An Integer Programming Approach to Optimal
Derivative Accumulation

Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

Abstract In automatic differentiation, vertex elimination is onetb& many meth-
ods for Jacobian accumulation and in general it can be much efficient than the
forward mode or reverse mode [3]. However, finding the opitveeex elimination
sequence of a computational graph is a hard combinatortahiation problem.
In this paper, we propose to tackle this problem with integegramming (IP)
technique, and we develop an IP formulation for it. This éeslois to use a stan-
dard integer optimization solver to find an optimal vertexn@lation strategy. In
addition, we have developed several bound-tightening wmoireetry-breaking con-
straints to strengthen the basic IP formulation. We dematesthe effectiveness of
these enhancements through computational experiments.

Key words: Vertex elimination, combinatorial optimization, integeogramming

1 Introduction

Automatic differentiation (AD) is a family of methods for w@ining the derivatives
of functions computed by a program [2]. AD couples rule-bladiéferentiation of
language intrinsics with derivative accumulation acaogdio the chain rule. The
associativity of the chain rule leads to many possible “nsd@é combining partial
derivatives, such as the forward mode and reverse modenéxgially many cross-
country modes are possible, and finding the optimal Jac@@eanmulation strategy
is NP-hard [5]. Therefore, all AD tools employ some heucistrategies. The most
popular heuristics are pure forward mode, pure reverse panttt a hierarchical
strategy using the forward mode overall but “preaccumuigitihe derivatives of
small program units (often statements or basic blocks).mpsfied version of the

Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke
Mathematics and Computer Science Division, Argonne Natioasbkatory, Argonne, IL 60439,
USA.{j i eqchen, hovl and, t nunson, ut ke} @ts. anl . gov

2 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

optimal Jacobian accumulation problem is to find an optingtex elimination
strategy, where a vertex is eliminated by combining alldiges with all out-edges,
requiringin| x |out multiplications; see Sect. 2 for more details. It is well \mo
that vertex elimination can be much more efficient than tkesmental forward and
the incremental reverse modes [3]. Yet vertex eliminatscatard combinatorial op-
timization problem. Although, to the best knowledge of théhars, the complexity
of this problem is still undetermined, it is speculated ta\f&complete.

In this paper, we propose to use IP technique to tackle thexwetimination
problem. The motivation of using IP is that it is a powerfutiopzation technique
and has been successfully applied to solve many hard cotohisdeoptimization
problems. Specifically, IP deals with problems of minimgia function of many
variables subject to (1) linear inequality and equalitystoaints and (2) integrality
restrictions on the variables [8]. IP is usually stated as

min{c'x: Ax<b,xe€ 2"}, (1)

whereZ! is the set of nonnegative integratliimensional vectors and= (Xq, ..., %n)
are thevariables. The generality of (1) allows it to model a wide variety of com
binatorial optimization problems, for example, the travglsalesman problem [4],
the minimum-weight spanning tree problem, and the settjmaring problem [8].

We develop an IP formulation of the optimal vertex eliminatproblemi, which
enables us to use existing IP solvers to find an optimal vetiexination strategy.
Our objective is not to replace the elimination heuristisediin AD tools, since
finding the optimal elimination strategy for all basic blgakould be prohibitively
expensive. Rather, we aim to use the optimization formutato evaluate the ef-
fectiveness of heuristics and find an optimal strategy folage key computational
kernels. In particular, the optimal computational costha vertex elimination can
be used to measure whether the heuristic solution is clasggrio the optimal one.
In addition to the basic IP formulation, we develop bourghtéening and symmetry-
breaking constraints to help computationally solve thdenm.

The paper is organized as follows. Section 2 discusses tliermkulation for
the vertex elimination. Section 3 presents computatioesiliits of solving the IP
formulation of several small problems. Section 4 summara& work and briefly
describes future areas for research.

2 Integer Programming Formulations

In this section, we first briefly introduce vertex eliminatioNext, we describe how
we model vertex elimination as an integer program. In thedabsection, we dis-
cuss computational considerations in solving the integegnam.

