ABSTRACT

DIY2 is a programming model and runtime for block-parallel analysis on distributed-memory machines. Its main abstraction is block-structured data parallelism: data are decomposed into blocks; blocks are assigned to processing elements (processes or threads); communication is described as iterations over these blocks, and communication between blocks is defined by reusable patterns. By expressing computation in this general form, the DIY2 runtime is free to optimize the movement of blocks between slow and fast memories (disk and flash vs. DRAM) and to concurrently execute blocks residing in memory with multiple threads. This enables the same program to execute in-core, out-of-core, serial, parallel, single-threaded, multithreaded, or combinations thereof. This paper describes the implementation of the main features of the DIY2 programming model and optimizations to improve performance. DIY2 is evaluated on complete analysis codes.

1 INTRODUCTION

The rapid growth of computing and sensing capabilities is generating enormous amounts of scientific data. Parallelism can reduce the time required to analyze these data, and distributed memory allows datasets larger than even the largest-memory nodes to be accommodated. The most familiar parallel computing model in distributed-memory environments is arguably data-parallel domain-decomposed message passing. In other words, divide the input data into subdomains, assign subdomains to processors, and communicate between processors with messages. Complicating data-intensive analysis, however, is the fact that it occurs in multiple environments ranging from supercomputers to smaller clusters and clouds to scientists’ workstations and laptops. Hence, we need to develop portable analysis codes that are highly scalable on HPC architectures while remaining accessible on smaller machines with far fewer cores and memory capacity.

In HPC, the main challenge is that architectures evolve rapidly. Locality and the cost of data movement dominate energy efficiency. Supercomputers are already being designed with deeper memory/storage hierarchies and nonvolatile memory (NVM) that can be used as burst buffers or extended memory near to compute nodes with higher bandwidth and lower latency than traditional storage. For example, burst buffers already exist in small prototype instances, and next generation of supercomputers will include them in production. Additional levels of fast/slow memory [2] and near/far disks create opportunities while complicating algorithm design. A related issue is that the number of cores is rapidly increasing; hundreds per node is now the norm. Many-core architectures such as Intel Knight’s Landing offer increased possibilities for parallelizing the part of the problem that is currently in core.

Traditional data-parallel codes are written in MPI [14]. Designed over twenty years ago for parallel computational science in Fortran and C, MPI is an ideal runtime for executing distributed communication, but in our experience the level of abstraction is too low for productive programming of data analytics. Higher level data-parallel models are needed that promote modularity and reuse of frequently recurring design patterns. Modern, convenient design combined with the proven performance of MPI can be attained by building libraries on top of MPI. We have found that to enable scalable data analytics in a diverse architectural landscape, a library that seamlessly integrates in-core parallel processing (both threading and message passing) with data migration between main memory and other levels of the memory/storage hierarchy is necessary.

DIY2 is our solution to this problem. DIY2 is a programming model and runtime that allows the same program to execute distributed-memory parallel and out-of-core data analysis. The integration of these two previously separate programming models is particularly useful for scientists who wish to do some of the analysis of large data sets from scientific computations in situ on a supercomputer and continue to do further processing on a smaller parallel cluster or out-of-core on a workstation. The need to easily switch between in-core, out-of-core, and mixed regimes consisting of processing some fraction of blocks in-core (in parallel) while others reside in NVM or storage is key to performance portability.

Even for applications that are strictly HPC, the ability to execute out-of-core becomes desirable when running an analysis code in situ with a simulation. While the memory size per core in next-generation supercomputers will remain constant or will slightly decrease, the collocation of simulation with analysis on the same node accentuates the limits of memory: the simulation would like to use as much of the memory as it can, and so would the analysis. Analysis codes are often memory-bound; they may aggregate global data from numerous subdomains, or the task itself may require a large amount of memory to compute an intermediate result. For example, to convert particles to a continuous density field, one may want to compute a Voronoi tessellation first. The original particles require tens of bytes per particle while the tessellation uses hundreds of bytes per particle [21].

