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Abstract—We describe LowFive, a new data transport layer
based on the HDF5 data model, for in situ workflows. Executables
using LowFive can communicate in situ (using in-memory data
and MPI message passing), reading and writing traditional HDF5
files to physical storage, and combining the two modes. Minimal
and often no source-code modification is needed for programs
that already use HDF5. LowFive maintains deep copies or shallow
references of datasets, configurable by the user. More than one
task can produce (write) data, and more than one task can
consume (read) data, accommodating fan-in and fan-out in the
workflow task graph. LowFive supports data redistribution from
n producer processes to m consumer processes. We demonstrate
the above features in a series of experiments featuring both
synthetic benchmarks as well as a representative use case from
a scientific workflow, and we also compare with other data
transport solutions in the literature.

Index Terms—workflow, data model, data transport, in situ

I. INTRODUCTION

The increasing disparity between supercomputers’ floating-
point operations rate and I/O bandwidth, along with the need
to process data more frequently than the temporal resolution of
checkpoints in storage, motivate the use of in situ workflows.

An in situ workflow is a collection of programs executing
concurrently in an HPC system and communicating through
the memory and interconnect of the system instead of physical
storage. We call these programs, which are separate executa-
bles that can be parallel and multiprocess, tasks. A typical
example is a simulation coupled with data analysis, although in
general multiple tasks may be coupled in an arbitrary directed
graph topology. Tasks in an in situ workflow often also
checkpoint data to physical storage, but they are not required
to use physical storage as a communication mechanism.

Workflows link together multiple disparate tasks and data
models. One challenge when using in situ workflows is how
to describe the data to a workflow system in a way that is
compatible with both the user’s view of the data and with the
workflow’s usage of the data.

To bypass the parallel file system, data meant for storage
have to be intercepted and redirected elsewhere. There are

different places in the I/O stack where this can be done: from
the POSIX I/O layer to inserting new data models into the
simulation and analysis codes. All have their advantages and
disadvantages.

At one end of the spectrum, the POSIX level would capture
the widest range of I/O, at the expense of losing metadata
annotation. Burst buffers backed by node-local storage or
compute-node memory such as BurstFS [1] and GekkoFS [2]
have been proposed by the storage community to bypass the
parallel file system. A general-purpose burst buffer file system
does not however fully address the in situ data transport
problem faced by the workflow community, which is to be
able to couple and redistribute complex data structures used
by applications.

For example, consider an adaptive mesh refined (AMR)
simulation that computes many datasets, spanning a dozen
variables at different resolutions, coupled to an analysis task
that consumes only a single variable at one resolution. With
access to user-level metadata such as dataset names and
associated data spaces, only the required dataset would need
to be sent from the producer (simulation) to the consumer
(analysis); furthermore within each MPI process of producer
and consumer, only the subspace at the intersection of the
producer and consumer subdomains would be transported.
The other datasets not needed by the consumer would never
actually have to be written, i.e., sent. The availability of high-
level metadata, such as in HDF5, allows a data transport layer
to move the minimum amount of data required to satisfy the
intersection of producer and consumer access patterns; these
metadata are unavailable at the POSIX level of offsets and
bytes.

In contrast, a new data model custom tailored for distributed
data transport would provide the most flexibility for in situ
communication, at the expense of having to make considerable
changes to existing codes. This solution has been proposed by
the workflow community; e.g., Conduit [3] and Bredala [4]
take this approach, and we will cover such methods and
compare them in this paper.



Fortunately, there is a convenient middle ground between
capturing low-level POSIX bytes and redefining entirely new
data models. In a recent release (1.12.0), HDF5 introduced a
Virtual Object Layer (VOL) that is called by all HDF5 op-
erations and allows developers to supply plugins intercepting
the underlying data. We elected to develop LowFive as an
HDF5 VOL plugin, allowing us to take advantage of high-
level metadata provided by HDF5 without changing codes’
usage of its familiar API.

In this paper, we describe LowFive, a new data transport
layer based on the HDF5 [5] data model, for in situ workflows.
In selecting HDF5, we were looking for a data model that is
widely used by HPC application developers as well as one
that is broadly available in other areas of big data, machine
learning, and artificial intelligence. Additionally, we sought
a data model that is expressive in its metadata descriptions
of data types, data spaces, and attributes, so that LowFive
could take advantage of that rich metadata to facilitate efficient
data transport. We also wanted a generic data model that was
not tied to a particular workflow system. Arguably, HDF5 is
one the most popular data models meeting our criteria. We
developed LowFive as a standalone library not tied to partic-
ular workflow system, maximizing its potential applicability
and benefit. The following are the key contributions of our
research.

• LowFive is a novel HDF5 VOL plugin for distributed
direct data transport between in situ workflow tasks.

• We support two data transport modes: tasks can commu-
nicate in situ (via MPI message passing), or by reading
and writing traditional HDF5 files to physical storage.

• We provide the choice of deep or shallow copies at the
granularity of individual datasets. In the former case,
LowFive makes a copy of the dataset, and the user is
free to modify their local copy without affecting the data
transport. In the latter, LowFive creates only a reference
to the user’s data, implying that the user will not modify
the dataset until LowFive no longer needs it (e.g., the
consumer task has read the data).

• More than one task can produce (write) data, and more
than one task can consume (read) data. In other words,
the the workflow task graph can have fan-in and/or fan-
out.

• When two or more tasks exchange data (e.g., a producer–
consumer relationship), the producer and consumer do not
need to have the same number of processes or use the
same data decomposition. LowFive enables data redistri-
bution from n producer processes to m consumer pro-
cesses, supporting full generality of HDF5 data spaces.