Consider the computational gragh= (V,E) induced by a computer program
that implements$= : 0" — O™ The vertex se¥ = {1—n,...,p+m} and can be
partitioned intoX = {1—n,....0}, Z={1,....p}, andY = {p+1,...,p+m},

An IP Approach to AD 3

representing the set ofindependent variableg,intermediate variables, amd de-
pendent variables of the computer progfanrespectively. The edge detencodes
the dependence relationship among the variables. Theapdetivative of thejth
variable with respect to thigh variable is usually assigned as an edge weight for
(i,]), v(i,}) € E.

Vertex elimination transform& into a bipartite graptG’ = ({X,0,Y},E’) by
eliminating all intermediate vertices and their assocétges according to certain
rules and appropriately updating the edge weights. Afiemieating all intermedi-
ate vertices, the edge weights of the resulting bipartiég@lyrare exactly the entries
of F’; the readers can refer to [3] and [6] for more informationt &aiven inter-
mediate verteX, let B and S denote the set of predecessors and successdts of
respectively. Then eliminating vertéxinvolves removing vertek and its incident
edges from the graph and updating the edge weights as follows

Cij+=CikxCj, ViehR, jeS,

whereG;j,V(i, j) € E denote the edge weights. Eliminating vertethus requires
|R| % | S| number of floating-point multiplications. Here we assumertamber of
additions is relatively small as compared to the number dfiplications, and thus
the total number of multiplications in vertex eliminaticha good approximation
of the computational cost of accumulating the Jacobianiratiote that different
elimination sequences might result in different numbersnaftiplications. Find-
ing the best elimination sequence among pheossible ones is a combinatorial
optimization problem.

2.1 |P formulation

DefineT = {1,..., p} to be a time set. For antyc T, we useG(t) = (V(t),E(t)) to
represent the computational graph after eliminatimgermediate vertices. Denote
G(0) = (V(0),E(0)) = G. Note thatG(t) is undetermined unless a vertex elimina-
tion sequence is provided. We Et= Utp:oE(t) denote the set of edges that could
exist in the vertex elimination process. To model the faat @(t) is undetermined,
let variablecij; to represent the eddg j) at timet; we initilize c;jo with the original
graph information as follows:

(i) € E(Y) St (i,]) € E(0)
Gijt = {07 otherwise and Gijo = 0, otherwise

Similarly, let variabled denote the edge deleted, and variabldenote the edge
generated, where we say an edde j) is generated ifi, j) is formed by combining
an in edge and an out edge of an eliminated vertex; we tsmodel the elimination
sequence:

4 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

" { 1, if (i,]) € E(t— 1) and is deleted after removing a vertex at time
ijt —

0, otherwise
" 1,if (i,]) € E(t) is generated after removing a vertex at time
=1 0, otherwise
| 1, if eliminate vertex at timet
Xt =1 0, otherwise '

With these notation, the vertex elimination problem is fatated as (MinFlops).

minimize F = Z z fijt (MinFlops)
teT (i,j)eE
subject to Z/xitzl VteT 2)
i€
intzl Viez (3)
te
xt=0 VieXUuY,VteT 4)

dijt > Xit +Cijp-1) — 1
dijt > Xijt +Cij(t—1) -1

V(i,j)eE, VteT 5
dijt < Xit +Xjt (1.3) ©)
dijt < Cij—1)
fijtZdikt+dkjt—1 V(i,j)EE,VkEZ,VtET (6)
Cijt > fijt
Cijt < 1—dijt

V(i,j)€E VteT 7
Gijt < Gije—1) + (fije +dijt) (LD)eE vte)

Gijt > Ciji—1) — (fije +dije)
Xt €{0,1} Vi eV, VteT (8)
Gijt, Gijt, fijg €{0,1} V(i,j)€E VteT 9)

The objective function of (MinFlops) is the sum of the numbiedges generated
in all time periods, which is equal to the total number of nplitations. Constraints
(2) ensure that at any time period we eliminate exactly onexgand constraints (3)
ensure that every intermediate vertex is eliminated at donmeeperiod. Constraints
(4) enforce that independent or dependent vertices camnelihinated.

