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This white paper investigates several key aspects of the trust that a user can give to the results
of numerical simulations and scientific data analytics.! In this document, the notion of trust is
related to the integrity of numerical simulations and data analytics applications. This white
paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity [1]
by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas;
(3) providing numerous cases of result alteration, some of them leading to catastrophic failures;
(4) examining the current notion of trust in numerical simulation and scientific data analytics;
(5) providing a gap analysis; and (6) suggesting two important research directions and their
respective research topics.

To simplify the presentation without loss of generality, we consider that trust in results can be
lost (or the results’ integrity impaired) because of any form of corruption happening during the
execution of the numerical simulation or the data analytics application.

In general, the sources of such corruption are threefold: errors, bugs, and attacks (Figure 1).
Current applications are already using techniques to deal with different types of corruption.
However, not all potential corruptions are covered by these techniques. We firmly believe that
the current level of trust that a user has in the results is at least partially founded on ignorance
of this issue or the hope that no undetected corruptions will occur during the execution.

This white paper explores the notion of trust and suggests recommendations for developing a
more scientifically grounded notion of trust in numerical simulation and scientific data analytics.
We first formulate the problem and show that it goes beyond previous questions regarding the
quality of results such as V&V, uncertainty quantification, and data assimilation. We then explore
the complexity of this difficult problem, and we sketch complementary general approaches to
address it.

1 This paper does not focus on the trust that the execution will actually complete.
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Figure 1: The trust problem. Attacks, bugs,
radiations and defects are distinct sources of
systematic and nonsystematic corruptions.

Corruption classification and origins

We are focusing here only on corruptions that stay unnoticed. All corruptions leading to the
execution hanging or crashing (i.e., execution control flow corruptions) or to results obviously
wrong (e.g., data corruption of such a magnitude that the corrupted result is easily detected by
the end user) are beyond the scope of this white paper.

Some corruptions are expected, controlled, and accepted. For example, errors introduced from
modeling, discretization, or round-off errors are intrinsic to the methods and algorithms used in
numerical simulations and data analytics. These errors are not considered harmful because
users are aware of them and their potential amplitude; such errors affect the user-expected
accuracy at the end of the computation. Moreover, efforts are underway to quantify these errors
from end to end through uncertainly quantification, verification, and validation [2].

The corruptions for which significant research efforts are needed in the context of trust are
those that corrupt the results in a harmful way but are not detected by hardware, software, or
the users. We consider two main classes of corruptions: nonsystematic and systematic.

Nonsystematic corruptions are those affecting an execution in a unique way; that is, the
probability of repetition of the exact same corruption in another execution is very low. A
harmful corruption is manifested as an alteration of one of more data elements. Origins of such
corruptions may be radiations (cosmic ray, alpha particles from package decay), bugs in some
paths of nondeterministic executions, attacks targeting executions individually and other
potential sourcess3.

Systematic corruptions# affect multiple executions of the same code, with the same input
parameters, in the same way. The harmful corruption also is manifested as an alteration of one
of more data elements. Executions do not need to be identical to produce the same corruptions.
Origins of these corruptions are twofold: (1) bugs or defects (hardware or software) that are
exercised the same way by executions (different executions will execute a same code region or
the same instruction that will cause the same corruption) and (2) attacks that will consistently
affect executions the same way.

2 This latter aspect is covered in the DOE report on Cybersecurity for Scientific Computing Integrity [1],
through the notion of provenance and trustable communications and storage.

3 Devices operating at near-threshold voltages suffer more failures if not controlled appropriately [38].

4 Systematic corruptions cover conception errors (also known as epistemic uncertainties in the domain of
uncertainty quantification).



Is trust in numerical results a real problem?

We argue that trust is a serious and insufficiently recognized problem. For a list of software bugs
that impacted users in domains such as space exploration and telecommunications, see [3]. To
demonstrate the severity of the problem in numerical simulation and data analytics applications,
we report in the appendix corruption cases at all levels of the stack, from the hardware to the
application that affected numerical computations. We are currently collecting other cases and
will generate a more complete list in a future document. An important aspect of most of these
corruption cases is that until they are discovered, all executions are at risk of being corrupted
silently. As documented in some cases, months may elapse between the discovery of a
corruption case and notification to users. The difficulty of finding the root cause of the
corruption is one of the reasons for such a long delay. This situation raises two serious issues:

1. Alarge number of executions may have been corrupted before the discovery; bad
decisions may have been taken5; and it might be difficult—after the fact—to check
whether executions have actually been corrupted or not, without heavy checking (e.g.,
re-executing the simulations entirely).

