
Towards a General I/O Layer for Parallel Visualization Applications

Wesley Kendall and Jian Huang
Department of Electrical Engineering and Computer Science

The University of Tennessee
Email: {kendall, huangj}@eecs.utk.edu

Tom Peterka, Rob Latham, and Robert Ross
Mathematics and Computer Science Division

Argonne National Laboratory
Email: {tpeterka, robl, rross}@mcs.anl.gov

I. INTRODUCTION

Parallel visualization is one of the most powerful tools
for gaining insight into large datasets. Many mainstream
algorithms are inherently data-parallel and can be scaled
to large process counts, providing more interactive methods
to handle scientists’ growing data demands. The study of
how visualization approaches interact with parallel storage
devices, however, has largely been neglected. While recent
reports have shown the dominant role of I/O when scaling
procedures like volume rendering [1], [2], [3], there is still
no clear consensus on the best techniques to use or an effort
to create more generalized I/O solutions for scaling other
visualization approaches.

Our viewpoint is that parallel I/O should be better inte-
grated into the community with more generalized designs
and accepted practices. To justify our viewpoint, we discuss
common I/O challenges and describe how limitations of
current technologies can make it difficult to achieve best
performance. We illustrate how the use of a simple design
pattern can alleviate many difficult I/O scenarios and lever-
age current parallel I/O libraries in more beneficial manners
for parallel visualization applications. As we will show, solu-
tions like this can mean the difference between minutes and
seconds of I/O time, and we believe they will be necessary
as more applications are scaled on HPC architectures. While
our design is only for a subset of all problems, we want to
bring this research issue to the attention of the field and
instill an effort for more comprehensive solutions.

II. THE BURDEN OF I/O ON VISUALIZATION

Visualization as a field is burdened by I/O. The interdis-
ciplinary nature of visualization forces developers to deal
with a large number of file formats. In fact, production
applications like Visit 1 and ParaView 2 have over one
hundred different file readers in use. The amount of domain-
specific tools that depend on the rich meta-information of
these formats gives them good cause to persist in their
respective fields with less chance of a universal format
replacing them.

1http://wci.llnl.gov/codes/visit
2http://www.paraview.org

Figure 1. Examples of parallel visualization approaches that often leverage
block-based domain partitioning strategies. The top shows time-varying
volume rendering of a supernova core collapse. The bottom shows pathlines
traced through a global ocean simulation to reveal major ocean currents.
An illustration of a block-based partitioning strategy using four processing
elements on a uniform time-varying grid is shown in the middle.

The amount of formats, however, is only part of the real
issue that occurs when developing parallel applications. The
physical layout of the data on disk often does not match the
data partitioning strategy of the application, which can cause
serious I/O bandwidth deficiencies if advanced measures are
not taken. This becomes even more apparent when trying
to partition data that spans many files, whether these are
different timesteps, variables, or parameter sweeps.

Let us consider volume rendering and particle tracing
on uniform grids as two major examples of how these
issues come in effect. As depicted in Figure 1, these in-



dispensable algorithms give scientists the ability to examine
complex time-varying phenomena like the core collapse
of a supernova or the behavior of global ocean currents.
Many of the standard approaches that parallelize these
algorithms partition the domain into blocks and assign them
to processing elements (PEs). More advanced approaches,
as illustrated in Figure 1, assign multiple blocks to PEs
to more effectively balance the workload. The individual
blocks, however, translate into noncontiguous regions of the
underlying stored data. If each PE uses traditional POSIX
I/O routines, the numerous disk seeks and reads will likely
result in dismal I/O bandwidth. Using only one PE to read
and distribute the dataset can also lead to poor bandwidth
results since it does not sufficiently utilize the network links
in a parallel file system.

Parallel I/O libraries can alleviate many serial I/O access
issues by providing the capability to take distributed requests
and aggregate them into requests that more closely match
how the data is stored on disk. The standardization of I/O
in the Message Passing Interface 2 (MPI2) 3 has allowed
popular formats with strong community support like the
network Common Data Form (netCDF) 4 and the Hierarchi-
cal Data Format 5 (HDF5) 5 to have parallel interfaces [4].
Understanding low-level details of the interfaces, however,
is often necessary in order to correctly use them. For
example, accessing the pattern in Figure 1 from only one
timestep of raw data involves formulating the request into an
MPI indexed datatype and using collective I/O. For classic
netCDF datasets, the newer non-blocking I/O routines in
Parallel netCDF [5] must be used for the same pattern.
Performing this across all files at once, a common need in
time-varying visualization like our pathline tracing example,
is not natively supported by these libraries. These limitations
create challenges in efficiently harnessing the throughput
available from parallel file systems. There is a need for more
higher-level interfaces that are portable across file formats
and can mask complexity of parallel I/O.

III. PROPERLY UTILIZING PARALLEL FILE SYSTEMS

In order to perform parallel I/O properly, it is necessary
to understand common designs and architectures of parallel
file systems. Figure 2 shows a typical design. A parallel file
system is often a separate entity that is accessed through
storage servers via high-speed networks. Some machines
have dedicated I/O nodes that communicate with storage
servers while others may use the actual compute nodes. One
or more metadata servers that are responsible for handling
information about the file, such as permissions and storage
location, are often included in the design.