Constraints (5) define the edges to be eliminated at eachptred. In partic-
ular, the first (second) inequality means if verief§) is eliminated at time& and
(i,]) exists at timea — 1, then(i, j) is a deleted edge at timieThe third inequality
ensures that the eddg j) can only be an deleted edge at tiiné either vertexi
or j is eliminated at timé. The fourth inequality means that only edges existing in
the previous time period can be eliminated. Constraintei@lre that if both edge
(i,k) and (k, j) are eliminated edges, th€n j) must be generated by combining
(i,k) and(k, j).

Constraints (7) enforce the proper relationship betw@ggn- 1) andG(t). In par-
ticular, if the edg€(, j) is generated at timg then(i, j) € E(t), which is enforced

An IP Approach to AD 5

through the first inequality of (7). Similarly, {i, j) is an deleted edge at timgthen
Cijt < 1—dijt forces(i, j) ¢ E(t). The last two inequalities of (7) ensure that all the
other edges that are not incident to the eliminated vertéxnatt — 1 also exist in
timet. Constraints (8) and (9) restrict all variables to be bin@werall, constraints
(2)—(9) model the vertex elimination process. Any optin@lion (x*,d*, f*,c*)

to (MinFlops) specifies a vertex elimination sequence with minimum multipli-
cations required to mak® bipartite.

-2 ® 3
-1 4
Fig. 1 Example 0 5

We take Fig. 1 as an exampl¥:= {—2,—-1,0}, Y ={3,4,5}, andZ =T =
{1,2}. The solution of the integer program (MinFlops) is as fokow

X21=X12 =1 (remove 2 at = 1 and remove 1 dt= 2)
t=1:dip1=0r31=0os1=0r51=1
fizi="fra1="fi51=1
€ 211=C111=C011=C231=C131=Cl41=C51=1
t=2:do12=0d 1120=dop2=0132=0142=0152=1
foso="fo42="F os2="F132="F1420="F152="Foz2="Fos2="Fos2=1
€ 232=C242=C252=C132=C142=C152=C032=C042=Cos2=1

where all the other entries ¢k, d, f,c) not listed above take the value of zero. The
minimum number of multiplications required is thilg j)cg 1 fijt+ X j)eg =2 fijt =
3+9=12. o

2.2 Computational consideration for solving (MinFlops)

A standard integer program (1) is usually solved by a braaruirbound (B&B)

method. In each node of the B&B treeliaear programming (LP) relaxation of the
original IP is solved to obtain a lower bound of the objecfiection, where a LP
relaxation is (1) without the integral restriction. See tS&cof [8] and references
therein for a detailed description of the B&B method. In gahdPs with a small

number of variables and constraints are easier to solve.tiyst LP relaxations (the
lower bounds provided by the LPs are close to the optimakyaite important to the
efficiency of solving IPs. Next we discuss three methodstiefs computationally
solve (MinFlops) with a standard IP solver: reducing the hamof constraints,
developing valid lower bounds, and developing symmetsaking constraints.

6 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

Reducingthenumber of constraints Defineq= n+m-+ p. SinceG(t) is unknown
for anyt € T, the cardinality ofE is on the order of7(g?). It then follows that
the number of variables defined in (MinFlops) is on the orde’¢g? p) and the
number of constraints on the order 6fq? p?). The size of the resulting integer
program grows rapidly as the number of vertices and edgdseiytaph increase,
making the integer program challenging to solve.

The large size of the IP is partly due to the fact tl@t),vt € T is unknown
without fixing a vertex elimination sequence and tmﬁ$ is large. By definition,
E= UtpzoE(t) can be determined by enumerating all vertex eliminatioruseges,
which is impractical. However, the following result is obus.