The key to our programming model is structuring the analysis program into data-parallel blocks. Blocks are the units of shared- and distributed-memory parallel computation, communication, and migration in the memory/storage hierarchy. Blocks and their message queues are mapped onto processes and placed in memory/storage by the DIY2 runtime. Building on the block abstraction, communication patterns and other algorithms can be developed once and reused. Decomposing a problem in terms of block-parallelism (instead of process-parallelism) enables migrating blocks during the program execution between different locations in the hardware. This is the main idea that lets us integrate in- and out-of-core programming in the same model and change modes without touching the source code. Until now, despite similarity in their design, implementing the two types of algorithms required following very different programming models; converting between in- and out-of-core implementations was tantamount to rewriting the code. The same is true for multithreading. Block-parallelism enables performing the same operations on a block in one compute node, processor, core, or thread. Block-parallelism also makes debugging easier: the same program, with the same number of blocks, can be run on a single process for debugging.

The contributions of this paper are a set of high-level programming abstractions—block decomposition, block execution in pro-

*Lawrence Berkeley National Laboratory, dmitriy@mrzv.org
†Argonne National Laboratory, t peterka@anL.gov

†https://github.com/atomic/diy2
cesses and threads, communication patterns over blocks, parallel I/O—and high-level algorithms built on these abstractions. The programming model is BSP-style alternation of compute-communicate phases, formalized by DIY2’s API. Numerous open-source scientific data analysis applications have already been released, and three of these are featured in our evaluation here. This paper explains the design of DIY2, describes how to write block-structured programs to take advantage of these concepts, and gives an experimental evaluation of DIY2’s performance. Section 2 places our solution in the context of other programming models. Section 3 explains the design of DIY2. Section 4 shows results of experiments using DIY2 on complete data analysis codes.

2 Related work
Our review of relevant work on data-parallel computing includes block-based models, out-of-core algorithms, and other programming models such as those based on MapReduce.

2.1 Data parallelism and block-structured abstractions
Many simulation [6, 13, 15], visualization, and analysis frameworks [1, 7, 29, 33] are data-parallel, meaning each process executes the same program on a different part of the data. There is, however, a subtle but important difference between those parallel models and ours. The distinction concerns the difference between the data subdomain (which we call a block) and the processing element (be it a node, core, or thread) operating on the data (which we generically call a process). In those examples and many others, processes and blocks are equivalent; there is a one-to-one mapping between them, and data-parallelism is actually process-parallelism. In MPI, for example, messages are sent between process ranks, not blocks.

True data parallelism is decomposition of the global data domain into blocks first and a mapping of blocks onto processes second. The mapping need not be one-to-one. From the programmer’s standpoint, out-of-core algorithms and data structures for sorting, searching, fast Fourier transform, linear algebra, computational geometry, graphs, trees, and string processing [40].

Thakur and Choudhary developed runtime support for out-of-core multidimensional arrays [37] with an extended two-phase method [36] that used collective I/O to access subarrays in storage. The collective two-phase algorithm performed better than independent access. The same algorithm was deployed in the PASSION runtime [38] for collective I/O, a precursor to today’s MPI-II parallel I/O interface. The PASSION compiler was one part of an out-of-core high-performance Fortran (HPF) system [35]. Bor-dawekar and Choudhary [4] categorized communication strategies for out-of-core arrays in HPF based on the associated I/O required to execute the communication.

LaSalle and Karypis presented an out-of-core MPI runtime called BDMP (Big Data MPI) [19], intended as a drop-in replacement for MPI. It launched more processes than available cores and used POSIX message queues to block individual processes (by waiting on a message not yet sent). When this happened, the OS virtual memory mechanism moved the data from memory to swap space. Unfortunately, this approach is not usable on IBM and Cray supercomputers that have no virtual memory and do not allow more processes than cores. Moreover, BDMP implemented a small subset of the MPI standard and lacked nonblocking, one-sided, and many collective operations. Rather than replacing MPI, DIY2 is a C++ library built on top of MPI, and so the user is free to use any MPI facilities in the same code as DIY2.

Durand et al. [10] proposed I/O scheduling based on graph matching and coloring. Modeling the set of clients (compute nodes) as one side of a bipartite graph and the set of servers (disks) as the other side, the resulting schedule of I/O transfers attempted to compute a near-optimal schedule. It did so by maximizing the number of edges between clients and servers in a phase, subject to the constraint that no graph nodes have multiple edges, and by minimizing the number of such phases.