2. Even if silent corruptions do not lead to accidents, they may lead to significant
productivity losses.

Definition of trust in multiple areas (computer science, sociology, economy)

Before we look at the definition of trust in other areas, we note that all types of corruptions
mentioned in this document are considered as part of the general dependability problem as
formulated in [4]: “the ability to deliver service that can justifiably be trusted.” Table 1 shows
the relation between dependability, survivability, and trustworthiness, as mentioned in [4]: the
three concepts essentially cover equivalent goals and threats.

Table 1: Relation between dependability, survivability, and trustworthiness

Concept Dependability Survivability Trustworthiness

Goal 1) ability to deliver service | capability of a system to assurance that a system
that can justifiably be fulfill its mission in a will perform as expected
trusted timely manner
2) ability of a system to
avoid failures that are
more frequent or more
severe than is acceptable

_ to the user(s)
Threats 1) development faults 1) attacks (e.g., 1) hostile attacks (from
present (e.g., software flaws, intrusions, probes, denials | hackers or insiders)

hardware errata,
malicious logic)

2) physical faults (e.g.,
production defects,
physical deterioration)

3) interaction faults (e.g.,
physical interference,
input mistakes, attacks,
including viruses, worms,
intrusions)

of service)

2) failures (internally
generated events due to,
e.g., software design
errors, hardware
degradation, human
errors, corrupted data)

3) accidents (externally
generated events such as
natural disasters)

2) environmental
disruptions (accidental
disruptions, either man-
made or natural)

3) human and operator
errors (e.g., software
flaws, mistakes by human
operators)

5 For examples of significant accidents due to computing errors that led to extensive and expensive root
cause analysis, see http://www.iro.umontreal.ca/~mignotte/IFT2425 /Disasters.html




A survey of definitions related to dependability and trustworthiness is presented in [5]. In that
survey, trust depends on many elements: safety, correctness, reliability, availability,
confidentiality/privacy, performance, certification, and security.

Multiple definitions of trust are introduced in [6] relative to other contexts: social sciences,
psychology, philosophy, and economics. The definitions that may help address the trust problem
in our context are the following: "One party (trustor) is willing to rely on the actions of another
party (trustee)” and "The trustor is uncertain about the outcome of the other's actions; they can
only develop and evaluate expectations.”

Trust metrics

Although there exist several metrics for trust [7] and approaches to building trust, there is no
consensus on or norm for which metrics should be used in which case.

Many metrics used in e-commerce or peer-to-peer systems are related to the notion of
reputation built from external evaluations. However, reputation does not seem enough to
address the trust problem in our domain. A reputation built from the apparent corruption-free
usage of a hardware or software artifact does not mean that this artifact has not produced
incorrect results in the past and does not inform users about the potential of producing
incorrect results in the future.

In numerical simulation and scientific data analytics, there is a lack of trust metrics that could be
used to quantitatively compute and express the trustworthiness of the execution results.

Current notion of trust in numerical simulation and data analytics

The trust in the results of numerical simulation and data analytics execution is related to two
main notions: correctness of computation and integrity of the execution stack. However, neither
of them could be proven formally for nontrivial execution scenarios. To address this issue, users
have developed a process to build trust in their execution results. This process ultimately
produces a quality expectation concerning the results: the expected result accuracy. Existing
techniques (V&V and UQ) are important in the process of building trust in numerical execution
results.

Process of building trust in numerical simulations and data analytics results

When applying a numerical code, whether simulation and/or data analytics, to a new problem,
users develop trust in the output of the execution through a hierarchy of steps. The number of
steps is roughly proportional to how far the problem, code, and system architecture are from a
problem where trust has been established. The pattern of building trust generally involves the
following process.