Proposition 1. Let G* = (V,E*) be the transitive closure of G. Then E C E*.

Since the transitive closure of a graph is easy to compuyepga-loyd-Warshall’s
algorithm, we use€E* instead ofE when computation is involved. The number of
constraints in (6) grows the fastest as the graph becomgerbénd is equal to the
cardinality of the set

7 ={(i,j,kt): (i,j) €E* ke Z teT) (10)

Here an implicit assumption is that any edgeEihcould exist in any time period.
But this is not true. We can reduce the number of constram(8)i by taking into
account that some edgesHri cannot exist in certain time periods, as shown in the
following proposition.

Proposition 2. Let |;; denote the length of the shortest path that connects vertex i
and jinG, V(i,) € E*. Iflij > 2, then (i,])) ¢ E(),Vt< lij—1,te {O}UT.

Proof. Every time a verteX is removed, the length of the shortest path betwieen
and | can be shortened by 1kfis on the shortest path (or one of the shortest paths)
between and j. Otherwise, the length of the shortest path does not charges
forany (i, j) € E* andljj > 2, we need to remove at ledgt— 1 vertices in order to
form a direct edge betweerand j, which proves the result.

This proposition implies that we can reduce the number o$traimts by defining
I ={(,j,kt): (i,)) €E*, t>1ij—1, teT,vkeZ},
and replacing (6) with
fije > @i +aje— 1 V(i kt) e, (11)
We comment that.#| in general is much smaller thdr?|, which allows one to

solve larger instances.

Developing valid lower bounds We state two known results concerning the cost of
vertex elimination and transform them into valid bounditening constraints. Let
[X — K] denote the set of paths connecting the independent veera#s and let

[k — Y] be the set of paths connectikgnd the dependent vertices. The first known
result is as follows.

An IP Approach to AD 7

Observation 1 For any k € Z, the cost of eliminating vertex k last, regardless of the
elimination sequence of all the other vertices, is |[X — k| - [k Y].

From now on, we usg to representX — k| - |k — Y|. Although we do not know
which vertex is eliminated last, variableallows the flexibility of choosing any
vertexk as the last one to eliminate, afigk-7 Y Xp represents the cost of eliminating
the last vertex. The following valid inequality for vertekneination can be added
to (MinFlops) to strengthen the formulation:

F> fijt +) YXkp, (12)
teTZ{ p} (i,j%E* kgz

whereF is the variable representing the total cost of vertex elation, and the first
summation on the right-hand side is the cost of removing tisé ffi— 1 vertices.
At first glance, the terms on both sides of the inequality seerapresent the same
quantity. However, when computationally solving IP and &ssociated LP relax-
ations, all the integral restrictions on the variables aopped, and so the right-hand
side becomes a valid lower bound.

The second known result is established in [6]. Using the saotetion as in [6],
let X-k be the minimum vertex cut betweehandk, and letk-Y be the minimum
vertex cut betweek andY.

Observation 2 (Lemma 3.1 & 3.2[6]) The number of multiplications required to
eliminate vertex k, among all possible vertex elimination sequences, is underesti-
mated by |X-K| - |k-Y|; the minimal number of multiplications required for the trans-
formation G — G’ is greater than or equal to 3.z |X-k| - [k-Y].

From now on, we usgy to denotgX-K| - |k-Y|, Yk € Z. One immediate implication
of Observation 2 i& > 3. Ak. Although this inequality is valid, computationally
it is not useful. The reason is that only one variables involved in this inequality,
and this inequality does not cut off any fractional solusiofithe LP relaxations, and
thus cannot improve the lower bound. Instead, we expregg#udts in Observation
2as

FZZ Z fijt + Z Z)\kat/, vVseT, (13)

t<S(i,))eE* s<t’<pkez

where the second term on the right-hand side is a lower bonrigeocost of remov-
ing the lastp — s+ 1 vertices. We comment that (13) defipeonstraints that have
the same meaning but might have different effects commutally because each
constraint involves different components»oénd f and so might cut off different
fractional solutions of the LP relaxations.