In contrast to previous methods that optimized the execution of storage accesses, Colvin et al. [8] proposed a language and compiler that minimized the number of storage accesses issued by an out-of-core program. Based on the C* language, the virtual C* (ViC*) compiler reorganized loops that accessed out-of-core variables primarily by fusing loops and recomputing data instead of reading it from storage.

In addition to reorganizing loops, Kandemir et al. [18] also reorganized file layouts to better match the loop structure in order to optimize I/O without sacrificing in-core parallelism or introducing additional communication. Brezany et al. [5] augmented the HPF language with directives for out-of-core handling of arrays. The augmented language and compiler, HPF++, executed data-parallel loops out-of-core while reducing redundant I/O accesses. It did so by reordering computations and hiding I/O latency by overlapping I/O with computation. All of the previous methods considered only loops over arrays. In contrast, DIY2 supports any general operations (not limited to loop structures) on any general data structures (not limited to arrays).

2.2 Out-of-core and I/O-efficient algorithms
Many algorithms have been developed for specific applications running out-of-core. Vitter summarizes many of these in his survey of out-of-core algorithms and data structures for sorting, searching, fast
3 DESIGN

We begin with a short example. After a brief discussion of the main steps in the example, we explain the novel design points of DIY2 in greater detail. Figure 1 shows the different components of the library.

3.1 Example

Listing 1 presents the typical structure of a DIY2 program. The top-level DIY2 object is called master. Its main responsibility is to keep track of the blocks of data. A single program can contain multiple master instances corresponding to different types of data. For example, a pipeline of several analyses, each requiring different resources can be constructed in one program with a different master object for each step. A master object is initialized with an MPI communicator world and parameters that specify how many threads to use, how many blocks to keep in memory at once, and where to store blocks (and their message queues) that must be evicted from memory.

All parameters other than the MPI communicator are optional: by default, DIY2 uses a single thread and allows all blocks to live in memory. The master is populated with blocks. Auxiliary facilities can help determine block boundaries when the decomposition is a regular lattice of blocks or a k-d tree; both are supported.

A typical execution phase is invoked by the foreach function, which calls function foo() with every block stored in the master, possibly using multiple threads simultaneously, depending on the parameter passed to the master’s constructor. A pointer to the current block b, a communication proxy cp, and custom auxiliary arguments are provided to foo(). A communication proxy is the object that manages communication between the current block and its neighbors. Inside foo(), data are dequeued from each neighbor using cp. Presumably some local work is done on the received data before enqueuing outgoing data to be sent to neighboring blocks. Those data are exchanged in the next communication phase using the exchange() function of the master.

Depending on the value of mem_blocks, the master keeps only a limited number of blocks in memory. In this case foreach() moves blocks and their queues between memory and storage as necessary; exchange() does the same but only with the queues. All blocks or just one block in memory are not the only two choices available to the user: any number of blocks may be selected to reside in memory. Depending on the value of num_threads, the master executes the blocks that are in memory concurrently using multiple threads. Both of these features, controlling the number of blocks in memory and multithreading their execution, are realized simply by changing these two parameters. If these parameters are command-line arguments, recompilation is not needed: all the combinations of these modes are available at run time.

3.2 Blocks

At the heart of DIY2’s design is the idea of organizing data into blocks, which despite their name need not be “blocks”: subsets of a triangulation or subgraphs of a full graph may perfectly good blocks. Blocks are indivisible units of data. They can reside in different levels of memory/storage transparently to the user, and DIY2 continues to manage communication between blocks as it does when blocks are in DRAM. Blocks are created by the user and are handed off to a master, the object responsible for managing both their placement in the memory hierarchy and their communication.

A single MPI process may own multiple blocks, so master provides a method foreach() to execute a callback function on every block. If not all blocks reside in memory, foreach() decides when (and whether) a block needs to be brought into memory and when a block can be moved out. By default, DIY2 cycles through all the blocks, starting with those that remain in memory from the previous loop. DIY2 may use multiple threads to process several blocks simultaneously.

