizationmodels provided by MPI:
— Fence (active target)
— Post-start-complete-wait (generalized active target)
— Lock/Unlock (passive target)

Data accesses occur within “epochs”

— Access epochs: contain a set of operations issued by an origin process

— Exposure epochs: enable remote processes to update a target’s window

— Epochs define ordering and completion semantics

— Synchronization models provide mechanisms for establishing epochs

e E.g., starting, ending, and synchronizing epochs
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Fence: Active Target Synchronization

[MPI_Win_fence(int assert, MPI Win win) ]

Collective synchronization model

Starts and ends access and exposure PO P1 P2
epochson all processes in the window
Fence

All processes in group of “win” do an

>
MPI_WIN_FENCE to open an epoch
Everyone can issue PUT/GET operations < i I
to read/write data

S
Everyone does an MPI_WIN_FENCE to
close the epoch Fence

All operations complete at the second
fence synchronization
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Implementing Stencil Computation with RMA Fence

——

RMA window

~ Target buffers

PUT

PUT

+ Origin buffers

ind

1lnd

|
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Code Example

= stencil_mpi_ddt rma.c

Use MPI_PUTs to move data, explicit receives are not needed
= Data location specified by MPI datatypes

= Manual packing of data no longer required

Advanced MPI, SC15 (11/16/2015)
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PSCW: Generalized Active Target Synchronization

MPI Win post/start(MPI_Group grp, int assert, MPI Win win)
MPI Win complete/wait(MPI_Win win)

Like FENCE, but origin and target specify
who they communicate with

Target Origin
Target: Exposure epoch
— Opened with MPI_Win_post Post
— Closed by MPI_Win_wait Start
Origin: Access epoch :
— Opened by MPI_Win_start ‘
Complete
— Closed by MPI_Win_complete Wait

All synchronization operations may block,
to enforce P-S/C-W ordering

— Processes can be both origins and targets
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Lock/Unlock: Passive Target Synchronization

Active Target Mode Passive Target Mode

Post
Start Lock @

— —

Wait
Complete Unlock @

= Passive mode: One-sided, asynchronous communication
— Target does not participatein communication operation

=  Shared memory-like model

Advanced MPI, SC15 (11/16/2015)
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Passive Target Synchronization

[MPI_Win_lock(int locktype, int rank, int assert, MPI Win win) ]

[MPI_Win_unlock(int rank, MPI Win win) ]

[MPI_Win_flush/flush_local (int rank, MPI Win win) ]

= Lock/Unlock: Begin/end passive mode epoch
— Target process does not make a corresponding MPI call
— Caninitiate multiple passive target epochs to different processes
— Concurrent epochs to same process not allowed (affects threads)
= Lock type
— SHARED: Other processes using shared can access concurrently

— EXCLUSIVE: No other processes can access concurrently

= Flush: Remotely complete RMA operations to the target process

— After completion, data can be read by target process or a different process

= Flush_local: Locally complete RMA operations to the target process
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Advanced Passive Target Synchronization

[MPI_Win_lock_all (int assert, MPI Win win) ]

[MPI_Win_unlock_all (MPI_Win win) J

[MPI_Win_flush_all/flush_local_all (MPI_Win win) J

" Lock_all: Shared lock, passive target epoch to all other
processes

— Expected usage is long-lived:lock_all, put/get, flush, ..., unlock_all

" Flush_all—remotely complete RMA operations to all
processes

* Flush_local _all-locally complete RMA operationsto all
processes
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Implementing PGAS-like Computation by RMA Lock/Unlock

(leer  JGer _omicAcc GET \ GET  |atomicAcC
° [
[

° —
\_ DGEMM ) \_ DGEMM )
local buffer on PO local buffer on P1
_
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Code Example
= ga mpi_ddt rma.c

= Onlysynchronization from origin processes, no

synchronization from target processes
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Which synchronization mode should | use, when?

RMA communication has low overheads versus send/recv
— Two-sided: Matching, queuing, buffering, unexpected receives, etc...
— One-sided: No matching, no buffering, always ready to receive

— Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)

Active mode: bulk synchronization

— E.g. ghost cell exchange

Passive mode: asynchronous data movement
— Useful when dataset is large, requiring memory of multiple nodes
— Also, when data access and synchronization pattern is dynamic

— Common use case: distributed, shared arrays

Passive target locking mode

— Lock/unlock — Useful when exclusive epochs are needed

— Lock_all/unlock_all — Useful when only shared epochs are needed
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MPI RMA Memory Model

= MPI-3 providestwo memory models:
separate and unified

= MPI-2: Separate Model

— Logical public and private copies

— MPI provides software coherence between
window copies

— Extremely portable, to systems that don’t
provide hardware coherence

= MPI-3: New Unified Model
— Single copy of the window
— System must provide coherence
— Superset of separate semantics

e E.g. allows concurrent local/remote access

— Provides access to full performance
potential of hardware

Advanced MPI, SC15 (11/16/2015)
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MPI RMA Memory Model (separate windows)

Same source
Same epoch  Diff. Sources

LA WA AN \
AT AR

Public \ \
Copy o _
X X X X X A
v v v v v zy(
load store store

= Very portable, compatible with non-coherentmemory systems
= Limits concurrentaccesses to enable software coherence
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MPI RMA Memory Model (unified windows)

Same source
Same epoch  Diff. Sources

LA W A\ 74 \
. . v \

Unified y
Copy — — T T s
load store store

= Allows concurrentlocal/remote accesses

= Concurrent, conflicting operations are allowed (not invalid)
— Outcome is not defined by MPI (defined by the hardware)

= Canenablebetter performance by reducingsynchronization
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MPI RMA Operation Compatibility (Separate)

| toad | store | Get | Put | Ac__

Load NOVL NOVL
Get NOVL NOVL
Put NOVL NOVL
Acc nove  [CNIRNGNEN

This matrix shows the compatibility of MPI-RMA operations when two or more
processes access a window at the same target concurrently.

OVL - Overlapping operations permitted

NOVL — Nonoverlapping operations permitted
X — Combining these operations is OK, but data might be garbage
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MPI RMA Operation Compatibility (Unified)

| toad | store | Get | Put | Ac__

Load NOVL NOVL
Store NOVL NOVL
Get ~ OVL+NOVL NOVL NOVL
Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL _

This matrix shows the compatibility of MPI-RMA operations when two or more
processes access a window at the same target concurrently.