We demonstrate the above features in a series of experiments
featuring both synthetic benchmarks as well as a representative
use case from an actual science application. In the synthetic
benchmarks, we also compare with other data transport solu-
tions in the literature.

The remainder of this paper is organized as follows. Sec-
tion II reviews the literature pertaining to workflow data
models and transport layers, as well as other HDF5 VOL

plugins. Section III explains the design and implementation
of LowFive. Section IV presents experimental results with
synthetic benchmarks and a real application. We conclude in
Section V with a summary and a look toward the future.

II. RELATED WORK

Three broad categories of published literature are related
to our research. Within a workflow system, users specify
data on which to operate using a data model, and we survey
the most commonly used data models in workflow systems
today. Workflow systems also transport data, specified using
the data model, between tasks of the workflow, and we cover
some of the popular data transport layers. Because LowFive
is implemented as a VOL plugin, we also identify other uses
of HDF5 VOL plugins.

A. Workflow Data Models

Workflow systems can repurpose existing data models, e.g.,
from storage libraries such as HDF5 or from visualization
libraries such as VTK, or they can define a new data model for
their computing and communication. Re-using existing data
models has the potential advantage of minimizing required
changes to users’ codes when migrating from standalone
execution to execution within a workflow system. For example,
a simulation code that writes checkpoints in HDF5 potentially
requires fewer changes when embedded in a workflow system
that uses an HDF5 data model, as compared with a workflow
that requires users to describe data in a new model. This is one
reason why we selected HDF5 as the data model for LowFive.

The data model used in the Decaf [6] workflow system
is called Bredala [4]. Bredala is designed to annotate fields
in a data model such that they can be redistributed by a
workflow system. In Bredala, data intended to be moved
among tasks are first appended to a “container” (essentially
serialized into a message) one field at a time, along with
annotations indicating how each field is handled during data
redistribution. Annotating data members and appending them
to a message is done through Bredala API calls in the user’s
task code.

The Henson [7] workflow system is designed for shared-
memory communication among tasks colocated on the same
computing node. Data are accessed in user tasks using pointers
to shared data. When tasks are containerized, Dhmem [8] al-
lows shared-memory pointer access between Henson workflow
tasks in separate containers, with minimal code change and
low performance overhead.

A data model is specified in the ADIOS [9] workflow
system by means of an external XML file, where structured
N-dimensional arrays consist of various primitive types. At-
tributes relating to global shape of the N-dimensional array as
well as the local shape (starting offsets, sizes) of the subarray
contained on a local process are included in the XML defini-
tion. These metadata are used for data redistribution between a
different number of producer and consumer processes. ADIOS
contains several different back-ends for physical file storage
as well as for in situ communication.



Conduit [3] is another open-source hierarchical data model.
Unlike HDF5, it is not tied to a particular file format, nor
is it restricted to physical file storage, making it another
candidate for in situ workflows. The data model is described
hierarchically in YAML or JSON format. Conduit is generic,
being able to represent virtually any data. In order to ease
application development for typical scientific applications,
the Blueprint [10] layer atop Conduit provides data models
for commonly used meshes and scalar- and vector-valued
multidimensional arrays.

For workflows designed to perform visualization tasks,
the VTK data model is commonly used. VisIt Libsim [11],
ParaView Catalyst [12], and SENSEI [13] are examples of
such systems based on VTK.

B. Workflow Data Transport and Redistribution

In addition to executing tasks that perform computations
on data, workflows move data among tasks. The data trans-
port mechanism varies among workflow systems and among
locations of communicating tasks; communication via files in
storage systems, shared memory, and network communication
are the most common mechanisms. In the latter case, data are
distributed among separate computing nodes, and can com-
municate via sockets, low-level network protocols for remote
direct memory access (RDMA), or message passing via MPI.
In the distributed case, it is also likely for two communicating
tasks (e.g., producer and consumer) to have different numbers
of processes and different data decompositions, raising the
question of how data are redistributed between producer and
consumer task while preserving data model semantics.

In situ, data can be moved in a transport layer by either
direct messaging between the user tasks or by staging data in
an intermediate location. A data staging service is launched
on separate compute nodes than the user tasks, whereas direct
messaging moves data from one task to another (e.g., using
MPI) with no intermediary agent, service, or resources. Data
staging is also sometimes called in transit or loosely coupled
in the literature. Direct messaging, the approach taken in
LowFive, is conceptually a simpler solution, requiring no
additional resources, but it can incur synchronization between
tasks; while data staging decouples tasks through the staging
area. Gainaru et al. present a thorough analysis of the uses of
data staging in a recent paper [14].

Bredala [4] is a direct messaging solution, where various
fields in the data model are annotated with flags that allow
the semantic integrity of the local subset of the data model to
remain intact when data are redistributed (split and merged)
between n producer processes and m consumer processes. For
example, if the field is a counter, then Bredala understands
that it should be adjusted by the difference between consumer
and producer data items. The size of semantic items is also
specified, so that for example, all three coordinates of a 3-d
vector remain colocated during data movement and redistribu-
tion. Bredala supports several redistribution policies: round-
robin, contiguous, and bounding box intersections. LowFive,

in comparison, does not require additional data annotations to
inform its redistribution.