Starting with the smallest-scale, simplest problem that can be reasonably modeled, short
simulations and analyses producing copious outputs are run. The output of these codes is then
compared with expectations. This comparison is performed by measuring statistics and
verifying that they fall in expected ranges and follow expected trajectories, as well as by
visualizing the results of the simulation to verify that the behavior of the system reflects the
expected physics.6 The code is then repeatedly scaled up in complexity and size (both problem
size and system size), while repeating the comparisons of output with expectations. Any odd or
unexpected behavior is scrutinized and assumed to be an error until demonstrated otherwise.
Even at full complexity and scale, certain statistics, now produced at a very low frequency, will

6 Often, these are problems where an analytical answer is known or where ground truth is known from
experiments. For simple problems the expectations are much more specific. They define a narrow range of
acceptable answers.



continue to be checked, in order to retain trust in the output.” This process is time consuming
and relies largely on the expertise of the scientists developing the code.

Expected result accuracy

Expected result accuracy is application dependent. Some applications are exquisitely sensitive to
the details of calculation; for example, they can even act as tests of the randomness of the
pseudo-random number generator used. Other applications model systems following a
trajectory to an attractor state and small perturbations to that trajectory have no impact on the
final outcome. During the execution, accuracy is affected by round-off errors; such errors
accumulate, and the expected accuracy at the end of the execution is much lower than the
machine precision. Typical expected accuracies at the end of the execution are 10-6 for the HACC
cosmology code executions and 10-8 for Nek5000 computational fluid dynamics executions.

At its most fundamental, expected result accuracy can be defined as follows: If the corruption of
the data does not result in any measurable changes to any physically meaningful statistics of the
solution between a run that contained the corruption and a run that does not, then the user’s
expectation of accuracy has been satisfied. This definition suggests that research should focus on
detecting corruptions that make the end results diverge from the expected user accuracy.

How existing techniques help building trust

Verification and validation form the basis for building trust in codes and the models underlying
them. We follow the convention of [2], whereby validation determines the faithfulness of the
mathematical/computational models to the real world and verification determines the
faithfulness of the code to the mathematical/numerical models. While solution verification
techniques quantify the accuracy at which algorithms solve the model, code verification
techniques certify that a code is a truthful implementation of the algorithms themselves.
Following best practices (e.g., unit and regression testing) and standards for software design is a
common, although incomplete, attempt toward verification.

Another common software development technique for building trust is to incorporate physical,
mathematical, and numerical knowledge alongside a computation in order to flag potential
errors. Examples in the course of a computation can include ensuring that mass or other
quantities are conserved, that two linear basis vectors remain orthogonal, and that an
accumulated remainder term lies below a roundoff bound.

Uncertainty quantification is an umbrella term for several activities involved in improving the
trust in the simulations and data in the hope of accounting for all sources of uncertainty involved
in the simulation of real-world/physical quantities. Several techniques are used to improve the
trust in the numerical model, data, and simulation predictivity under random effects. For
example, gridded or complete data sets are constructed from sparse data by solving inverse
problems. Simulations are corrected (or guided) by using data through a process referred to as
data assimilation. Complex mathematical models and models that are used to represent real
processes that are not well understood typically use parameterizations. Parameterizations are
surrogate models that depend on a set of parameters that do not necessarily have a physical
meaning. These parameters are usually calibrated by solving a parameter estimation problem.
Although UQ techniques are often segregated along domain science and scientific community
lines, they support a common mathematical formulation and are often used in tandem or in a
manner that is not always transparent.

7 For real problems, expectations (e.g., known constraints on the answer) are much less specific than for
simple problems.



Gap analysis and recommended research: complementary research directions
Many techniques are already applied from the hardware to the application in order to detect
corruptions. These techniques do not cover all potential sources of corruptions, however, and
large gaps put execution results at risk.

Gap analysis

Harmful nonsystematic corruptions (undetected corruptions that corrupt execution results in a
non-noticeable way) can be detected by classic approaches such as replication or algorithm-
based fault tolerance (ABFT). Replication is too expensive in our domain to be applied on all
executions, however, and ABFT covers only the data protected by the ABFT scheme: other
application data are not protected. Ensemble computations also offer a way to deal with
nonsystematic corruptions, since statistical analysis of the ensemble results may detect or
absorb the corruptions. Ensemble computation could be considered as a form of imprecise
replication, however, and suffers similar limitations: it can be expensive, and thus not all
executions can afford to include ensemble computations..