OVL - Overlapping operations permitted
NOVL — Nonoverlapping operations permitted
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Hybrid Programming with Threads, Shared

Memory, and GPUs
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MPI and Threads

= MPI describes parallelism between processes (with separate
address spaces)

" Thread parallelism provides a shared-memory model within a
process

= OpenMP and Pthreads are common models

— OpenMP provides convenient features for loop-level parallelism.
Threads are created and managed by the compiler, based on user
directives.

— Pthreads provide more complexand dynamicapproaches. Threadsare
created and managed explicitly by the user.
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Programming for Multicore

= Common optionsfor programming multicore clusters
— Al MPI

e MPI between processes both within a node and across nodes

e MPI internally uses shared memory to communicate within a node

— MPI + OpenMP

e Use OpenMP within a node and MPI across nodes

— MPI + Pthreads

e Use Pthreads within a node and MPI across nodes

"= The latter two approaches are known as “hybrid programming”

Advanced MPI, SC15 (11/16/2015)
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Hybrid Programming with MPI+Threads

= |n MPIl-only programming,
MPI-only Programming .
each MPI process has a single

program counter
= |n MPIl+threads hybrid
programming, there can be

Rank 0 Rank 1 multiple threads executing
simultaneously

— Allthreadsshare all MPI
objects (communicators,

requests)

— The MPI implementation might
need to take precautionsto
make sure the state of the MPI

Rank 0 Rank 1 stack is consistent
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MPI’s Four Levels of Thread Safety

= MPI defines four levels of thread safety -- these are
commitments the application makes to the MPI

— MPI_THREAD_SINGLE: only one thread existsin the application

— MPI_THREAD_FUNNELED: multithreaded, but only the main thread
makes MPI calls (the one that called MPI_Init_thread)

— MPI_THREAD_SERIALIZED: multithreaded, but onlyonethread at a time
makes MPI calls

— MPI_THREAD_MULTIPLE: multithreadedand any thread can make MPI
calls at any time (with some restrictions to avoid races — see next slide)

* Thread levels are in increasing order
— If anapplication worksin FUNNELED mode, it can work in SERIALIZED

= MPI defines an alternative to MPI_Init
— MPI_Init_thread(requested, provided)

e Application specifies level it needs; MPlimplementation returns level it supports

Advanced MPI, SC15 (11/16/2015)
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MPI_THREAD_SINGLE

= There are no additional user threads in the system

— E.g., thereare no OpenMP parallel regions

int main (int argc, char ** argv)
{
int buf[100];

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);

for (1 = 0; i < 100; i++)
compute (buf[i]) ;

/* Do MPI stuff */
MPI Finalize() ;

return O;

Advanced MPI, SC15 (11/16/2015)

88



MPI_THREAD_FUNNELED

= All MPI calls are made by the master thread
— Outsidethe OpenMP parallel regions
— In OpenMP master regions

int main (int argc, char ** argv)

{
int buf[100], provided;

MPI Init thread(&argc, &argv, MPI THREAD FUNNELED, &provided)
if (provided < MPI_THREAD FUNNELED) MPI_ Abort (MPI_COMM WORLD,1) ;

#pragma omp parallel for
for (1 = 0; i < 100; i++) MPI Process

compute (buf[i]) ; —1
3 3 3 g

/* Do MPI stuff */

; MPI COMM.
MPI Finalize();

I 1 1

t 0;
} return §|$ ? %comn
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MPI_THREAD_SERIALIZED

" Onlyone thread can make MPI calls at a time
— Protected by OpenMP critical regions

int main (int argc, char ** argv)

{
int buf[100], provided;

MPI Init thread(&argc, &argv, MPI THREAD SERIALIZED, &provided);
if (provided < MPI THREAD SERIALIZED) MPI Abort (MPI_COMM WORLD,1) ;

#pragma omp parallel for
for (i = 0; i < 100; i++) { MPI Process

compute (buf[i]) ; _

#pragma omp critical % % é é COMP.
/* Do MPI stuff */ —1 }

} ; MPI COMM.
MPI Finalize() ; — 1

return O; % $ % COMP.

} I
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MPI_THREAD_MULTIPLE

= Any thread can make MPI calls any time (restrictions apply)

int main (int argc, char ** argv)
{
int buf[100], provided;

MPI Init thread(&argc, &argv, MPI THREAD MULTIPLE, &provided);
if (provided < MPI THREAD MULTIPLE) MPI Abort(MPI_COMM WORLD,1) ;

#pragma omp parallel for
for (1 = 0; 1 < 100; i++) {

compute (buf [i]) ;
/* Do MPI stuff */ N
} % % é é COMP.

MPI Finalize() ; ; MPI COMM.
return O;

— j
}

%? %ICOMP./
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Threads and MPI

"= An implementationis not required to support levels higher
than MPI_THREAD_SINGLE; that is, an implementationis not
required to be thread safe

= A fully thread-safe implementation will support
MPI_THREAD_MULTIPLE

= A program that calls MPI_Init (instead of MPI_Init_thread)
should assume that only MPI_THREAD_SINGLE is supported
— MPI Standard mandates MPI_THREAD_SINGLE for MPI_Init

" A threaded MPI program that does not call MPI_Init_thread is
an incorrect program (common user error we see)
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Implementing Stencil Computation using
MPI_THREAD_FUNNELED
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Code Examples

= stencil_mpi_ddt funneled.c
= Parallelize computation (OpenMP parallel for)

= Main thread does all communication

Advanced MPI, SC15 (11/16/2015)
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Specification of MPI_THREAD_MULTIPLE

" Ordering: When multiplethreads make MPI calls concurrently,
the outcome will be as if the calls executed sequentiallyin some
(any) order

— Orderingis maintained withineach thread
— User must ensure that collective operations on the same communicator,
window, or file handle are correctly ordered amongthreads

e E.g., cannot call a broadcast on one thread and a reduce on another thread on
the same communicator

— ltis the user's responsibility to prevent races when threadsinthe same
application post conflicting MPI calls

e E.g., accessing an info object from one thread and freeing it from another
thread

" Blocking: Blocking MPI calls will block only the calling thread and
will not prevent other threads from running or executing MPI

functions
Advanced MPI, SC15 (11/16/2015)
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Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with Collectives

Process 0 Process 1

= PO and P1 can have different orderings of Bcast and Barrier

= Here the user must use some kind of synchronization to
ensure that either thread 1 or thread 2 gets scheduled first on
both processes

= QOtherwise a broadcast may get matched with a barrier on the
same communicator, which is not allowed in MPI