DataSpaces [15] is a staging solution that provides a shared
space consisting of a set of HPC computing nodes that act as
a distributed staging server for client (producer and consumer)
tasks. The data abstraction is an N-dimensional array of
tuples that can be redistributed, colocating the components
of a single tuple. Multiple datasets can be staged, as well as
multiple versions (e.g., time steps) of each dataset. Producers
and consumers interact with DataSpaces using a put-get API,
where global and local shapes are specified, so that DataSpaces
can locate and redistribute data. There are two key differences
between DataSpaces and LowFive. LowFive has a broader
range of supported data types and data spaces (the entire
HDF5 data model), and DataSpaces requires a set of staging
nodes to be allocated in a separate server application, whereas
LowFive transports data directly from producer to consumer
processes with no intermediate resource. The latest version
of DataSpaces utilizes several Mochi [16] services for remote
procedure calls (RPC) and user-level threading. DataSpaces is
one of the back-end transport layers used in the ADIOS2 [17]
system.

Conduit provides a data transport layer called Relay [18]
that includes back-ends for physical file storage using HDF5
and ADIOS I/O libraries, MPI message passing, and web
sockets. Depending on the back-end, Conduit Relay can im-
plement direct messaging (e.g., through MPI) or staging (e.g.,
through ADIOS). To the best of our knowledge, Relay does
not provide any in situ redistribution services equivalent to
LowFive, Bredala, or DataSpaces. Therefore, we did not con-
duct performance comparisons with Conduit Relay, whereas
we do compare the performance of LowFive with Bredala and
DataSpaces.

C. Other HDF5 VOL Plugins

There is a small but growing number of other applications
of HDF5 VOL plugins. Although these are used for improving
physical storage access, not in situ workflows, it is still infor-
mative to know how others are using this feature of HDF5.
Data Elevator [19] is a VOL plugin that transparently migrates
and accesses data in various levels of the memory–storage
hierarchy, from cache to DRAM to burst buffer to parallel
file system. Another application [20] converts HDF5 data to
the Apache Arrow columnar format for converting between
HPC and Big Data storage formats. A third application [21]
converts the HDF5 file format to a log-structured layout in
order to improve parallel write performance. In all three of
these cases, as in LowFive, the user is oblivious to the data
transformations occurring in the VOL plugin while making
what appear to be ordinary HDF5 I/O calls.

III. APPROACH

A. In-memory Metadata Hierarchy

LowFive builds in memory a replica of the HDF5 metadata
hierarchy. An example of one such hierarchy is shown in
Figure 1. Throughout much of the following description and
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Fig. 1. In-memory metadata hierarchy.

experimental results, we use this example of one HDF5 file
containing two groups (group1 and group2), and each group
containing one dataset. Group1 contains a 3D structured grid
of scalar values, while group2 contains an unordered list of
3D particles. A physical file may or may not reside on disk;
in either case, we build the in-memory metadata hierarchy as
shown in the figure.

The example hierarchy in Figure 1 has three levels: file,
groups, and datasets, but in general we are able to replicate
any complex tree that can be defined in HDF5. For example,
tree nodes can contain attributes, use arbitrary data types, and
utilize arbitrarily complex data spaces, among other HDF5
constructs. We call our tree a metadata hierarchy, although it
may or may not contain deep copies of user data as well as
metadata. Whether to copy data or store a shallow reference
to them in the tree is configurable by the user at per-dataset
granularity.

LowFive is implemented as an HDF5 Virtual Object Layer
(VOL) plugin, a plugin system added in HDF5 1.12.0, that
catches all HDF5 calls and allows custom code to be executed.
Plugging into HDF5 allows LowFive to support not only codes
that use the native HDF5 C API, but any library written on
top of it. Examples of such libraries are the C++ HighFive
library [22], the h5py Python interface [23], the NetCDF-4
bridge to HDF5 [24], and many other custom scientific and
AI libraries that build on top of them, such as Scorpio [25],
TensorFlow [26], and Keras [27].

The entire software stack is shown in Figure 2. LowFive
depends on the DIY block parallel model [28] to perform
efficient data redistribution, which in turn uses MPI, as does
native HDF5. Although the HDF5 source code is written
in C, we implemented LowFive in high-level C++17 at the
three levels of abstraction described below. LowFive can be
invoked by constructing one of the classes below explicitly
in the user task code, or LowFive can be enabled by setting
two environment variables. The latter mechanism is useful if
changes to the code are to be minimized, including potentially
no change to the user code.

a) Base VOL: The lowest level of our plugin is the
base layer. Any HDF5 functions that are not redefined in
the subsequent layers are caught at this base layer and pass
through to native HDF5 file I/O.

b) Metadata VOL: We derive the metadata VOL class
from the base VOL class. Here we redefine most of the

HDF5, NetCDF-4, HighFive, H5Py
I/O libraries

LowFive
Data transfer

HDF5
Data model

MPI
Message passing

DIY
Block parallelism

Virtual Object Layer (VOL)

Scientific Simulations, AI, ML Frameworks 
Applications

Fig. 2. Software stack.

functions in the base layer with their in-memory metadata
counterparts. The implementation is entirely our own: we
manage our own tree of HDF5 objects (files, groups, datasets,
attributes, etc.) that replicates the user’s HDF5 data model.
We create new nodes in our tree when the user creates HDF5
objects such as datasets, traverse the tree and locate existing
objects when the user opens existing HDF5 objects, and so
forth. We manage our own pointers to tree nodes that are
the equivalent of HDF5 identifiers. Because the HDF5 native
data representation is opaque, we opted to create our own
hierarchy mirroring HDF5 metadata rather than attempting to
reach into whatever internal representation HDF5 uses. The
only exceptions to this are HDF5 data types and data spaces.
We use HDF5’s internal facilities for their manipulation and
serialization, which allows us to support these features in their
full generality. (HDF5 data spaces in particular can express
complex geometric shapes, so relying on HDF5’s internal
routines helps ensure correctness.)

c) Distributed Metadata VOL: The highest level in our
class organization is the distributed metadata VOL class, which
derives from metadata VOL. Here we redefine HDF5 functions
that potentially access remote processes, e.g., in order to
transfer data over MPI from the processes of a producer task to
the processes of a consumer task. This is how we redistribute
data as described below and in the experimental results that
follow. We implement distributed client-server connections
between the processes of a consumer task reading data and a
producer task writing data. While we use the terms “writing”
and “reading,” the distributed metadata VOL class executes
these functions by sending and receiving MPI messages.