Developing symmetry-breaking constraints Conceivably some elimination se-
quences may result in the same number of multiplicationsvé¥er, we need only
one optimal sequence. The standard IP solvers cannot rigeotiie equivalence
of two sequences and will waste considerable time explatifigrent branches of
the B&B tree with the same optimal values. We consider oneasidn where two
equivalent elimination sequences occur.

8 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

Observation 3 If vertexi and j arenot adjacent at timet,Vi,jeZ, i< j, VteT,
then the following two elimination sequences give the same number of multiplica-
tions: (1) eliminate vertex i at timet and vertex j at timet+ 1, and (2) eliminate
vertex j at periodt and vertexi at periodt + 1; all the other vertices are eliminated
in the same order.

We call the two sequences in ObservatiosyBmetric, and we develop symmetry-
breaking constraints that permit only one of the two segeenc

Proposition 3. The following constraints are violated by one of the two symmetric
sequences in Observation 3:

xjt+xi(t+1)—cijt§1, Vi,jEZ,i<j,Vt€T\{p}. (24)

Proof. If i and | are not adjacent at timtg thenc;jjy = 0. Thus (14) becomes; +
Xt+1) < 1, which is invalid for the sequence that eliminajeat timet and then

i at timet + 1, in the other wordsxjt = X1) = 1. Obviously the sequence that
eliminates at timet andj at timet + 1, namelyxit = X;.1) = 1, is permitted.

We point out that we do not know beforehand whether two vesticand j are
adjacent at timé. Constraints (14) should also be valid in the case wharel | are
adjacent at time. If (i, j) € E(t), thencj; is expected to have value 1. Then (14)
becomes

Xjt +Xt+1) —1 <1 Or Xjt+Xiq1) < 2,

which permits all four possible combinationsgf andx ;1)

3 Computational experiments

In this section, we present computational results for sgiyMinFlops). We collect
several small problems from [2], where the optimal vertémiglation and scarcity
can be verified by hand. Here the main goals are twofold: topesenthe optimal
values found by the IP solver with heuristic solutions, andémonstrate the effects
of the computational methods developed in Sect. 3. The IRehetbrmulated with
GAMS [7] and solved with XPRESS 22.01 [1] on a standard compunder the
Linux system.
We compare four IP models for the optimal vertex elimination

min{F : (2) - (9)} (Mo)
min{F : (2) - (5),(7) - (9),(11} (M1)
min{F : (2) - (5),(7) - (9),(11),(12),(13)} (M2)
min{F : (2) - (5),(7) - (9),(11),(12),(13),(14)}, (Ms)

where Mp) is the basic model (MinFlops), antl{)—(M3) gradually incorporate the
three methods proposed in Sect. 3 into the basic model.

An IP Approach to AD 9

-3 4 -3 s 4 6
&>
-2 1 -2 1
5 7
-1 -1 s s
=

0 6 0e— 8

(a) Fig. 10.4 of [3] (b) Exercise 10.8 of [3] (c) Fig. 10.1 of [3]
1 5
- 9
1 2 3 4 5 6 7 8 9 10 1 - 10
7
-1 11
0 12
(d) revbound (e) butterfly

Fig. 2 Computational graphs of test problems in Table 1

Table 1 presents the computational times of these four maatelive small prob-
lems, while Fig. 3 shows their computational graphs. We alstude in the table
the number of multiplications required by the forward moaithe, backward mode,
and minimum Markowitz degree heuristic for comparison. Bynparing the CPU

Table 1 Comparison of CPU times (in seconds) of solving mod&j)~(Ms) for five small prob-
lems. Instances (a)—(c) are from [3]. .