Advanced MPI, SC15 (11/16/2015)
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Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with RMA

int main (int argc, char ** argv)

{
/* Initialize MPI and RMA window */

#pragma omp parallel for
for (1 = 0; 1 < 100; i++) {

target = rand() ;
MPI Win lock(MPI LOCK EXCLUSIVE, target, 0, win);

MPI Put(..., win);
MPI Win unlock(target, win);

}

/* Free MPI and RMA window */

return O;

Different threads can lock the same process causing multiple locks to the same target before
the first lock is unlocked
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Ordering in MPI_THREAD_MULTIPLE: Incorrect
Example with Object Management

Process 0 Process 1

= The user has to make sure that one thread is not using an
object while another thread is freeing it

— Thisis essentiallyan orderingissue; the object might get freed before
itisused
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Blocking Calls in MPI_THREAD_MULTIPLE: Correct
Example

Process 0 Process 1

= Animplementation must ensure that the above example
never deadlocks for any ordering of thread execution

= That means the implementation cannot simply acquire a
thread lock and block within an MPI function. It must

release the lock to allow other threads to make progress.
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Implementing Stencil Computation using
MPI_THREAD_MULTIPLE

Y R D) i)
dE @ '(ul'd
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Code Examples

= stencil_mpi_ddt _multiple.c
= Divide the process memory among OpenMP threads

= Each thread responsible for communication and computation

Advanced MPI, SC15 (11/16/2015)
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The Current Situation

= All MPI implementationssupport MPI_THREAD SINGLE (duh).

= They probably support MPI_THREAD_FUNNELED even if they
don’tadmit it.
— Does require thread-safe malloc

— Probably OK in OpenMP programs

= Many (but notall) implementationssupport
THREAD MULTIPLE
— Hard to implement efficiently though (lock granularity issue)
= “Easy” OpenMP programs (loops parallelized with OpenMP,
communication in between loops) only need FUNNELED

— So don’tneed “thread-safe” MPI for many hybrid programs

— But watch out for Amdahl’s Law!
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Performance with MPI_THREAD_MULTIPLE

* Thread safety does not come for free

" The implementation must protect certain data structures or
parts of code with mutexes or critical sections

" To measure the performance impact, we ran tests to measure
communication performance when using multiple threads
versus multiple processes

— Forresults, see Thakur/Gropp paper: “Test Suite for Evaluating
Performance of Multithreaded MPI Communication,” Parallel
Computing, 2009
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Message Rate Results on BG/P

_Optimiéed stack ]
Default stack A

1.4
~ 1.3
g 1.2 |
S 1.1}
o 1
£ 0.9
Message Rate Benchmark S o.s t
| A
Q |
2 olen
()]
$ 0.5t
“Enabling Concurrent Multithreaded MPI B 0.4
Communication on Multicore Petascale 0.3 0

Systems” EuroMPI 2010
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Why is it hard to optimize MPI_THREAD_MULTIPLE

= MPIinternally maintains several resources

= Because of MPI semantics, it is required that all threads have

access to some of the data structures

— E.g., thread 1 can postan Irecv, and thread 2 can wait for its
completion—thustherequest queue hasto be shared between both
threads

— Since multiple threads are accessing thisshared queue, it needs to be

locked —adds a lot of overhead
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Hybrid Programming: Correctness Requirements

* Hybrid programming with MPl+threads does not do much to
reduce the complexity of thread programming

— Yourapplication still hasto be a correct multi-threaded application

— On top of that, you also need to make sure you are correctly following
MPI semantics

= Many commercial debuggers offer support for debugging
hybrid MPl+threads applications (mostly for MPIl+Pthreads
and MPI+OpenMP)
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An Example we encountered

= We received a bugreport about a very simple
multithreaded MPI program that hangs

= Run with 2 processes
= Each process has 2 threads

= Both threads communicate with threads on the other

process as shown in the next slide

= We spent several hours trying to debug MPICH before
discovering that the bugis actually in the user’s program ®
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2 Proceses, 2 Threads, Each Thread Executes this
Code

for (j =0; j<2;j++) {
if (rank == 1) {
for (i=0; i<2;i++)
MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);
for (i=0; i<2;i++)
MPI_Recv(NULL, 0, MPI_CHAR, 0,0, MPI_COMM_WORLD, &stat);

}
else{ /*rank==0%*/
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Intended Ordering of Operations

Rank 0 Rank 1

2 recvs (T1) < > 2sends(T1)

2 sends (T1) 2 recvs (T1)

2 recvs (T1) 2 sends (T1)

2 sends (T1) < > 2recvs (T1)
2 recvs (T2) 2 sends (T2)
2 sends (T2) 2 recvs (T2)
2 recvs (T2) < > 2sends(T2)
2 sends (T2) 2 recvs (T2)

= Every send matches a receive on the other rank
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Possible Ordering of Operations in Practice

Rank 0 Rank 1
2 recvs (T1) < > 2 sends (T1)
2 sends (T1) €= > 1 recv (T1)
1recv(T1) < ———————> 2 sends(T2)
1 recv (T2) €< —> 1 recv (T2)
1 recv (T1) 1 recv (T2) 1 recv (T1) 1 recv (T2)
2 sends(T1) 2sends(T2) 2 sends(T1) 2 sends(T2)
2 recvs (T2) 2 recvs (T1) 2 recvs (T2)

2 sends (T2)

= Because the MPI operations can be issued in an arbitrary
order across threads, all threads could blockina RECV call
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Some Things to Watch for in OpenMP

= Limited thread and no explicit memory affinity control (but
see OpenMP 4.0 and the 4.1 Draft)

— “First touch” (have intended “owning” thread perform first access)
providesinitial staticmapping of memory

e Next touch (move ownership to most recent thread) could help
— No portable way to reassign memory affinity — reduces the
effectiveness of OpenMP when used to improve load balancing.
= Memory model can require explicit “memory flush”
operations
— Defaults allowrace conditions

— Humans notoriously poor atrecognizingall races

e |t only takes one mistake to create a hard-to-find bug

Advanced MPI, SC15 (11/16/2015)
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Some Things to Watch for in
MPI + OpenMP

= No interface for apportioningresources between MPI and
OpenMP

— On an SMP node, how many MPI processes and how many OpenMP
Threads?

e Note the static nature assumed by this question

— Note that havingmore threads than cores can be important for hiding
latency

e Requires very lightweight threads

= Competitionfor resources
— Particularly memory bandwidth and network access

— Apportionment of network access between threads and processes is
also a problem, as we’ve already seen.
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Where Does the MPI + OpenMP Hybrid Model Work
Well?