B. Data Redistribution

The metadata hierarchy serves to connect producers and
consumers, avoiding expensive round-trips to storage. Individ-
ual tasks are parallelized via MPI processes, and the number
of processes need not be the same across tasks connected
by LowFive. Because HDF5 does not specify a mechanism
to communicate the producer’s data decomposition to the
consumer—the latter may read the data in a way that does not
match the former—and more generally because of the unequal
numbers of processes among the cooperating tasks, we must
solve the data redistribution problem described below.



Producer Task w/ 6 Processes Consumer Task w/ 4 Processes

Proc. 0

Proc. 2

Proc. 1

Proc. 3

Proc. 4

Proc. 5

Proc. 0 Proc. 2Proc. 1 Proc. 3

Fig. 3. Example of data redistribution from a producer task with 6 processes
to a consumer task with 4 processes.

Figure 3 shows an example of a producer with 6 processes
sending a distributed dataset to a consumer with 4 processes.
The producer decomposed a grid row-wise, while the con-
sumer has a column-wise decomposition. The objective is for
all the processes to exchange the correct bits of data. The
communication is determined by the intersections of the local
data space of each process with the processes of the other
task. Importantly, we avoid any unnecessary communication of
data not needed by any process, and we also do not aggregate
data in a central intermediate location: all communication is
direct point-to-point and parallelized among the processes of
the tasks. While Figure 3 shows only two tasks, arbitrary fan-
in and fan-out of multiple such tasks is also possible.

In the following description of our data redistribution, called
index-serve-query, assume there are two tasks, pro-
ducer and consumer, and each task is parallelized over multiple
MPI processes. Assume that the producer task generated
a dataset, distributed over multiple processes, and that the
consumer task requests to access (read) that dataset. Producer
and consumer are not required to have equal numbers of
processes.

The central problem data redistribution has to solve is that
in the HDF5 data model, the producer and consumer do not
know anything about each others’ data decomposition: when
the communication goes through a file, the producers can
write regions of a given dataset however they like, and the
consumers are free to read any subset of them. To match the
data in situ, the producer and consumer implicitly agree on
the common decomposition, shown Figure 4, of the given d-
dimensional dataset into n blocks (where n is the number of
producer processes). The decomposition is found by factoring
n into d factors n1, . . . , nd that are as close to each other as
possible. The domain is cut up into n1 × . . . × nd blocks,
and the i-th producer process becomes responsible for the i-th
block.

During the index procedure, described in Algorithm 1,
each producer process sends the bounding boxes of all of
its local data spaces (written by the individual HDF5 write
operations) to the processes whose blocks they intersect in the
common decomposition. Having recorded all such indices, the
producers go into the serve procedure, described in Algo-
rithm 2, which answers the consumer’s queries, described in
Algorithm 3. The latter can be of two types: redirects and data
queries. To read a given data space, each consumer process

Common Decomposition Consumer Task w/ 4 Processes

Proc. 0 Proc. 2Proc. 1 Proc. 3

Original Producer Decomposition

Proc. 0

Proc. 2

Proc. 1

Proc. 3

Proc. 4

Proc. 5

Producer Task w/ 6 Processes

Fig. 4. Data redistribution for the example of Figure 3, showing the common
decomposition on which both producer and consumer agree. The common
decomposition is a virtual overlay on the producer side. Gray rectangles in
the center panel represent the intersections of the producer and consumer
decompositions with the common decomposition.

first sends a request to the producer processes responsible for
the blocks in the common decomposition intersected by the
bounding box of the data space. Those producer processes
respond with the information about which producers contain
data that intersects the bounding box. The consumer then sends
the requests for the actual data.

The index, serve, and query functions are written
using a custom remote procedure call (RPC) abstraction im-
plemented over MPI. All three functions functions are part of
LowFive, hidden from the user code.

Algorithm 1: Index
1 Function Index()
2 foreach file do
3 foreach dataset dset do
4 compute common decomposition given n, the

number of producer processes, and the shape of dset

5 foreach data space ds ∈ dset do
6 bb← bounding box of ds
7 prod int blocks← vector of producer processes

that intersect bb in common decomposition
8 foreach p ∈ prod int blocks do
9 nonblocking send bb to p

10 foreach incoming bounding box bb from process q do
11 append (bb, q) to the vector boxes[file, dset]

Algorithm 2: Serve
1 Function Serve()
2 do
3 receive request from consumer c
4 if c requests intersections in (file, dset) with bounding

box qbb then
5 foreach (bb, p) ∈ boxes[file, dset] do
6 if bb ∩ qbb ̸= ∅ then
7 append p to vector

producer procs with data
8 send producer procs with data to c
9 else if c requests data in data space ds in (file, dset)

then
10 foreach data reqion d ∈ (file, dset) do
11 enqueue the data space of d in buffer b
12 foreach location v in d ∩ ds do
13 enqueue d[v] in buffer b
14 send b to c
15 while not done



Algorithm 3: Query
1 Function Query(file, dset, global (file) data space fs)

// Step 1: Get intersecting boxes from
indexed blocks

2 compute common decomposition given n, the number of
producer processes, and the shape of dset

3 bb← bounding box of fs
4 index int blocks← vector of producer processes that

intersect bb in common decomposition
5 foreach block p ∈ index int blocks do
6 send fs to p
7 receive vector producer procs with data from p

// Step 2: request and receive data
8 foreach received producer process p do
9 send request for data (file, dset, fs) to p

10 receive producer’s data space ds and data d from p
11 compute the intersection between fs and ds and store data

in memory

IV. EXPERIMENTS AND RESULTS

A. HPC Platforms

Two supercomputers are used in our tests. Cori at the Na-
tional Energy Research Scientific Computing Center (NERSC)
and Theta at the Argonne Leadership Computing Facility
(ALCF) are both Cray XC40 machines, but with different
CPUs. We installed LowFive on both machines, and then ran
various experiments at a particular site, determined by machine
availability and installation of software dependencies. Each
experimental result below specifies which machine was used.