The foreach() callback function receives a pointer to the block and also an auxiliary communication proxy. The latter allows the user to enqueue/dequeue information to/from the neighbor blocks, exchanged during the next/previous round of communication. Once foreach() is finished, the user may request the master to exchange its outgoing queues with the neighbors (and accordingly, receive incoming queues to be processed at the next round). Thus, the foreach/exchange mechanism accommodates the bulk-synchronous parallel (BSP) model of algorithm design and formalizes its use.

3.3 Data types

DIY2 supports arbitrary data types in blocks and messages. Both communication and block movement mechanisms rely on DIY2 serialization routines. The library uses C++ template specialization to facilitate serialization. The default implementation simply copies the binary contents of the object. This works as intended for plain old data (in C++ terminology), but if a class contains complicated members (e.g., pointers or STL containers), extra logic is necessary. DIY2 uses partial template specialization for many STL containers. Accordingly, data models consisting of complex types usually need to specify only which members to serialize; the actual logic for serialization of the base types (for example, std::vector) already exists in DIY2.

The serialization mechanism is deliberately simple: it does not chase pointers, does not track objects, and does not handle polymorphism. If the user wants such facilities, she can trivially wrap an external serialization mechanism such as the Boost serialization library\(^2\) without adding overhead. We note, however, that despite

\(^2\)http://www.boost.org
implement global communication patterns. It dynamically creates links and adjusts how many messages each block expects to receive during an exchange. Because global reduction patterns are built on the same local exchange mechanism, they take advantage of the same automated block movement in and out of memory.

DIY2 implements several partners classes. Two of them are especially useful and serve as common building blocks: RegularMerge Partners and RegularSwapPartners. The former expresses the communication pattern for a k-ary reduction to a single block and can be used to implement familiar MPI operations such as MPI_Reduce and MPI_Gather.

Swap partners organize all b blocks into communication groups of size k, where, depending on a user-specified parameter, the distance between blocks in the groups either grows by a factor of k in each round (starting with groups of contiguous blocks) or shrinks by a factor of k (starting with ith, (b/k + i)-th, (2b/k + i)-th, etc. blocks in the same group). The former (growing) arrangement is useful when one needs to unite contiguous data, for example during the computation of local–global merge trees [23]. The latter (shrinking) arrangement is useful for sorting values into specified ranges in \(\log_2 b \) iterations of \(k \cdot b \) messages each. MPI_Reduce_scatter and MPI_Allreduce can be expressed as swap reductions.

The partner patterns are more flexible than their MPI counterparts, not least because they dissociate block IDs from MPI ranks. If the blocks form a regular decomposition of a d-dimensional lattice, both merge and swap partners can alternate between different dimensions between the rounds (hence the name “Regular”). Such alternation is useful when one wants to keep the shape of the merged data uniform in all dimensions. Furthermore, one may drop some of the dimensions from the reduction, which is useful for computing the projection of the data along those dimensions. In general, it is possible to initialize both types of partners with a list of pairs, each recording the dimension and the group size to use in the given round.

As mentioned above, motivated by the work in [26] and the knowledge that higher k are better on some architectures, DIY2 supports k-ary reductions. The interconnection fabrics of modern supercomputers are multiported and use RDMA, meaning that k can usually be higher than 2, often 8 or 16, before saturating the network (depending on the application and message size). Some collective algorithms in MPI use a binary tree reduction in order to be portable, and users of DIY2 can often do better by tuning k to their network and application characteristics.

The number of blocks b need not be a power of k. To support such a general arrangement, the number of blocks (in each dimension, in case of multidimensional decomposition) is factored as \(b = k_1 \cdot k_2 \cdot \ldots \), where individual factors \(k_i \) are kept as close as possible to the target k. Specifically, prime factors of b that are less than or equal to k are grouped together, so that the product of individual groups does not exceed k. Prime factors of b that are greater than k become individual \(k_i \) multipliers out of necessity.

The global communication patterns discussed above are included in DIY2, but the user is not limited to them. Any pattern that proceeds in BSP rounds can be implemented in DIY2; such a pattern can be expressed by a user through a ‘Partners’ class (of which merge, swap, and allreduce partners are just examples). As a specific example, DIY2 includes an algorithm to distribute particles into blocks through a k-d tree decomposition. The pattern involved in that computation is more general than the pure merge or swap reductions. Section 4 shows how these analysis codes take advantage of the above patterns.