= Compute-boundloops

— Many operations per memory load
= Fine-grain parallelism

— Algorithms that are latency-sensitive

= Load balancing

— Similarto fine-grain parallelism; ease of

= Memory boundloops

Advanced MPI, SC15 (11/16/2015) 113



Compute-Bound Loops

= Loopsthatinvolve many operations per load from memory
— Thiscan happeninsome kinds of matrix assembly, for example.

— Jacobi update not compute bound

Advanced MPI, SC15 (11/16/2015) 114



Fine-Grain Parallelism

= Algorithms that require frequent exchanges of small amounts
of data

= E.g., in blocked preconditioners, where fewer, larger blocks,
each managed with OpenMP, as opposed to more, smaller,
single-threaded blocksin the all-MPI version, gives you an
algorithmic advantage (e.g., fewer iterationsina
preconditioned linear solution algorithm).

= Even if memory bound
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Load Balancing

* Where the computational load isn't exactly the same in all
threads/processes; this can be viewed as a variation on fine-

grained access.

" OpenMP schedules can handle some of this

— For very fine grain cases, a mix of staticand dynamic scheduling may
be more efficient
— Currentresearch lookingat more elaborate and efficient schedules for

this case

Advanced MPI, SC15 (11/16/2015) 116



Memory-Bound Loops

= Where read data is shared, so that cache memory can be
used more efficiently.

= Example: Table lookup for evaluating equations of state

— Tablecan be shared

— If table evaluated as necessary, evaluations can be shared
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Where is Pure MPI Better?

" Trying to use OpenMP + MPI on very regular, memory-
bandwidth-bound computationsis likely to lose because of
the better, programmer-enforced memory locality
management in the pure MPI version.

= Another reason to use more than one MPI process - if a single
process (or thread) can't saturate the interconnect - then use
multiple communicating processes or threads.

— Note thatthreadsand processes are not equal
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Hybrid Programming with Shared Memory

= MPI-3 allows different processes to allocate shared memory
through MPI

— MPI_Win_allocate_shared

= Uses many of the concepts of one-sided communication

= Applicationscan do hybrid programming using MPI or
load/store accesses on the shared memory window

= Other MPI functions can be used to synchronize access to
shared memory regions

" Can besimplerto program than threads
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Creating Shared Memory Regions in MPI

\ )

|
MPI|_COMM_WORLD

MPI_Comm_spIit_typei(COMM_TYPE_SHARED)

\ J\ J\ )
| Y Y
Shared memory Shared memory Shared memory
communicator communicator communicator
& MPI_Win_allocate _shared ¢ &
J\ J\ )
Y Y Y
Shared memory Shared memory Shared memory
window window window

Advanced MPI, SC15 (11/16/2015)
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Regular RMA windows vs. Shared memory windows

=  Shared memory windows allow
application processes to directly
perform load/store accesses on
all of the window memory

PUT/GET

Load/store Load/store

Local Local — E.g.,x[100] =10
memor memor L. .
i y = Allof the existing RMA functions
Traditional RMA windows can also be used on such

memory for more advanced
semantics such as atomic
operations

= Canbevery useful when
Load/store processes want to use threads
only to get access to all of the
memory on the node

Load/store
Load/store

Local memory

— You can create a shared memory
Shared memory windows window and put your shared data
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Memory allocation and placement

= Shared memory allocation does not need to be uniform
across processes

— Processes can allocate a different amount of memory (even zero)

= The MPI standard does not specify where the memory would
be placed (e.g., which physical memory it will be pinned to)

— Implementations can choose their own strategies, thoughiitis

expected that animplementation will try to place shared memory
allocated by a process “close to it”

"= The total allocated shared memory on a communicator is
contiguous by default

— Users can pass aninfo hint called “noncontig” that will allow the MPI

implementationto align memory allocations from each process to
appropriate boundaries to assist with placement
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Shared Arrays with Shared memory windows

int main (int argc, char ** argv)

{

int buf[100];

MPI Init(&argc, &argv);

MPI_Comm split type(..., MPI_COMM TYPE SHARED,
MPI Win allocate shared(comm, ..., &win);

MPI_Win_;ockall(win);

/* copy data to local part of shared memory */
MPI Win sync(win) ;

/* use shared memory */
MPI Win unlock all(win);
MPI Win free (&win);

MPI Finalize() ;
return O;

Advanced MPI, SC15 (11/16/2015)
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Walkthrough of 2D Stencil Code with Shared
Memory Windows

= stencil_mpi_shmem.c

= Code can be downloaded from

www.mcs.anl.gov/~thakur/scl5-mpi-tutorial
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Accelerators in Parallel Computing

CPUO
" General purpose, highly <
parallel processors :

— High FLOPs/Watt and FLOPs/S CPU 1

— Unit of execution Kernel

— Separate memory subsystem

1esdiy)

PCle

PCle

NIC

KIOWOIN

— Prog. Models: CUDA, OpenCL, ...

Clusters with accelerators are

becoming common

New programmability and
performance challenges for
programming models and runtime

systems

Advanced MPI, SC15 (11/16/2015)
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Hybrid Programming with Accelerators

= Many users are looking to use accelerators within their MPI
applications

= The MPI standard does not provide any special semantics to
interact with accelerators

— Current MPI threading semantics are considered sufficient by most

users

— There are some research efforts for making accelerator memory
directly accessibly by MPI, butthose are not a part of the MPI standard

Advanced MPI, SC15 (11/16/2015)

126



Current Model for MPl+Accelerator Applications

double *dev_buf, xhost buf;
‘,G@ cudaMalloc (&dev_buf, size);
GPU &7

cudaMallocHost (&host_buf, size);

if (my_rank == sender) { /* sender =/
computation_on_GPU (dev_buf);
cudaMemcpy (host_buf, dev_buf, size, ...);
MPI Send(host_buf, size, ...);

} else { /* receiver x/
MPI Recv (host buf, size, ...);
cudaMemcpy (dev_buf, host_buf, size, ...);
computation_on_GPU (dev_buf);

Advanced MPI, SC15 (11/16/2015) 127



Alternate MPI+Accelerator models being studied

= Some MPI implementations (MPICH, Open MPI, MVAPICH)
are investigating how the MPI implementation can directly
send/receive data from accelerators

— Unified virtual address (UVA) space techniques where all memory

(including accelerator memory) is represented with a “void *”

— Communicatorand datatype attribute models where users can inform
the MPI implementation of where the dataresides