Cori is partitioned into Intel Xeon Phi Knights Landing
(KNL) and Intel Xeon Haswell computing nodes. We used
both partitions. Cori provides 2,388 Haswell nodes, each
having two 16-core CPUs with two hyperthreads, and 128 GB
DDR4 RAM. The KNL partition contains 9,688 nodes, each
having 68 physical cores with 4 hyperthreads per core, and
96 GB DDR4 RAM. Cori is interconnected by a Cray Aries
Dragonfly network, and the machine has a peak aggregate
computation rate of approximately 30 PFLOPS.

Theta provides 4,392 Intel Xeon Phi Knights Landing
(KNL) nodes. Each node has one KNL 64-core CPU, 16 GB
high-bandwidth MCDRAM, 192 GB DDR4 RAM, and 128
GB of SSD storage. Theta is interconnected with a Cray Aries
Dragonfly network, and the machine has a peak aggregate
computation rate of approximately 12 PFLOPs. We used
the high-bandwidth memory in flat mode, with four NUMA
domains.

For Cori and Theta, we used the Cray programming en-
vironment with the GCC version 11.2 compiler and -O3
optimization.

B. Synthetic Benchmarks

In the following experiments we couple one producer task
with one consumer task. We generate synthetic data consisting
of two datasets: a regular grid of 64-bit unsigned integer scalar
values and a list of particles, each particle a 3-d vector of 32-bit
floating-point values. There are 106 regularly structured grid
points per producer process and 106 particles per producer
process. With each grid point occupying 8 bytes and each

Total
# MPI
Procs.

# Pro-
ducer
Procs.

# Con-
sumer
Procs.

Total
# Grid
Points

Total #
Particles

Total
Data Size
(GiB)

4 3 1 3.0e6 3.0e6 0.06
16 12 4 1.2e7 1.2e7 0.22
64 48 16 4.8e7 4.8e7 0.99
256 192 64 1.9e8 1.9e8 3.54
1024 768 256 7.7e8 7.7e8 14.34
4096 3072 1024 3.0e9 3.0e9 55.88
16384 12288 4096 1.2e10 1.2e10 223.51

TABLE I
NUMBER OF MPI PROCESSES AND DATA SIZES FOR 1 PRODUCER AND 1

CONSUMER TASK

particle occupying 12 bytes, there are 2 × 107 bytes or 19
MiB of data per producer process.

The values of the grid points and particles encode their
global position in the grid and in the global vector of particles,
so that the consumer can validate that data have been correctly
redistributed. Average times taken over 3 trials are reported.

The numbers of MPI processes and data sizes are shown
in Table I. We conduct a weak scaling test, such that the
global data size increases proportionally with the number of
producer processes. The producer generates two datasets, the
grid and the particles, and the consumer reads both of them.
Three-fourths of the total processes in the run are allocated
to the producer, and the remaining one-fourth are allocated
to the consumer. When data are written to physical storage,
all processes write collectively to a single HDF5 file in the
parallel file system, using MPI-IO. On both Theta and Cori,
the Lustre parallel file system is used with default settings.

a) LowFive communicating using a file vs in situ: This
experiment, which was run on Theta, compares LowFive data
transport when communicating using a file in a parallel file
system with LowFive communicating using MPI. 64 MPI
processes were allocated to each computing node. Figure 5
shows the results in log-log scale, with the file communication
identified as “LowFive File Mode” and the MPI communica-
tion labeled as “LowFive Memory Mode.” Not surprisingly,
writing and reading a file is hundreds of times slower than
sending MPI messages. We terminated the file mode at 1,024
MPI processes because of the long run time. A perfect
weak scaling curve would be horizontal. The memory mode
curve rises slowly, since there is no computation to hide the
communication overhead; at the largest scale, communication
of 223 GiB of data among 16 K processes takes just over 3
seconds on Theta.

b) LowFive file mode compared with pure HDF5: The
next experiment was also run on Theta and measures the
overhead introduced by LowFive when communicating in
file mode, compared with writing and reading an HDF5 file
without LowFive. Figure 6 compares LowFive communicating
using a file (“LowFive File Mode”) with the producer and
consumer writing and reading an HDF5 file directly, without
the LowFive layer. This curve is labeled “Pure HDF5.” The
most overhead is incurred at 64 MPI processes, where the
LowFive time is approximately twice as long as the pure HDF5
time. At larger scale, when the file size is larger, the differences
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between LowFive and pure HDF5 are within the variance of
individual runs of the same program.

c) LowFive memory mode compared with pure MPI:
This experiment was also run on Theta and measures the
overhead introduced by LowFive when communicating in situ
compared with a hand-written MPI code that performs the
same data redistribution. Figure 7 shows the performance com-
parison, where the hand-written code is labeled “Pure MPI.”
In most cases, LowFive performs slightly better (between
10% - 40%), although at scale LowFive is approximately 6%
slower. The actual difference at 16 K processes is 0.2 seconds.
The reason that LowFive is slightly faster than pure MPI at
smaller scales is because LowFive optimizes the serialization
of contiguous regions of data better than the hand-written code,
which simply iterates over all the data points in the intersection
of bounding boxes and serializes them one point at a time.