3.5 Out-of-core movement
A key feature of DIY2 is its ability to move data seamlessly across the memory/storage hierarchy. This feature is becoming increasingly important on HPC architectures with limited memory capacity per core but increasing number of levels of memory/storage; for exam-
ple, the U.S. Department of Energy (DOE) leadership computing architectures [2].

In DIY2, the user can limit the number of blocks that a master stores in memory by specifying this limit to the constructor, together with details about where to store blocks that have been evicted from memory. Inside the library, external storage is abstracted as a dictionary where one can put arbitrary binary buffers to fetch back later. DIY2 saves each such buffer in its own file.

By default, foreach() cycles through the blocks, starting with those that are already in memory. When it needs to fetch a new block from external storage, it unloads all the blocks from memory, together with their queues. (More accurately, the thread that needs to load a block unloads all the blocks that it owns.) The blocks are serialized as individual units (i.e., each block gets its own file); all the outgoing queues of a block are saved together as one unit. During an exchange phase, the master fetches outgoing queues from external storage as necessary while ensuring that the number of queues in flight (the queues posted by MPI_Isend whose MPI_Request s are still pending) does not exceed the allowed block limit. Upon receiving a queue, the master moves it to storage if its target block is stored out of core.

Skip mechanism. Although the above mechanism is sufficient in many cases, it is not always as efficient as it could be. For example, in Section 4, we describe an iterative code where blocks do not need to be updated if their incoming queues are empty. To avoid having to load a block, just to determine that we did not need to do so after all, foreach() accepts an optional parameter, skip. Skip is a C++ functor that DIY2 calls to decide whether a block needs to be processed. The functor has access to the master itself and, therefore, can query its different properties, including the sizes of the incoming queues for a block. If skip determines that a block does not need to be processed, the block is not loaded into memory.

Another example where the skip mechanism is essential to improve efficiency is the global merge reduction, described earlier. When reduce() is told by a partners class that a particular block is inactive during a processing round, it passes this information on to the foreach() function by supplying an appropriate instance of skip. This mechanism is essential to efficiently implement a global merge reduction, where, as data are reduced to a single block, the number of active blocks drops by a factor of k from round to round.

Swap elision. Another out-of-core optimization implemented in DIY2 is swap elision. If multiple foreach() operations are executed consecutively, then, by default, if the number of blocks in memory is limited, the master swaps each block in and out of core, once per operation. But if there are no exchange phases in between, there is no reason to unload the block after a foreach() only to reload it for the next callback, which receives no new information. So DIY2 lets the user switch the default immediate to a delayed mode, where foreach() only queues callbacks, to be later executed either explicitly by the user or implicitly by calling exchange().

On the surface, swap elision looks like a trivial optimization: after all, one can always create an auxiliary function that calls back the different user functions—manually mimicking the queueing process. This optimization becomes important, when foreach() is used inside other functions that a user cannot easily modify. For example, a typical reduce operation that carries out global communication begins and ends with a call to foreach(), to enqueue data during the initial and to dequeue data during the final rounds of communication. Executing two such reduce operations in a row—for example, in a parallel sample sort where random samples are gathered, quantiles are determined, and then the data are sent to the correct blocks—the last foreach() of the first and the first foreach() of the second reduction do not exchange any information. Therefore, swapping blocks between them is inefficient.

The out-of-core mechanism employs other optimizations. For example, the master accepts an extra "queue policy" that specifies when not to evict queues; the default policy allows queues smaller than 4 KB to stay in memory. Overall, these optimizations are less important, and we do not describe them in detail.

4 Experiments

Performance tests were run on the IBM Blue Gene/Q Mira and Cray XC30 Edison machines at the Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory and at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, respectively. Mira is a 10-petaflop system consisting of 48K nodes, each node with 16 cores (PowerPC A2 1.6 GHz) and 16 GB RAM. Edison is a 2.57-petaflop machine with 5576 nodes, each node with 24 cores (Intel Ivy Bridge 2.4 GHz) and 64 GB RAM. GCC (version 4.4.7 on Mira, version 4.9.2 on Edison) with -o3 optimization was used to compile the test code.