" (Clear performance advantages demonstrated in research
papers, but these features are not yet a part of the MPI
standard (as of MPI-3)

— Could beincorporatedin a future version of the standard
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Advanced Topics: Nonblocking Collectives,
Topologies, and Neighborhood Collectives
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Nonblocking Collective Communication

= Nonblocking(send/recv) communication
— Deadlock avoidance
— Overlappingcommunication/computation
= Collectivecommunication

— Collection of pre-defined optimized routines

= - Nonblocking collective communication
— Combinesboth techniques (more than the sum of the parts ©)
— System noise/imbalance resiliency
— Semantic advantages

— Examples

Advanced MPI, SC15 (11/16/2015)
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Nonblocking Collective Communication

= Nonblockingvariants of all collectives
— MPI_lbcast(<bcast args>, MPl_Request *req);

= Semantics
— Function returns no matter what
— No guaranteed progress (quality of implementation)
— Usual completion calls (wait, test) + mixing

— Out-of order completion

= Restrictions
— No tags, in-order matching
— Send and vector buffers may not be touched during operation

— MPI_Cancel not supported

— No matching with blocking collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
Advanced MPI, SC15 (11/16/2015) 131



Nonblocking Collective Communication

= Semantic advantages

— Enableasynchronousprogression (and manual)
e Software pipelinling

— Decoupledatatransfer and synchronization
e Noise resiliency!

— Allow overlappingcommunicators
e See also neighborhood collectives

— Multiple outstanding operations at any time

e Enables pipelining window

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
Advanced MPI, SC15 (11/16/2015) 132



Nonblocking Collectives Overlap

= Software pipelining
— More complex parameters

— Progressionissues

— Not scale-invariant

Progess CPU Progess  cpu
network network
.“F.’.r.c;%:.;s; """ v 1) KT ) N 1) \ Process  cpy
network network
Progess CPU Protz:ess CPU
network network

Progess CPU

Progess CPU
network network

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications
Advanced MPI, SC15 (11/16/2015) 133



A Non-Blocking Barrier?

= What can that be good for? Well, quite a bit!

= Semantics:
— MPI_lbarrier() — calling process entered the barrier, no

synchronization happens
— Synchronization may happen asynchronously

— MPI_Test/Wait()— synchronization happensif necessary

= Uses:
— Overlap barrier latency (small benefit)

— Use the split semantics! Processes notify non-collectively but

synchronize collectively!

Advanced MPI, SC15 (11/16/2015) 134



A Semantics Example: DSDE

= Dynamic Sparse Data Exchange
— Dynamic: comm. pattern varies across iterations

— Sparse: number of neighborsis limited (O(log P) )

— Data exchange: only senders know neighbors

Process Process Process Process Process Process

0 1 2 3 4 5
S
E
B 0 E
2] 0 4] E
1] 0 1] 2] E 4]
E
0] 2] El
0] 1] 2] E a
0] 1] 2] E 4] S
Process Process Process Process Process Process
0 1 2 3 4 5

Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
Advanced MPI, SC15 (11/16/2015)
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N
Dynamic Sparse Data Exchange (DSDE)

= Main Problem: metadata

— Determine who wants to send how much data to me
(I must post receive and reserve memory)

OR: Process Process Process Process Process Process
0 1 2 3 4 5
— Use MPI semantics:
5
e Unknown sender 3]
(2 0 (3
MPI_ANY_SOURCE 2] 0] r 3]
e Unknown message size & 0] d H 3 £
e Reduces problem to counting
the number of neighbors
e Allow faster implementation! E
0 (2) E
0 1) (2) E 4
0 1) (2 E 4 5
Process Process Process Process Process Process
0 1 2 3 4 5

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
Advanced MPI, SC15 (11/16/2015) 136



Using Alltoall (PEX)

= Based on Personalized Exchange (@(P))

— Processes exchange
metadata (sizes)

about neighborhoods
with all-to-all

— Processes post
receives afterwards

— Most intuitive but
least performance
and scalability!

Process Process Process Process Process Process

0 1 2 3 4 5
0 3 0] 0 0] o]
1 o 1 o ol H| |[o
2 0 0 1] o| E1| |[0]
0 0 0 0 4 0
o H| (o @ |& o ol B/ |1
o] A| |lo] [J| ([ EX| (o] 1] E]| |0
1 0] 1] 2] E 4
N ZI -l
MPI_ALLTOALL

B - 'MPI_SEND/MPI_RECV

0 1] 2)

3 0 0

0 1) J

0 0 1

o M | o

ol (1| |[of EN| (Lo
0 1

[el»lofelolel,

[2lele]=|o]o]

BREEEE

Process Process Process Process Process Process

0 1

2

3

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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Reduce_scatter (PCX)

= Bases on Personalized Census ( @(P) )

— Processes exchange
metadata (counts) about
neighborhoods with
reduce_scatter

— Receivers checks with
wildcard MPI_IPROBE
and receives messages

Process
0

Process Process Process Process Process

1 4

2

3

5

EJEJEEEE

©lojojole]=

EJEEJEJEEJ

E]E]E]BE]E

SRRl
wlw]wlw]al

©|=[o]oje[e

MPI_REDUCE_SCATTER

— Better than PEX but r

MPI_ SEND/MPI PROBE(MPI ANY SOURCE)/MPI RECV

non-deterministic!

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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MPI_lbarrier (NBX)

= Complexity - census (barrier): (©(log(P)) )

Combines metadata with actual transmission

POint-tO-pOint Process Process Process Process Process Process
. . 0 1 2 3 4 5
synchronization ]
Continue receiving g
until barrier completes 2] 0] 3]
2] 0] 4 3]
Processes start coll. a Q o gl 8l o
synch. (barrier) when - z MPI_ISSEND = ]
p2p phase ended | LOOP:MPI_IPROBE(MPI_ANY_SOURCE)/MPI_RECV |
_ o |_if MPI_SSENDs finished: start MP|_IBARRIER |
e barrier = distributed |_’ until MPI_IBARRIER completed ‘J
marker! ALY, F AF
Better than PEX,
PCX, RSX! - all o
0 1] 2] 3] 4
0] 1 2] 3] 4 5]
Process Process Process Process Process Process
0 1 2 3 4 5

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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Parallel Breadth First Search

= On aclustered Erd6s-Rényi graph, weak scaling
— 6.75 million edges per node (filled 1 GiB)

BlueGene/P — with HW barrier! o Myrinet 2000 with LibNBC
160 rorsiPEX i BFS+PEX —+—
140 |BFS+PCX --é-ne / 100 BFS+PCX ¢
BES+NBX o f / 90 [BFS+RSX ¥
P ) BFS+NBX i
g 120 / % 2 g0
Q i/ (]
@ 100 / g 70
(D :I U)
= 80 / ; £ 60
2 / g
= 60 / X = 40
w R (2]
o 40 / / E 30
20 e )(‘m‘."")( ?g
.---—""):e -------- . F :
0 c AR .- WO .- WRORIOY B 0 .
64 128 256 512 1024 2048 4096 8192 16384 16 32 64 128 256 512 1024 2048
Number of Processes Number of Processes

= HW barrier support is significant at large scale!