d) LowFive memory mode compared with DataSpaces:
Next we compare with DataSpaces, a popular data transport
layer that can be used by ADIOS2. This experiment was run
on Cori using the Haswell partition and 32 MPI processes
per computing node. Figure 8 compares LowFive in mem-
ory mode (communicating over MPI) with the producer and
consumer communicating using DataSpaces. DataSpaces is
consistently faster than LowFive, although the actual times
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are on the order of one second or less. The difference at 4K
processes is 0.5 s. The DataSpaces server is launched as a
separate process that uses dedicated staging nodes to achieve
this performance, so the DataSpaces execution requires more
total computing resources than LowFive, which sends data
directly from producer to consumer. At full scale, we used
4 additional compute nodes for the DataSpaces server. We
used the write-local storage version of the DataSpaces API
(dspaces_put_local) to exchange data in-place, so that
the server only maintains indexing metadata.

We hypothesize that the LowFive performance is slowed by
synchronization: Because LowFive follows the HDF5 API, the
consumer waits for the producer to close the file as a signal
that data are ready. Moreover when resolving potential box
intersections in the index-serve-query redistribution (§ III-B),
indexing the dataset is a collective operation that synchronizes
all the MPI processes of the consumer task. In the future,
we will investigate how to minimize the synchronization in
LowFive.

e) LowFive memory mode compared with Bredala: We
also compared performance of LowFive memory mode with
Bredala, that data transport layer used in Decaf. This experi-
ment was run on Theta. Figure 9 shows the results. Overall,
Bredala did not scale well in this test, with LowFive being
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much faster. To understand the reasons why, we decomposed
the Bredala timing into the time taken to transmit the grid
dataset and the time for the particle dataset. We see that
the particle dataset performed reasonably, but the grid dataset
did not. Bredala uses a different redistribution policy for the
particles (a contiguous redistribution) than for the grid (a
bounding box redistribution).

The two redistribution policies are illustrated in Figure 10.
The contiguous policy at the top of the figure is for a linear
1-dimensional listing of data items, where the redistribution
only needs to maintain the same ordering in the global list.
Contiguous redistribution allows intersections of producer and
consumer processes to be computed easily and data to be
moved in contiguous buffers that match the local resident
ones. The particles dataset conforms to these requirements.
The bounding box redistribution in the bottom of the figure
resembles LowFive’s redistribution of Figure 3, where inter-
sections in multiple dimensions need to be computed, and data
need to be reordered during serialization. In the bounding
box redistribution, MPI processes represent n-dimensional
subdomains of a global n-dimensional domain, and data are
indexed by coordinates in that domain. After redistribution,
associated coordinates of a data item must be within the new
bounding boxes of each consumer process. This is the case
with the grid dataset.

Evidently Bredala does not handle bounding box redistri-
bution efficiently. This result agrees with smaller-scale results
in Dreher et al. [4], where the authors showed that the
redistribution takes most of the data transport time, and that
most of that time is spent computing and communicating the
indices of intersecting bounding boxes.

f) Larger data size: Next we compare the three top in situ
solutions evaluated so far—LowFive, DataSpaces, and pure
MPI—with a data size that is 10 times larger than the previous
benchmarks. That is, there are now 107 regularly structured
grid points and 107 particles per producer process, or 190
MiB of data per producer process and 0.55 GiB of data per
consumer process (we continue to use three times as many
producer processes as consumer processes). The total data size

Producer Task w/ 9 Processes Consumer Task w/ 4 Processes

Contiguous Redistribution

Bounding Box Redistribution

Producer Task
w/ 9 Processes

Consumer Task
w/ 4 Processes

Fig. 10. Two redistribution policies in Bredala: the contiguous policy (top) is
used for redistributing a linear list of particles with no spatial requirements,
while the bounding box policy (bottom) is used for redistributing regular grid
points that need to conform to high-dimensional bounding boxes.
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at the largest scale tested is 0.55 TiB. The objective of this test
is to see if the trends we observed remain true if the data are
scaled larger. This test is conducted on Cori. Figure 11 con-
firms that LowFive’s performance remains comparable with
the hand-written MPI code and with DataSpaces. LowFive
remains as fast as MPI and approximately 20% slower than
DataSpaces at the largest scale tested.

g) Discussion: The different design choices in LowFive
and DataSpaces have implications on resource requirements,
usability, and performance. First, DataSpaces is a data staging
service launched on separate compute nodes, whereas Low-
Five moves data directly from producer to consumer with
no intermediary agent, service, or additional resources. Sec-
ond, DataSpaces supports only n-dimensional regular arrays,
whereas LowFive supports the full HDF5 hierarchical data
model. For example, the data in LowFive can be a collection
of multiple smaller regions, or a complete hierarchical graph
or mesh structure, which would be tedious to decompose
into regular arrays. Third, when a code already uses HDF5,



either directly or through a higher-level library, no change
is required to use LowFive and seamlessly switch between
storage and in situ data transport. This covers many use cases.
In the next section, we show one such example of an actual
science workflow that required zero modification to the user
codes in order to use LowFive. In contrast, most codes require
modification to use DataSpaces.