The out-of-core tests were performed on Alva, a small development cluster on Edison, used as a burst buffer testbed. The cluster has 14 compute nodes, which have access to six burst buffer nodes, exposed as six individual flash file systems. Each one has 3.2 TB of storage space, composed of two Sandisk Fusion 1.6 TB SSD cards.

We evaluate three complete analysis codes built with DIY2. The first computes Delaunay and Voronoi tessellations of N-body particle datasets. The second uses the Voronoi tessellation to generate a density estimate of particles on a grid. The third computes distances on a grid to a set of obstacles; it is part of a larger geometric analysis package implemented on top of DIY2. Many more codes have been implemented with DIY2 than the ones featured here, including geometric, statistical, and topological analysis. For example, other applications include parallel computation of persistent homology described in [20] and distributed merge trees described in [23].

Voronoi and Delaunay tessellation. The first analysis code computes a Voronoi and Delaunay tessellation in parallel at large scale. We ported a parallel algorithm [27], originally implemented using DIY1, to DIY2. Our dataset contains 1024^3 dark matter tracer particles computed by the HACC cosmology code [15].

Figure 2 illustrates an out-of-core strong scaling experiment using a regular block lattice. We tessellated 1024^3 input particles from a cosmological simulation, split into 1024 blocks, divided evenly

Figure 2: Time to compute Delaunay tessellation of 1024^3 points, split among 1024 blocks, using different numbers of processors. In the "Memory" setting, all blocks are kept in memory. In the "Flash" setting, only one block per process is kept in memory.
between the processes. Figure 2 shows these results run on the Alva XC30 machine, comparing all blocks in memory with one block in memory and the rest in Alva’s burst buffer. The flash-based out-of-core version is between 1.5 and 2 times slower than in-core, but otherwise scales with the number of processes almost as the in-core version. “Flash” refers to the fact that the storage medium consists of flash-memory burst buffer nodes.

The individual processes used the following amounts of memory, as reported by the high-water mark through Linux’s /proc facility. When all blocks were stored in memory, the maximum high-water marks for any process were 29.5 GB for 32 processes (32 blocks per process), 15 GB for 64 processes (16 block per process), and 7.7 GB for 128 processes (8 blocks per process). When using 1024 processes, with 1 block per process, the high-water mark was 1.13 GB. When using external storage, and keeping only one block in memory, the maximum high-water mark was 1.19 GB. Therefore, the serialization and out-of-core movement mechanisms do not introduce a significant memory overhead.

Tessellation-based density estimation. Our second application uses a Voronoi tessellation in order to estimate particle density on a regular grid. Schapp and van de Weygaert [31, 32] showed that using a tessellation as an intermediate step in estimating density can produce more accurate results than computing the density directly from the input particles. We implemented the tessellation-based density estimator [25] on top of both DIY1 and DIY2. We coupled the tessellation and density estimation into a single (tess-dense) pipeline, without an intervening disk write of the tessellation between the two stages.

Another new feature that DIY2 adds over DIY1 is the ability to automatically multithread the foreach() block computations simply by assigning multiple threads to DIY2. The user enables this capability by changing a single run-time parameter. In comparison, manually multithreading the compute kernel of the block can be tedious and error-prone, especially when mutexes are required to protect shared data from race conditions. In the following experiment, we compared the performance of DIY2’s block threading with no threading and with a manually threaded OpenMP kernel. The DIY2 automatically threaded version launches concurrent callback functions on as many blocks as available threads. In the manually-threaded OpenMP version, DIY2 is single-threaded, but the code inside the block callback function is threaded using OpenMP.

The following experiments were run on the BG/Q, which has 64 hardware threads per compute node. We divided those 64 threads into 8 MPI processes per compute node and 8 threads per MPI process. For DIY2 automatic threading, we used 8 blocks per MPI process; for OpenMP manual threading, we had 1 block per MPI process, but the block was 8 times larger than in the automatic case. In other words, the MPI processes were assigned the same amount of data in both cases. The density of 5122 input particles was estimated onto a 10243 output grid using the Voronoi tessellation.