When a file is stored on a parallel file system, it is striped
across storage servers. Each of these storage servers obtain

3http://www.mpi-forum.org
4http://www.unidata.ucar.edu/software/netcdf/
5http://www.hdfgroup.org/HDF5

Figure 2. A typical parallel file system design. The bottom of the
illustration represents how a file may be distributed across the disks of
a parallel file system.

pieces of the entire file and may split them into finer grained
portions across multiple underlying disks. When data is
requested, it can be obtained in parallel among the disks
and forwarded to the I/O nodes from the storage servers.
Large contiguous accesses aid in amortizing disk latency,
allow more efficient prefetching of data, and also help obtain
more total concurrency during retrieval.

Taking advantage of large contiguous access optimizations
can be difficult given distributed noncontiguous patterns
such as shown in Figure 1. The classic method to solve this
is with a technique known as collective I/O. This technique
aggregates distributed requests into larger more contiguous
requests. It can be implemented on the disk, server, or client
level. When performed on the client level, PEs will all
communicate and aggregate their requests, perform I/O on
more contiguous regions, and then exchange the data back
to the requesting PEs. This technique is known as two-phase
collective I/O since it involves an additional phase of data
exchange.

IV. A MORE GENERALIZED APPROACH

One motivating approach that can generalize I/O is the
usage of a block-based design pattern. Consider the notion
of a block, which can span any dimensionality, contain any
amount of variables, and span multiple files as well. This
representation of data can be used for the access patterns of
the visualization procedures we have discussed along with
other problems that typically use block-cyclic distribution,
such as matrix analysis (e.g. Principle Component Analysis).

By restricting the description of access patterns, we can
mask parallel I/O complexity with a greatly simplified
interface. To illustrate this ability, we have designed and
implemented a prototype, known as the Block I/O Layer
(BIL), with the following interface:



Figure 3. An example of how our I/O implementation performs reading of requested blocks. This illustration uses four PEs that each request two blocks
that are in separate files. The procedure uses a two-phase I/O technique to aggregate requests, schedule and perform large contiguous reads, and then
exchange the data back to the requesting PEs.

• BIL Add block {file format} – Takes the starts and
sizes of a block along with the variable and file name.
PEs call it for as many blocks as they need, whether
they span multiple files or variables. Currently it oper-
ates on raw, netCDF, and HDF formats.

• BIL {Read, Write} – Takes no arguments. The blocks
that were added are either read in or written from the
user-supplied buffers.

The interface is similar to HDF’s hyperslab functionality
and Parallel netCDF’s non-blocking procedures. The main
difference is that it also provides an additional flexibility
to specify multi-file access patterns, which is leveraged in
our underlying implementation. To illustrate this, Figure 3
shows a simple example of four PEs reading a block-
based pattern that spans two files. The PEs first add the
necessary blocks that are needed and then call BIL Read.
The requested blocks, which start out as noncontiguous
accesses for each PE, are aggregated and scheduled into
large contiguous accesses. Reading then occurs in parallel
and data are exchanged back to the original requesting PEs.

When aggregating block requests, we use a tree-based
reduction algorithm. At each stage of the reduction, the
PEs aggregate the requests by unioning the blocks that have
the same file and variable names. For non-power-of-two
PE counts, the PEs aggregate and send their requests to
the highest power-of-two PE count. The PEs then operate
as leaves on a binary tree and transmit their requests to
neighboring leaves until only the root PE remains. The root
PE broadcasts the final global I/O request to all PEs, which
can individually compute the portions they should read.

When reading, PEs have access to identification numbers
(IDs) for each file and variable. The IDs can be used to group
PEs and intelligently use advanced features of underlying
libraries. For example, we can detect the variable layout
used in netCDF files (record or non-record layout) and use

the non-blocking I/O interface accordingly. We can also use
collective I/O when the individual I/O requests are smaller
than the file system’s stripe size. Furthermore, groups can
also perform I/O in stages to avoid potential bottlenecks that
might arise when using too many PEs for I/O.

The last step of exchanging data is formulated into one
MPI Alltoallv call. This allows us to take advantage of
the underlying MPI implementation for network commu-
nication, which is able to efficiently utilize certain net-
work topologies and architectures. Since communication
bandwidths are often orders of magnitude larger than I/O
bandwidths, this step is usually a small portion (< 10%) of
the overall time.

V. A DRIVING APPLICATION - PARALLEL PATHLINE
TRACING

Particle tracing is one of the most ubiquitous methods for
visualizing flow fields. Seeds are placed within a vector field
and are advected over a period of time. The traces that the
particles follow, streamlines in the case of steady-state flow
and pathlines in the case of time-varying flow, can be used to
gain insight into flow features. For example, Figure 1 shows
the usage of pathlines to visualize major ocean currents.

We have integrated BIL into OSUFlow, a particle tracing
library originally developed by the Ohio State University in
2005 and recently parallelized. In summary, the application
partitions the domain into four-dimensional blocks and as-
signs them round-robin to each of the PEs (similar to the
illustration in Figure 1). The time dimension of each block
is equal to the number of timesteps, allowing the application
to only load slices of the time domain during advection if
memory limitations exist. For an extensive explanation, we
refer the reader to [6].