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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Parallel Fast Fourier Transform

= 1D FFTs in all three dimensions
— Assume 1D decomposition (each process holds a set of planes)

— Best way: call optimized 1D FFTs in parallel = alltoall

A

YNy

N

%
0

o

<

"

5]
) = Alltoall s i =
z z| o
>
y X *
— Red/yellow/green are the (three) different processes!
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A Complex Example: FFT

for(int x=0; x<n/p; ++x) 1d_fft(/* x-th stencil */);

// pack data for alltoall
MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);
// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications
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Parallel Fast Fourier Transform

= Data already transformed in y-direction

Advanced MPI, SC15 (11/16/2015) 143



Parallel Fast Fourier Transform

= Transform first y planeinz

Advanced MPI, SC15 (11/16/2015) 144



Parallel Fast Fourier Transform

= Start ialltoall and transform second plane

Advanced MPI, SC15 (11/16/2015) 145



Parallel Fast Fourier Transform

= Start ialltoall (second plane) and transform third

Advanced MPI, SC15 (11/16/2015) 146



Parallel Fast Fourier Transform

= Start ialltoall of third plane and ...

Advanced MPI, SC15 (11/16/2015) 147



Parallel Fast Fourier Transform

= Finishialltoall of first plane, start x transform

RO

%%.

.

%?f.s
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Parallel Fast Fourier Transform

= Finish second ialltoall, transform second plane

D000

z%

.P.F

.

%?f.s
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Parallel Fast Fourier Transform

= Transform last plane - done

R 0

N

150
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FFT Software Pipelining

MPI_Request req[nb];
for(int b=0; b<nb; ++b) { //loop over blocks
for(int x=b*n/p/nb; x<(b+1)n/p/nb; ++x) 1d_Fft(/* x-th stencil*/);

// pack b-th block of data for alltoall
MPI_lalltoall(&in, n/p*n/p/bs, cplx_t, &out, n/p*n/p, cplx_t, comm, &req[b]);

}
MPI_Waitall(nb, req, MPI_STATUSES IGNORE);

// modified unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);
// unpack data from alltoall and transpose

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications
Advanced MPI, SC15 (11/16/2015)
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Nonblocking And Collective Summary

= Nonblockingcomm does two things:
— Overlap and relax synchronization

= Collectivecomm does one thing
— Specialized pre-optimized routines
— Performance portability

— Hopefullytransparent performance

"= They can be composed

— E.g., software pipelining

Advanced MPI, SC15 (11/16/2015) 152



Topologies and Topology Mapping
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Topology Mapping and Neighborhood Collectives

= Topology mapping basics
— Allocation mappingvs.rank reordering

— Ad-hocsolutionsvs. portability

= MPItopologies
— Cartesian

— Distributed graph

= Collectives on topologies— neighborhood collectives

— Use-cases

Advanced MPI, SC15 (11/16/2015) 154



Topology Mapping Basics

"= MPI supports rank reordering

— Changenumberingin a given allocation to reduce congestion or
dilation

— Sometimes automatic(early IBM SP machines)
= Properties

— Always possible, but effect may be limited (e.g., in a bad allocation)

— Portable way: MPI process topologies

e Network topology is not exposed

— Manual data shuffling after remappingstep

Advanced MPI, SC15 (11/16/2015) 155



Example: On-Node Reordering

Naive Mapping Optimized Mapping

node 0 node 2 node 0 node 2

@ 2442 0 @ 1955 9
@ e Topomap e o

144

3055 5800 1869

node 1 node 3 node 1 node 3

1869 e 651 o

Gottschling et al.: Productive Parallel Linear Algebra Programming with Unstructured Topology Adaption
Advanced MPI, SC15 (11/16/2015) 156



Off-Node (Network) Reordering

Application Topology Network Topology

Topomap

Advanced MPI, SC15 (11/16/2015) 157



MPI Topology Intro

= Conveniencefunctions(in MPI-1)
— Create a graph and query it, nothingelse

— Useful especially for Cartesian topologies
e Query neighbors in n-dimensional space

— Graphtopology: each rank specifies full graph ®
= Scalable Graph topology (MPI-2.2)

— Graphtopology: each rankspecifies its neighborsoran arbitrary
subset of the graph

* Neighborhood collectives (MPI-3.0)

— Addingcommunication functions defined on graph topologies
(neighborhood of distance one)

Advanced MPI, SC15 (11/16/2015) 158



MPIl_Cart_create

MPI_Cart_create(MPI_Comm comm_old,int ndims, const int *dims,
constint *periods, int reorder, MPI_Comm *comm__cart)

= Specify ndims-dimensional topology
— Optionally periodicin each dimension (Torus)

= Some processes may return MPI_COMM __NULL

— Product sum of dims must be<=P

= Reorder argument allows for topology mapping

— Each callingprocess may have a new rank in the created communicator

— Data hasto be remapped manually

Advanced MPI, SC15 (11/16/2015)
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MPI_Cart_create Example

int dims[3]={5,5,5};

int periods[3]={1,1,1};

MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

= Creates logical 3-d Torus of size 5x5x5

= But we’re starting MPI processes with a one-dimensional
argument (-p X)
— User has to determine size of each dimension

— Often as “square” as possible, MPI can help!

Advanced MPI, SC15 (11/16/2015) 160



MPIl_Dims_create

MPI_Dims_create(int nnodes, int ndims, int *dims)

" Create dims array for Cart_create with nnodes and ndims

— Dimensions are as close as possible (well, in theory)

= Non-zero entriesin dims will not be changed

— nnodes must be multiple of all non-zeroes

Advanced MPI, SC15 (11/16/2015)
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MPI_Dims_create Example

intp;
MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Dims_create(p, 3, dims);

int periods[3] ={1,1,1};
MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);

= Makes life a little bit easier

— Some problems may be better with a non-square layout though

Advanced MPI, SC15 (11/16/2015) 162



Cartesian Query Functions

" Library supportand convenience!