Figure 3 shows all three threading versions for the density estimation stage of the tess-dense pipeline. The speedup from 1 thread to 8 DIY2 threads is approximately 4.0 times faster at 256 process and 2.3 times faster at 8192 processes. The interesting point is that the manually-written OpenMP threading is not much better. Its speedup ranges from 4.8 to 2.3 times faster. In other words, roughly the same performance was achieved with no programming effort by simply changing one parameter to DIY2 compared with manually threading a kernel using OpenMP.

Distance on a grid computation. As part of a suite of geometric analysis algorithms, we implemented a code to compute a signed distance at each grid point to a set of obstacles. The algorithm proceeds as follows. The grid is partitioned into regular blocks, each with a one-voxel wide ghost zone into neighboring blocks. We compute the distances to the obstacles within each block, recording the source, i.e., the nearest obstacle, responsible for the distance. Then, iteratively, the neighboring blocks exchange those voxels in their ghost zones where a source has changed. After the exchange, the distances (and sources) are updated, and the process repeats until no block has to update any of its distances. (The number of iterations, and the number of times a block needs to be updated depends heavily on the data.)

One notable property of this algorithm is that a block performs no updates if none of its neighbors changed the nearest obstacle sources in the block’s ghost zones. When running in-core, this observation has no implications: the code quickly recognizes that incoming queues are empty and finishes processing the block without any updates. In the out-of-core setting, this observation is responsible for a key optimization. When running foreach() to process the blocks, it is passed a skip functor (described in Section 3) that checks if the block’s incoming queues are empty. If they are, skip signals to the master that the block does not need to be loaded.

This optimization is responsible for the out-of-core running times measured on the Alva XC30 machine and labeled “Flash (skip)” in Figure 4; its advantage over the unoptimized “Flash (no skip)” version is evident. The input data set is a binary 2560 × 2160 image.
of a sandstone, acquired at Berkeley Lab’s Advanced Light Source. The data are divided into 1024 blocks. Either all blocks are kept in memory, or only one block is kept in memory, while the rest are swapped out to flash. (In both cases, the blocks are divided evenly between the processors at the start of the program.) The imbalance in the amount of work required by the different blocks is difficult to exploit when running in-core, but it becomes a key other advantage in the out-of-core regime. Idle blocks stay on the external storage and do not interfere with the processing of the blocks that require updating. This is the principle reason why the block skipping optimization is so useful.

We also note the memory use of the individual processes, as reported by the high-water mark through Linux’s /proc facility. For the in-memory regime, we get 4.12 GB for 64 processes (16 blocks per process), 2.29 GB for 128 processes (8 blocks per process), 1.36 GB for 256 processes (4 blocks per process). It is 721 MB for 1024 processes (1 block per process); the apparent overhead comes from the memory used by the serial algorithm that computes the distances inside a block. When only one block is kept in memory (in the cases of 64, 128, and 256 processes), the high-water mark stays between 693 and 767 MB, while the total external storage usage goes up to 217 GB. These numbers highlight two points. First, block serialization and out-of-core movement do not introduce significant memory overhead. Second, a key reason for the strong performance that we see in the out-of-core case is that individual blocks, which are moved as individual units in and out of memory, are substantial in size. Such a regime is known to be advantageous when using burst buffers.

5 Conclusion
DIY2 establishes a foundation for developing data-parallel code that can run at high concurrency in and out of core. In this paper, we have presented the design of DIY2 as well as the experiments that illustrate its efficiency. In future work, we plan to pursue extensions to make such codes more efficient and robust. None of the planned efforts will require serious restructuring of existing codes written on top of DIY2. As such, programmers can already take advantage of the block abstractions, communication, threading, and external storage facilities built into DIY2 to write data analysis codes whose performance is portable across different computing platforms.

Acknowledgements
We gratefully acknowledge the use of the resources of Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). We are especially grateful to Zhengji Zhao, at NERSC, for helping us with the Alva burst buffer testbed. We are grateful to Michael Manga and Dula Parkinson for the sandstone dataset, and to Zarija Lukić for the cosmology dataset. This work was supported by Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contracts DE-AC02-06CH11357 and DE-AC02-05CH11231. Work is also supported by DOE with agreement No. DE-FC02-06ER25777.

References