The other side of this tradeoff is that DataSpaces, by
virtue of its additional staging resources and restricted data
model, can communicate between 20 to 50% faster than
LowFive in our tests. Our results demonstrate that Low-
Five’s advantages—little to no modification to user codes,
full hierarchical data model, and no additional services or
resources—do have a performance cost compared with DataS-
paces. Regarding the performance comparison, we cooperated
with the DataSpaces team, who improved their performance
during the course of our experiments, to get the most fair
comparison possible. We ran DataSpaces in-place; that is,
we used dspaces_put_local instead of dspaces_put,
which is why only a small number of additional nodes were
needed for indexing metadata, rather than a staging a full data
copy. We felt this was the most fair comparison with LowFive,
which does not allocate additional memory for indexing and
serving data and uses the original data buffers that the user
allocated in their code.

C. Scientific Application Use Case

We describe a use case in the study of high-energy
physics—cosmology—as further demonstration of the appli-
cability of LowFive to an actual scientific workflow. The
scenario, drawn from previously published literature, features
a parallel HPC simulation coupled in situ with a smaller-
scale parallel analysis task. This case validates our design
decision of implementing LowFive as an HDF5 VOL plugin:
no changes were made to the HPC simulation nor to the
analysis code to generate the following results; the simulation
and analysis codes were both used “off-the-shelf.” Because
we are testing the coupling of unmodified stand-alone codes
together in an in situ workflow, we do not compare further
here with other technologies such as Bredala or DataSpaces
that would have required modifying the codes.

Nyx [29] is a cosmological simulation code. The underlying
PDE solver is AMReX [30], a framework for massively-
parallel adaptive mesh refinement computations. Nyx also
relies on AMReX for I/O. AMReX provides two I/O options:
HDF5 (all the simulation data are written into a single file)
and plotfiles, a binary format specifically designed by AMReX
developers to be optimized for large-scale simulations. Here
the data are split into separate files among groups of simulation
processes. At certain time steps, the cosmologists need to
identify regions of high density, called halos. This analysis
is performed by Reeber [31]–[33].

In our experiments, we ran Nyx and Reeber on the Cori
KNL partition. We ran simulations for different grid sizes:
2563, 5123, 10243, and 20483. In all experiments we used
256 computing nodes for Nyx and 64 nodes for Reeber, with

16 MPI processes per node (in total, 4096 process for Nyx and
1024 for Reeber). Nyx also used OpenMP parallelism, with
16 threads per process. Striping of the file system plays an
important role in performance evaluation. We found that the
medium striping (recommended by NERSC) gives the best
results for the Cori scratch file system, and we used this
setting. Since we are interested in the I/O performance, we
ran only the first two time steps of the simulation, to produce
two snapshots to be analyzed by Reeber. We compared the
following 3 scenarios.

• Baseline HDF5. Nyx saves data to disk in HDF5 format,
and after Nyx finishes, Reeber reads the data from the
files. This is the worst scenario for large-scale problems,
because all the data are saved to a single HDF5 file, and
that is the reason why we do not have the timings for
20483: the I/O did not finish in 1.5 hours.

• Plotfiles. Here we use the native AMReX format, but the
data still go to disk.

• LowFive. Here we connect Nyx and Reeber in situ with
LowFive. The Python script, which uses Henson [7]
to orchestrate this experiment, first creates the Dist-
MetadataVol plugin, to ensure that the data exchange is
performed in situ, and then calls Nyx and Reeber. We
note that thanks to Henson and LowFive, no changes were
required neither to Nyx, nor to Reeber; we only had to
relink the codes as shared objects.

To work around the inefficiencies in HDF5, the AMReX
writer uses a separate procedure to repack the data into a layout
more amenable to disk I/O. Unfortunately, this undermines
LowFive’s zero-copy ability, which assumes that the data
passed to the write operation remain in the same location in
memory until the file is closed. As a result, we disable zero-
copy in LowFive, and up to three copies of the same data
(one native, one repacked, and one in LowFive) can exist in
memory simultaneously.

In Table II, we report the time it took to write the two
snapshots and to read them. We intentionally omitted the
reporting of the plotfiles read time, which was unexpectedly
long. When we questioned the cosmologists about this, we
learned that code for reading plotfiles was not optimized and
not an accurate reflection of true performance. We therefore
also excluded the plotfiles read time from our calculation of the
speed-factor in the last column of the table, to avoid inflating
the improvement of LowFive over plotfiles. The speed-up we
report is a lower bound, assuming the plotfile reading time is
zero. We calculate the speed-up factor in the last two columns
(how much time we gain by switching to LowFive from HDF5
and plotfiles, respectively). If we compare standard HDF5 with
LowFive, the advantage of using LowFive is immense. Even
for the native AMReX plotfile format, LowFive is faster by
an order of magnitude.

V. CONCLUSIONS

A. Recap

We presented LowFive, an in situ data transport layer for
HPC workflows. While the primary communication mecha-



Data Size LowFive
Write Time

LowFive
Read Time

HDF5 Write
Time

HDF5 Read
Time

Plotfiles
Write Time

LowFive
vs HDF5

LowFive
vs Plotfiles

2563 2.87 0.106 5.46 0.37 4.42 1.9 1.54
5123 2.00 0.287 104.20 0.69 18.10 52.01 9.03
10243 2.87 0.628 920.44 3.02 35.00 320.00 12.17
20483 7.69 3.205 x x 154.52 x 20.09

TABLE II
RESULTS OF NYX–REEBER USE CASE. TIMINGS ARE IN SECONDS, ON CORI (KNL).

nism is MPI, we also provide options to communicate using
files in a parallel file system. We built our solution on the
HDF5 VOL technology. HDF5 is one of the most common
data models, with many HPC, big data, and AI applications
either using HDF5 directly or able to convert to/from HDF5.
Writing LowFive as a VOL plugin, we benefit from HDF5’s
rich metadata describing the data model while affording users
the familiarity of HDF5 and minimizing code modifications
to their applications. In particular, we made no changes
whatsoever to the Nyx and Reeber applications in order to
use LowFive. By creating our own version of the HDF5
hierarchy in memory and communicating over MPI, we were
able to sidestep many of the performance issues plaguing
HDF5 physical file I/O, and HPC parallel I/O in general.