= MPI_Cartdim_get()

— Gets dimensions of a Cartesian communicator

= MPI_Cart_get()

— Getssize of dimensions

= MPI_Cart_rank()

— Translate coordinates to rank

= MPI_Cart_coords()

— Translaterankto coordinates

Advanced MPI, SC15 (11/16/2015)
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Cartesian Communication Helpers

MPI_Cart_shift(MPl_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

= Shiftinone dimension
— Dimensionsare numbered from 0 to ndims-1
— Displacementindicates neighbordistance (-1, 1, ...)
— May return MPl_PROC_NULL
= Very convenient, all you need for nearest neighbor
communication

— No “over the edge” though

Advanced MPI, SC15 (11/16/2015)

164



Code Example

= stencil-mpi-carttopo.c

= Adds calculation of neighbors with topology

= by

Advanced MPI, SC15 (11/16/2015) 165



..........

.-f,‘&‘.ti
o ; h

?4‘
" 4
[
N 08

{>
Etge ist for all p 0 egs@g"""ué
o' X n.. .

I

Nl g
":'.Qf-g}

s
A

= edges st
— Edge list

i NELREIEN b
DR e

et

o

oA
G A )
-

— Process j hasin o

_ Advanced MPI, SC15 (11/16/2015)

166



Distributed graph constructor

= MPI_Graph create is discouraged
— Not scalable

— Not deprecated yet but hopefully soon

= New distributed interface:

— Scalable, allows distributed graph specification

e Either local neighbors or any edge in the graph
— Specify edge weights

e Meaning undefined but optimization opportunity for vendors!
— Info arguments

e Communicate assertions of semantics to the MPI library

e E.g., semantics of edge weights

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2
Advanced MPI, SC15 (11/16/2015) 167



MPI_Dist_graph_create_adjacent

MPI_Dist_graph_create adjacent(MPI_Comm comm_old,
intindegree, constint sources[], const int sourceweightsl],
int outdegree, const int destinations]],
const int destweights[], MPI_Info info, int reorder,
MPI_Comm *comm_dist_graph)

" indegree, sources, “weights — source proc. Spec.

= outdegree, destinations, “weights — dest. proc. spec.
" info, reorder, comm_dist_graph —as usual

= directed graph

= Each edge is specified twice, once as out-edge (at the source)
and once as in-edge (at the dest)

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2
Advanced MPI, SC15 (11/16/2015)
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MPI_Dist_graph_create_adjacent

= Process O:
— Indegree: 0
— Qutdegree: 2
— Dests: {3,1}

= Process 1:
— Indegree: 3
— Outdegree: 2
— Sources: {4,0,2}
— Dests: {3,4}

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

Advanced MPI, SC15 (11/16/2015)
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MPI_Dist_graph_create

MPI_Dist_graph_create(MPl_Comm comm_old, int n,
const int sources|], const int degrees|],
const int destinations[], const int weights[], MPI_Info info,
int reorder, MPI_Comm *comm_dist_graph)

" n-—number of source nodes

" sources —n source nodes

= degrees —number of edges for each source

= destinations, weights — dest. processor specification
= info, reorder — as usual

= More flexible and convenient

— Requires global communication
— Slightly more expensive than adjacent specification

Advanced MPI, SC15 (11/16/2015) 170



MPI_Dist_graph_create

= Process O:
— N:2
— Sources: {0,1}
— Degrees: {2,1}"
— Dests: {3,1,4}
= Process 1:
— N:2
— Sources: {2,3}

— Degrees: {1,1}
— Dests: {1,2}

* Note that in this example, process 0 specifies only one of the two outgoing edges
- of process 1; the second outgoing edge needs to be specified by another process

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2
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Distributed Graph Neighbor Queries

MPI_Dist_graph_neighbors_count(MPI_Comm comm,

int *indegree,int *outdegree, int *weighted)

= Query the number of neighbors of calling process
= Returnsindegree and outdegree!

= Alsoinfoif weighted

MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree,
int sources[], int sourceweights[], int maxoutdegree,

int destinations[],int destweights[])

= Query the neighbor list of calling process

= Optionallyreturn weights

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2
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Further Graph Queries

MPI_Topo_test(MPI_Commcomm, int *status)

= Status is either:
— MPI_GRAPH (ugs)
— MPI_CART
— MPI_DIST_GRAPH
— MPI_UNDEFINED (no topology)

= Enables to write libraries on top of MPI topologies!
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Neighborhood Collectives
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Neighborhood Collectives

" Topologiesimplement no communication!

— Just helper functions

= Collectivecommunications only cover some patterns

— E.g., nostencil pattern

= Several requests for “build your own collective” functionalityin
MPI

— Neighborhood collectives are a simplified version

— Cf. Datatypes for communication patterns!
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Cartesian Neighborhood Collectives

= Communicate with direct neighborsin Cartesian topology
— Correspondsto cart_shift with disp=1

— Collective (all processes in comm must call it, including processes
without neighbors)
— Buffers are laid out as neighbor sequence:
e Defined by order of dimensions, first negative, then positive
e 2*ndims sources and destinations

e Processes at borders (MPlI_PROC_NULL)leave holes in buffers (will not
be updated or communicated)!

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI
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Cartesian Neighborhood Collectives

= Buffer ordering example:

) ¢

<> 1 |

6 w
Praocess 0

Sendbuffer

v

- 2 |4
j K ecvbuffer

)

~

N\

| o |€»| w |[e»| o
i

| N || & || 2
$

| o |ap| o || N

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI
Advanced MPI, SC15 (11/16/2015) 177



Graph Neighborhood Collectives

= Collective Communicationalong arbitrary neighborhoods

— Order is determined by order of neighbors as returned by
(dist_)graph_neighbors.

— Distributed graph isdirected, may have different numbers of
send/recv neighbors

— Canexpress dense collective operations ©

— Any persistent communication pattern!

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI
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MPI_Neighbor_allgather

MPI_Neighbor_allgather(const void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

Sends the same message to all neighbors
= Receivesindegree distinct messages

= Similar to MPI_Gather

— The all prefix expresses that each process is a “root” of his
neighborhood

= Vector version for full flexibility
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MPI_Neighbor_alltoall

MPI_Neighbor_alltoall(constvoid* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

= Sends outdegree distinct messages
= Received indegree distinct messages

= Similarto MPI_Alltoall

— Neighborhoodspecifies full communication relationship

= Vector and w versions for full flexibility
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Nonblocking Neighborhood Collectives

MPI_Ineighbor_allgather(..., MPI_Request *req);
MPI_Ineighbor _alltoall(..., MPI_Request *req);

= Very similar to nonblocking collectives
= Collectiveinvocation

= Matchingin-order (no tags)

— No wild tricks with neighborhoods! In order matching per
communicator!