Vertices No. of Multiplications Times
Problem|[X]| |Y| |Z||Forward Backward MarkowitE*| Mo M1 Mz M3
figlo.4 |4 3 3| 22 18 22 180.04 0.04 0.02 0.11
ex10.8 |4 3 5| 28 24 26 220.66 0.26 0.37 0.77
figl0.l1 |4 2 5| 20 18 16 150.81 0.71 0.35 0.29
revbound 1 1 10| 10 19 10 10 2t 42.33 31.42
butterfly | 4 4 8| 48 48 48 48 t t t 337.97
atindicates failure to find a provably optimal solution within6€ec.

times for (Mp) and (1), we see that the amount of time required by) is less than
that of (Mo), as a result of the reduction in the number of constrairtie. reduction
is crucial for large graphs in that a standard IP solver nmiglbe able to solve even
the root node LP relaxations because of the out-of-memeuneisvith Mp) on large
instances. Comparing the results bkj and (V.), we see that “revbound” could not
be solved within the time limit if modeled byvi;) but can be solved with the help
of the lower bound constraints; these results demonstnatatie lower bound con-
straints we develop tighten the LP relaxations signifiga@bserve that “butterfly”
is a computational graph with lots of symmetry in its edgadttire. Having or not
having the symmetry-breaking constraint (14) makes a bfgrénce on this graph.

10 Jieqiu Chen, Paul Hovland, Todd Munson, and Jean Utke

This clearly illustrates the benefits of adding the symmébtgaking constraints to
problems with many equivalent elimination sequences.

4 Conclusion

We have developed an IP model for the vertex elimination leratfor the optimal
Jacobian accumulation. The model allows us to use IP teogpabd solve the prob-
lem, so that one can evaluate the effectiveness of hewrigsied in AD tools and
find an optimal strategy for certain computational kernelsaaddition, we have de-
veloped several methods to help computationally solveRseThe effectiveness of
the proposed methods are demonstrated by preliminary catiqmel expriments.

Several directions remain for research. First, we hopedatera benchmark of
many small to medium-sized instances with known optimalexeelimination se-
quence, to be used to evaluate different heuristics. Secmmteptually it is easy
to see that extending this approach to other combinatagpi@inization problems in
AD is possible, for example, the edge elimination problerd dre scarcity prob-
lem. How to computationally solve the corresponding IP n®dee nevertheless
challenging.

Acknowledgements We thank Robert Luce for help on deriving an earlier IP forrtialaof the
vertex elimination problem. This work was supported by the @f6€ Advanced Scientific Com-
puting Research, Office of Science, U.S. Dept. of Energy, u8detract DE-AC02-06CH11357.

References

. Xpress-Optimizer Reference Manual (2009). URLt p: // fi co. conl xpr ess
. Griewank, A.: Evaluating Derivatives: Principles and fr@iques of Algorithmic Differentia-
tion. No. 19 in Frontiers in Appl. Math. SIAM, PhiladelphigA (2000)

3. Griewank, A., Walther, A.: Evaluating Derivatives: Piiples and Techniques of Algorithmic
Differentiation, 2nd edn. No. 105 in Other Titles in Applisththematics. SIAM, Philadelphia,
PA (2008). URLht t p: / / ww. ec- secur ehost . com SI AM OT105. ht nl

4. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer progranmmgiformulation of traveling sales-
man problems. J. ACM, 326-329 (1960)

5. Naumann, U.: Optimal Jacobian accumulation is NP-completeth.M&og.112, 427-441
(2006). DOI 10.1007/s10107-006-0042-z

6. Naumann, U., Hu, Y.: Optimal vertex elimination in single-egsion-use graphs. ACM Trans-
actions on Mathematical Softwa8s(1), 1-20 (2008). DOI 10.1145/1377603.1377605

7. Rosenthal, R.E.: GAMS — A User’s Guide (2011)

8. Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatoriali®igation. Wiley-Interscience

(1999)

N =

The submitted manuscript has been created by the University of Chicago as Opefagrine National Laborator
(“Argonne”) under ContradDE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Govenhretaing
for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevoeednielwide license in said article to
reproduce, prepare derivative works, distribute copies to the public, and perfoiitiypand display publicly, by or of
behalf of the Government.