Harmful systematic corruptions are not detected by replication because replication detects
errors by comparing identical (or comparable) executions. Since the systematic corruptions will
affect replicated executions the same way, the comparison of executions will not detect any
corruption. Ensemble computations will suffer the same limitation and will not be able to detect
or absorb such corruptions. ABFT may detect some corruptions but not all of them; for example,
corruptions affecting the ABFT calculation itself may not be detected. ABFT is also not a solution
for attacks because a sophisticated attack could target data sets not protected by ABFT or alter
the ABFT calculation itself.

One approach to detecting systematic corruptions, called n-version programming [8], was
proposed almost three decades ago. In this approach, which has some similarity with the notion
of alternates in recovery blocks [9], the results of the executions of multiple different versions
responding to the same specification are compared in order to detect potential corruptions. The
higher the diversity of the versions (from hardware to application), the higher is the chance of
detecting corruptions. This approach does not seem applicable in our domain, however, because
of the cost of developing multiple versions of all levels of the stacks, from the hardware to the
application. Moreover, it has been demonstrated experimentally that different versions may
suffer the same bugs (and lead to the same corruptions) [10].

Formal validation and verification often presuppose the availability of a correct reference
solution that can be used to assess model accuracy and code correctness. Consequently, such
formal methods are often limited to simpler (e.g., steady-state) or smaller (e.g., lower-
dimensional) subsystems than are addressed by the codes of interest to us. Although codes can
be designed to capture these subsystems as special cases, the potential for increased trust is
rarely deemed to outweigh the resulting efficiency loss; and this gap widens at scale. As
highlighted in [2], problem classes for which formal V&V methods exist (e.g., quantifying the
numerical error in the solution of linear elliptic PDEs) seldom overlap with the complex
simulations performed for DOE.

Uncertainty quantification considers that the hardware and the software stack produce correct
results. Uncertainty quantification is almost entirely focused on addressing randomness
introduced through the mathematical model. In general, all algorithms assume that the
hardware/software stack produces asymptotically correct, if not exact, results. In the presence
of numerical errors or spurious software, outcomes can lead to biases in UQ that render the
analysis useless or can have a significant detrimental effect on trust.



Recommended research directions

Since the trust problem spans all layers of the stack, from the hardware to the application, and is
related to many aspects of numerical simulation and data analytics (modeling, initial conditions,
numerical accuracy, parametric settings, etc.), we believe that holistic approaches, considering

all potential sources of corruptions, have a better chance of succeeding. Figure 2 presents

complementary research directions.
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Figure 2: Complementary research directions
to address the trust problem.

External algorithmic observer

The external observer approach is similar to the simplex architecture technique for critical
systems [11]. It is also similar in principle to a direction developed for cyber security at the
UIUC/Information Trust Institute where the predictable/expected behavior of a system is
defined and used to try to detect anomalies [12]. The main idea is that the external observer
checks that the observed execution respects constraints set by the developer of the application
and/or the user.

In our context, the external algorithmic observer executes a model of the data transformation
performed by the application. There are very few published research results of the application of
this approach in the HPC and scientific data analytics domain. The model definition depends on
the data transformation observability. If the data is transformed in one step, only the
transformation from the input data to the result could be modeled. In applications performing
multiple steps, such as iterative applications or applications simulating multiple time steps, the
model could be compared with the application at each step. The model could also be “restarted”
at each step to limit divergence as in [13].

8 The external algorithmic observer method assumes that the observer is simpler to code than the full
execution stack, hence can be more easily verified.



Table 2: Advantages and drawbacks of two research directions

External Observer Trust Relations

Detection Approach Simulation and observer are Checking object results
checking each other

Detection Assumptions External observer is correct All verifications and
(should be verified, validated) | reputation calculations are

correct

Detection Latency Short (depends on sampling Long (actual detection could
rate, typically 1 application be long: months)
iteration)

Timeliness of Notification Short (from one iteration to Short (immediate upper

after detection the next one) layer)

Time to build trust Low (trust depends on High (hardware and software
verisimilitude of results not components need to acquire
on components) trust level)

Targeted Level of Trust User-expected accuracy Machine precision (modulo

round-off errors)

Low (requires only to develop | High (affects all layers of the

Development Time and cost the observer) stack)