Advanced MPI, SC15 (11/16/2015)
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Walkthrough of 2D Stencil Code with Neighborhood
Collectives

= Codecan be downloaded from

www.mcs.anl.gov/~thakur/sclb-mpi-tutorial
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Why is Neighborhood Reduce Missing?

MPI_Ineighbor_allreducev(...);

= Was originally proposed (see original paper)

= High optimization opportunities
— Interestingtradeoffs!
— Research topic
= Not standardized due to missing use-cases

— My team is workingon an implementation

— Offering the obvious interface

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI
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Topology Summary

* Topologyfunctions allow to specify application
communication patterns/topology
— Convenience functions (e.g., Cartesian)

— Storing neighborhood relations (Graph)

"= Enablestopology mapping (reorder=1)
— Not widelyimplemented yet

— May requires manual data re-distribution (accordingto new rank
order)

= MPI does not expose information about the network topology
(would be very complex)
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Neighborhood Collectives Summary

= Neighborhood collectives add communication functionsto
process topologies

— Collective optimization potential!

Allgather

— Oneitem to all neighbors

Alltoall

— Personalized item to each neighbor

High optimization potential (similar to collective operations)

— Interface encourages use of topology mapping!

Advanced MPI, SC15 (11/16/2015) 185



Section Summary

" Process topologiesenable:
— High-abstraction to specify communication pattern

— Has to be relatively static (temporal locality)
e Creation is expensive (collective)

— Offers basiccommunication functions
= Library can optimize:
— Communicationschedule for neighborhood colls

— Topology mapping
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Recent Efforts of the MPI Forum for MPI-4

and Future MPI Standards

E’H Ziirich



Introduction

= The MPI Forum continues to meet once every 3 months to
define future versions of the MPI Standard

— The next Forum meeting is December 7-10, 2014, in San Jose

= We describe some of the proposals the Forum is currently
considering
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Improved Support for Fault Tolerance

MPI always had support for error handlers and allows implementations
to return an error code and remain alive

MPI Forum working on additional support for MPI-4

Current proposal handles fail-stop process failures (not silent data
corruption or Byzantine failures)

= |f acommunication operation fails because the other process has failed, the function
returns error code MPI_ERR_PROC_FAILED

= User cancall MPI_Comm_shrink to create a new communicator that excludes failed

processes
=  Collective communication can be performed on the new communicator

= Lots of other details in the proposal...
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Better Hybrid Programming: Extending MPI to Support
Multiple Endpoints Per Process

= |n MPI today, each process has a single communication endpoint
(rankin MPI_COMM_WORLD)

= Multiple threads of a process communicate through that single
endpoint, requiringthe implementation to use locks etc., which are
expensive

= MPI Forumis discussinga proposal (for MPI-4) that allows a process
to have multiple endpoints

= Threads within a process can attach to different endpointsand
communicate through those endpoints as if they are separate ranks

= The MPI implementation can avoid using locks if each thread
communicateson a separate endpoint

= This allowsthe MPI standard to support “MPI + X” more efficiently
without specifying what X is

Advanced MPI, SC15
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Other concepts being considered

MPI Streams interface

— Streaming data between sender and receiver

Nonblocking File Manipulation routines

— Nonblockingversions of file open, close, set_view, etc.

Active Messages

— Initiate operations on remote processes
— Possiblyas an additionto MPI RMA

Tools Interface
— Scalable process acquisition interface

— Introspection of MPI handles
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Concluding Remarks
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Conclusions

= Parallelism is critical today, given that itis the only way to
achieve performance improvement with modern hardware

= MPIlis an industry standard model for parallel programming

— Alarge number of implementations of MPI exist (both commercial and
publicdomain)

— Virtually every system in the world supports MPI
= Gives user explicit control on data management
= Widely used by many scientific applications with great success

" Your application can be next!

Advanced MPI, SC15 (11/16/2015)
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Web Pointers

= MPI standard : http://www.mpi-forum.org/docs/docs.html

= MPI Forum : http://www.mpi-forum.org/

= MPI implementations:
— MPICH : http://www.mpich.org
— MVAPICH : http://mvapich.cse.ohio-state.edu/

— Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

— Microsoft MPI: https://msdn.microsoft.com/en-us/library/bb524831%28v=vs.85%29.aspx

— Open MPI : http://www.open-mpi.org/
— IBM MPI, Cray MPI, HP MPI, TH MPI, ...

= Several MPI tutorials can be found on the web

Advanced MPI, SC15 (11/16/2015) 194



New Tutorial Books on MPI

SCIENTIFIC SCIENTIFIC

AND AND

ENGINEERING ENGINEERING

COMPUTATION COMPUTATION

SERIES SERIES

Using MPI Using Advanced MPI

Portable Parallel Programming Modern Features of the

with the Message-Passing Interface Message-Passing Interface

third edition

William Gropp

William Gropp Torsten Hoefler

Ewing Lusk Rajeev Thakur

Anthony Skjellum Ewing Lusk

Basic MPI Advanced MPI, including MPI-3
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Released at SC15

New Book on Parallel Programm

Edited by Pavan Balaji

MPI: W. Gropp and R. Thakur
GASNet: P. Hargrove
OpenSHMEM: ). Kuehn and S. Poole
UPC: K. Yelick and Y. Zheng

Global Arrays: S. Krishnamoorthy, J. Daily, A. Vishnu,
and B. Palmer

Chapel: B. Chamberlain
Charm++: L. Kale, N. Jain, and J. Lifflander
ADLB: E. Lusk, R. Butler, and S. Pieper

Scioto: J. Dinan

SWIFT:T. Armstrong, J. M. Wozniak, M. Wilde, and I.

Foster
CnC: K. Knobe, M. Burke, and F. Schlimbach

OpenMP: B. Chapman, D. Eachempati, and S.
Chandrasekaran

Cilk Plus: A. Robison and C. Leiserson
Intel TBB: A. Kukanov

CUDA: W. Hwu and D. Kirk

OpenCL: T. Mattson
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Discount code: MBALAJI3O0 (valid till 12/31/2015)
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