Several conclusions are evident from our performance eval-
uation. We saw that communicating over MPI is much faster
than through physical files, as expected. When communicating
through physical files, the overhead incurred by LowFive over
using pure HDF5 was negligible. Similarly, when commu-
nicating through MPI, LowFive’s overhead was negligible
compared with a hand-written MPI code.

When comparing with DataSpaces, DataSpaces outper-
formed LowFive by 50% in the small-scale test and 20%
in the larger-scale test. Both libraries scaled similarly; i.e.,
their performance curves were roughly parallel. DataSpaces
required additional resources compared with LowFive, and the
DataSpaces API is limited to regular structured n-dimensional
arrays. LowFive, by virtue of HDF5’s rich data model, sup-
ports many more complex data types and spaces, both globally
and locally, and can redistribute them. The comparison with
Bredala showed that LowFive outperformed Bredala overall,
both in terms of time and scalability.

In a science use case drawn from the literature, LowFive
continued to perform well. In the cosmology study, LowFive
outperformed both the HDF5 and plotfiles I/O formats used
by the cosmologists, by significant margins. No changes were
required to the simulation and analysis codes in order to use
LowFive.

B. Lessons Learned

One lesson learned is that although a plugin architecture
such as VOL is a convenient vehicle for injecting custom
functionality, maintaining compatibility with an existing stan-
dard requires in-depth knowledge of the underlying library.
Developing LowFive required a significant amount of effort in
reverse-engineering the HDF5 source code. Nonetheless, we
believe that it is valuable to re-purpose popular software in this
way instead of reinventing the wheel, and the HPC community

should design software (like HDF5) from the outset with
carefully-planned abstraction layers (e.g., the VOL) meant to
be used by other groups for other purposes, at a high level,
with better documentation and support for its use.

It is important to understand and balance the trade-offs in
using such a combined design. On one hand, a VOL plugin
like LowFive makes interchanging physical file I/O with in situ
communication seamless, affording high-performance zero-
copy parallel communication transparently. However, simu-
lation codes can still negate some of these advantages. A
salient example is the implementation of HDF5 I/O in Nyx,
where the AMReX writer repacked the data, forcing LowFive
to make a deep copy. Some other simulations gather all
data to a single MPI process before writing output serially,
undermining LowFive’s ability to exploit parallel point-to-
point communication between many processes simultaneously.
A promising approach to reconciling different approaches for
I/O and in situ communication is to hide custom workarounds
for file I/O inside another VOL plugin, so that the top-level
user API remains parallel HDF5 I/O. This is already happening
in some cases such as the other VOL plugins cited in § II-C.

C. Future Work

In the future, we plan to investigate how to reduce syn-
chronization in LowFive, so that we can consume data as
soon as it is available, and overlap reading and writing of
data to the extent possible. We are working on profiling our
communication at finer grain in order to see where the remain-
ing bottlenecks are. Scheduling the communication pattern to
alleviate congestion is something we have not investigated
in LowFive. All producer processes act as servers, and all
consumer processes act as clients, in our fully parallel point-
to-point messaging interchange. Depending on the communi-
cation workload, various collective algorithms may be more
efficient than point-to-point; scheduling communication for
a variety of workloads is a future research topic. LowFive
currently covers approximately 80% of the HDF5 API, and
we are working on adding the remaining HDF5 functions
to LowFive. We are also actively building a higher-level
workflow system that uses LowFive as its transport layer.
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[31] B. Friesen, A. Almgren, Z. Lukić, G. Weber, D. Morozov, V. Beckner,
and M. Day, “In situ and in-transit analysis of cosmological simulations,”
2016. [Online]. Available: http://dx.doi.org/10.1186/s40668-016-0017-2

[32] D. Smirnov and D. Morozov, “Triplet merge trees,” in Topological
Methods in Data Analysis and Visualization. Springer, 2017, pp. 19–36.

[33] A. Nigmetov and D. Morozov, “Local-global merge tree computation
with local exchanges,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’19. New York, NY, USA: ACM, 2019, pp. 60:1–60:13.
[Online]. Available: http://doi.acm.org/10.1145/3295500.3356188

https://llnl-conduit.readthedocs.io/en/latest/
https://llnl-conduit.readthedocs.io/en/latest/blueprint.html
https://llnl-conduit.readthedocs.io/en/latest/blueprint.html
https://llnl-conduit.readthedocs.io/en/latest/relay.html
https://llnl-conduit.readthedocs.io/en/latest/relay.html
https://sc21.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost151.html
https://sc21.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost151.html
https://github.com/DataLib-ECP/vol-log-based
https://github.com/DataLib-ECP/vol-log-based
https://github.com/BlueBrain/HighFive
https://github.com/BlueBrain/HighFive
https://e3sm.org/scorpio-parallel-io-library/
https://e3sm.org/scorpio-parallel-io-library/
http://dx.doi.org/10.1186/s40668-016-0017-2
http://doi.acm.org/10.1145/3295500.3356188

	Introduction
	Related work
	Workflow Data Models
	Workflow Data Transport and Redistribution
	Other HDF5 VOL Plugins

	Approach
	In-memory Metadata Hierarchy
	Data Redistribution

	Experiments and Results
	HPC Platforms
	Synthetic Benchmarks
	Scientific Application Use Case

	Conclusions
	Recap
	Lessons Learned
	Future Work

	References