Tolerance High (corruptions of the Low (any corruption at object
application data lower than level is suspicious since the
user expected accuracy are consequence on application
tolerated) data is unknown)

Alternatively, the model could be derived from observed properties of the data transformation
as in [14], learned using some machine leaning algorithms or could implement a simpler version
of the model used in the application [13]. The critical point is that the application and the
external model should be diverse enough that they would not be affected by systematic
corruptions the same way. In principle this approach allows a very large spectrum of model
complexities (compute and memory complexities) that could go up to the complexity of the
application plus the stack running the application. Since we cannot afford such complexity in our
domain, however, the research should focus on models of a much lower complexity.

Low-complexity models implement trade-offs between complexity, accuracy, and other
properties. For example, the model used in [13] relaxes numerical stability assuming that (1) the
model can be restarted at each step from the verified results of application at the previous step
and (2) corruptions happening in one step are detected in the same step. In [14], the model
computes only local predictions for the next simulation step, from the application results at the
current step (one step prediction), leveraging the spatiotemporal continuity present in many
applications simulating physics phenomena. This model does not compute solutions of the
equations governing the simulation; rather, it verifies that the simulation respects a particular




physics property between steps. Hence, low-complexity models cannot replace the applications
they are monitoring.

Because the model is purposely simpler than the simulation, the data produced by the model
diverges slightly from the one of the application. Therefore, the detection cannot be based on
perfect comparison. A tolerance margin should be considered in order to avoid false detection
due to the natural divergence between the model and the application. The tolerance margin
should be lower than the user-expected accuracy in order to ensure that corruptions exceeding
the user-expected accuracy will be detected. The tolerance margin controls the detection
accuracy that conditions the number of false positives (detection of a corruptions that did not
happen) and false negatives (nondetection of corruptions that actually happened).

The metrics for this approach are overhead in execution time, overhead in memory occupation
(the model needs memory space for its execution), false positives (overdetection), and false
negative (missed detection).

An important advantage of this approach is that by being much simpler than the simulation
stack the software implementing the model is also easier to verify and to protect. For example,
the multiversion programming approach is not applicable to the simulation stack but it is
applicable to the software implementing the model. Several implementations of the same model
or several different models could be executed and compared. Because the software
implementing the model has a low compute complexity, in principle, it could be executed on a
more secure environment, like a secure processor. This allows increasing the trust in the model
itself.

Trust relations

The direction based on trust relations is more mature in the sense that a large body of research
has been devoted to this topic in computer science. The DOE report on Cybersecurity for
Scientific Computing Integrity [1] provides a large coverage of the issues and approaches related
to this direction. This section complements the report by providing additional analysis and
references.

To simplify the presentation, we call an “object” any piece (or layer) of software of hardware
that needs to be trusted. The trust relation direction supposes at least (1) a way to certify that
each used object is actually the object it is supposed to be, (2) a method to evaluate a level of
trust for each object involved in the execution, (3) a metric of the level of trust, and (4) a way to
protect the trust level acquired by an object.

Considering points (1) and (4), the Trust Computing Group? has produced the Trusted Platform
Module (TPM) specification [15], which is an ISO/IEC international standard. This specification
details embedded crypto capability that supports user, application, and machine authentication.
More than 500 million PCs have shipped with TPM. One application of TPM is the verification of
the integrity of the platform to ensure no unauthorized changes have occurred in the BIOS, disk
master boot record, boot sector, operating system, and application software. We believe that
points (1) and (4) can leverage this well-established technology to reduce the risk of attack-
induced corruptions. However, TPM does not protect against sophisticated attacks [16, 17], and
some TPM circuits showed vulnerability [18].

Regarding point (2), the evaluation of the trust level of an object could rely on extensive
verification and validation of that object by a combination of formal verification when applicable
and empirical methods (checking against known results, checking results against actual
measurements). In principle the external observer approach can be applied for each object.
However, modeling the data transformation of some functions in an acceptable way in order to

9 http://www.trustedcomputinggroup.org/



perform effective and efficient detection may require a model complexity close to that of the
function.

Regarding point (3), the trust metrics could have multiple dimensions (such as time since first
trusted, time since last verification, number of independent verifications, or number of
validations). The trust metrics would help compute a trust level for the whole execution (a
function of the trust of each object involved in the execution). Thus, a user could explore
different combinations of objects for a given overall trust level. Conversely, the user could
explore different combinations of objects and their impact on the overall trust score.
Researchers in security and networking domains [19, 20] have already investigated this
problem: they represent objects in a graph where edges are trust relations and the trust
evaluation is modeled as a path problem on a directed graph.

All these precautions will not avoid corruptions from a highly trusted object, however, because
verification and validation cannot test exhaustively the behavior of all objects. This fact
motivates research in the context of trust relations beyond reputation or research, in order to
develop new reputation techniques.

Recommended research topics

The recommended research topics derive from the analysis presented in this white paper
concerning the “external algorithmic observer” direction and the recommendations of the DOE
report on Cybersecurity for Scientific Computing Integrity [1] with respect to the “trust
relations” direction.

The “external algorithmic observer” direction opens research in two potential avenues. The
first is based on the exploitation of extracted properties of the data transformation performed
by the application. New tools and methods are needed to observe, analyze, and model the
dynamics of data transformation during the execution. Current techniques model and exploit the
temporal continuity of data transformation easily observable by plotting data transformations
as time series [14]. Other properties, such as the presence of periods in the data transformation,
require spectral analysis. Spatial properties may be better captured by spatial analysis
(statistics, autocorrelation, etc.). Self-similar properties will require multilevel analysis. Property
extraction and monitoring may use machine learning during the execution and between
executions of the same applications. Executions may show evolving properties during regime
changes in the code. Relevant research would monitor data transformation in order to detect
regime changes and optimize the selection of properties to monitor accordingly. Efficient and
effective exploitation of the identified properties requires new on-line, low-complexity
verification algorithms monitoring the identified properties. Study of the trade-off between
complexity (type and number of monitored properties) and accuracy will help select
appropriate monitoring algorithms. An important point is that extracted properties should be
explainable.10 For example, the conservation of momentum explains the temporal continuity
observed in some phenomena [14]. Studies establishing correlations between data
transformation properties and the simulation may be required for nontrivial properties.
Monitoring of data transformation properties could be considered as a first level of corruption
detection that could trigger other levels to verify the detection. Second-detection level will
typically leverage semantic aspects of the code and properties of the numerical methods used.

The second avenue focuses on exploiting a surrogate of the numerical method used for the
simulation or data analysis. The definition of the low complexity-surrogates that could be used
to detect corruptions for relevant DOE applications is an open problem. In particular, there is a

10 Being able to give reasonable justifications of the existence of a data transformation property from the
object of the simulation increases the confidence that this property can be considered to detect
corruptions.



need to explore, identify, and classify low-complexity numerical algorithms that are relevant for
computing the next step of the simulation and that can be restarted at each step of the
simulation, as in [13]. Data analytics operations can similarly be verified by surrogates that
compute the same result using a different algorithm, as in [39]. The trade-off between
complexity and numerical accuracy needs to be explored.

Concerning the “trust relations” direction, to avoid redundancy with [1], we summarize
recommendations relevant to this white paper. This direction requires establishing trust
individually for each hardware and software component involved in the execution. A first
requirement concerns the extensive!! identification of potential sources of corruption. There is a
need to explore, classify, and quantify potential sources of corruption for each component. Trust
will be established based on the identification and effectiveness of detection techniques for
these potential sources of corruption. Many techniques are available from validation and
verification to behavioral analysis. A gap analysis will reveal sources of corruptions that are not
mitigated. New detection techniques need to be developed to cover corruptions from these
sources. Co-design research is needed in order to explore the most effective and efficient way to
implement trust mechanisms. In particular extra mechanisms required to improve the trust
should have a minimal computational, memory, and communication overhead on simulation
execution.

Both directions require programming interfaces to define (1) comparison points between the
observer or the surrogate and the original code, (2) data that needs to be monitored, and (3) the
monitoring algorithm. Also needed is investigation of means to run the observer or the
surrogate with low computational, storage, and communication overhead on the application
execution. For both directions, we need to develop metrics of trustworthiness to qualify a level
of trust for each component and for the whole execution. This is particularly needed if both
directions are combined. Associating the two directions opens a large set of questions: When
(during the execution) and where (for which data) should the user use one direction, the other
direction, or both? How should the two directions be combined? Does having a certain level of
trust based on trust relations allows using lower complexity algorithms for the “external
algorithmic observer”? Does having a high level of trust based on “external algorithmic
observer” allow replacing a trusted component by a new, not-yet-trusted one (or an upgraded
one)? Can we use “external algorithmic observer” to qualify or establish the level of trust of
components?

Appendix

A classic assumption that users make when running numerical simulations and data analytics is
that floating-point computations are correct. Unfortunately, multiple examples of hardware bugs
in floating-point units should make users more suspicious about the correctness of floating-
point calculations. A well-known example is the bug of the FDIV instruction of the Pentium P5
processor [21]. Before that was detected, the Intel 386 processor had another bug in the 32-bit
multiply routine that caused the execution to stop [22]. Although the error was not harmful
because it did not produce corrupted results, it took time to find the root cause; and many code
executions just crashed with no apparent reason. Another example of bugs in the 1990s was the
ITT 3C87 chip that computed the arctangent operation incorrectly [23]. More recently the
[tanium processor had a bug that could corrupt the data integrity [24]. In 2004, the AMD
Opteron had an instruction bug that could result in succeeding instructions being skipped or an
incorrect address size or data size being used [25]. Other bugs were reported in the Opteron
processor in 2012 and 2014 [26]. A significant issue for hardware bugs is that the time until the
detection and the time between the detection of the issue and the repair may be long. It took
about 6 months for Intel to inform Pentium users about the FDIV bug. It took 4 months for HP to
communicate the Itanium bug to its customers. Recently, a difference in floating-point accuracy

11 Unfortunately, exhaustively is not reachable.



between a host CPU and the Xeon Phi used in the TACC Stampede system resulted in a control
bug on one of the compared execution modes [27].

High in the software stack is the numerical kernel library. A recent (October 2014) example of
corruptions at that level is the issue in the cuBLAS DGEMM provided by NVIDIA CUDA 5.5 on
Blue Waters' sm_35 Kepler GPUs [28]. As reported by the Blue Waters project, “The issue is a
case of a silent error where under specific circumstances the results of the cuBLAS DGEMM
matrix-matrix multiplication are incorrect but no error is reported”. Other examples of
corruptions (wrong results) have appeared in the Intel MKL library [29]. Issues have been
reported for the latest version of MKL on the MIC [30]: DSYGVD12 returning incorrect results for
a given number of threads. Another example is the wrong calculation of Matlab (release R2009b)
when solving a linear system of equations with the transpose [31].

A classic source of corruptions is the compiler. A case in 2010 involved the Intel Fortran 1A-64
compiler. The optimizer of the compiler skipped some statements. The bug was difficult to locate
and reproduce [32]. Many other cases of bugs affecting numerical results (in particular, in
vectorization and OpenMP) have been corrected [33]. A list of bugs in Fortran compilers is
maintained at NCAR for CESM [34]. Some of the bugs may lead to corruptions (wrong results,
wrong code, call to wrong procedure). Bugs are also reported in optimization source-to-source
compilers (PolyOpt/C 0.2) [35].

At the application level, the Nmag [36] micromagnetic simulation package developers at the
University of Southampton reported in 2008 a bug leading to significant corruptions:
“Calculation of exchange energy, demag energy, Zeeman energy and total energy had wrong
sign.”

Fixing bugs that lead to corruptions in a version of a software does not mean that the number of
bugs generating corruptions will be lower in the following versions. Software upgrades often
introduce new functionalities that bring new sets of bugs and potential corruptions.

Parameterization defects leading to wrong results could be considered as a form of user-level
corruptions. For example, as discussed in [37], a poor parameterization in the popular AMBER
family of bimolecular force fields leads to a simulation prediction about 120K above the
experimental room temperature value for the order-disorder transition temperature for a
common liquid crystal. Anecdotal evidence of many such cases exists. They go by different
names depending on the discipline. Most often, they are called overfitting or being out of sample,
but they follow a similar mechanism. The parameters are fixed in a given regime or by using a
defective model giving good agreement with observations; however, when the simulation is
carried out in different regimes or data sets, the results become disastrous. Such results are not
often found in press as they do not get reported; however, they are often discussed.
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