OSUFlow has the ability to load blocks that span multi-
ple files, primarily because collaborators would often store



Figure 4. Bandwidth results (log-log scale) of our parallel I/O method
versus the original parallel I/O method in OSUFlow. Tests were conducted
in SMP mode (one core per node) on Intrepid with two different datasets.
The top line represents the IOR benchmark. The original method was using
the newer non-blocking Parallel netCDF routines for the ocean dataset and
collective MPI-I/O for the jet dataset. The original procedure, however,
was restricted to collectively reading one file at a time, leaving much of
the available bandwidth unused for these multi-file datasets.

separate files for each timestep. The original implementation
used parallel I/O libraries to open and collectively read one
file at a time until blocks were completely read. This method,
which is a proper usage of the parallel I/O libraries, can still
leave a significant amount of bandwidth unused.

To show the effects of this, we have compared BIL with
the original implementation on Intrepid, an IBM BlueGene/P
system at Argonne National Laboratory that consists of
40,960 quad-core 850MHz PowerPC processors and a GPFS
parallel file system. We used two test datasets in the compar-
ison. The first is generated from the Parallel Ocean Program
(POP), an eddy-resolving global ocean simulation [7]. Our
version of the dataset consists of u and v floating point
variables on a 3,600x2,400x40 grid spanning 32 timesteps
that are saved in separate netCDF files (82 GiB). The second
dataset is a Navier-Stokes jet propulsion simulation that has
u, v, and w floating point variables saved in tuples on a
256x256x256 grid across 2,000 timesteps in separate raw
binary files (375 GiB).

Bandwidth results are show in Figure 4. The top line
represents IOR 6, a popular benchmark for parallel I/O sys-
tems, while the others represent the total bandwidths of the
original method and BIL on the test datasets. The differences
are significant at large scale. For the ocean dataset, we
observed a factor of 5 improvement at 16 K PEs. For the
jet dataset, BIL obtained over 30 GiB/s at 32 K PEs and a
factor of 60 improvement – a difference between 12 minutes
and 12 seconds of I/O time. The simplest reason for these

6http://www.cs.sandia.gov/Scalable IO/ior.html

differences is that the individual files do not warrant the use
of such high parallelism at once, especially in the case of the
jet dataset. The advantage of scheduling and reading more
files concurrently, however, can more efficiently leverage the
available bandwidth of the file system.

Although we have primarily discussed better utilizations
of parallel I/O libraries, it is important to note that the
initial usage of a parallel I/O library was a necessity to
begin scaling an application like OSUFlow with irregular
access patterns. For example, at 64 PEs on the jet dataset,
the usage of POSIX I/O resulted in ≈30 MiB/s bandwidth.
This number is only estimated, however, since we could only
read a fraction of the dataset before one hour time limits on
the test would expire.

VI. CLOSING REMARKS

If used properly, parallel file systems can greatly enhance
the interactivity that is so important to visualization appli-
cations. This is especially true for applications that perform
post-analysis directly after simulations, in our case, parallel
pathline tracing. As we have shown, there are methods that
can utilize current parallel I/O libraries in more beneficial
manners for visualization applications. Although these meth-
ods are quite advanced, there are promising ways to simplify
them with design patterns that can be portably used across
many popular scientific data formats. There is an urgent
need for more solutions like these, as they will be critical
for others that develop and research parallel applications
and algorithms. These types of solutions will also provide
the field with solid and accepted practices of performing
parallel I/O – a necessity as more and more applications
are scaled on HPC architectures. As a step forward in this
direction, we have released BIL under the LGPL, available
at http://seelab.eecs.utk.edu/bil.

ACKNOWLEDGMENT

We would like to acknowledge Han-Wei Shen, as his
collaboration has been pivotal to this work taking place.
We would also like to thank Kwan-Liu Ma for providing
the jet dataset and the Argonne Leadership Computing
Facility for computing resources and support. This work is
primarily through the Institute of Ultra-Scale Visualization
(http://www.ultravis.org) under the auspices of the SciDAC
program within the U.S. Department of Energy.

REFERENCES

[1] H. Yu and K.-L. Ma, “A study of I/O techniques for parallel
visualization,” Parallel Computing, vol. 31, no. 2, pp. 167–183,
2005.

[2] T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham, “End-
to-end study of parallel volume rendering on the IBM Blue
Gene/P,” in ICPP ‘09: Proceedings of the International Con-
ference on Parallel Processing, 2009.



[3] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison,
Prabhat, G. H. Weber, and E. W. Bethel, “Extreme scaling
of production visualization software on diverse architectures,”
IEEE Computer Graphics and Applications, vol. 30, pp. 22–31,
2010.

[4] J. Li, W.-K. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and M. Zingale,
“Parallel netCDF: A high-performance scientific I/O interface,”
in SC ‘03: Proceedings of IEEE/ACM Supercomputing, Nov.
2003.

[5] K. Gao, W.-K. Liao, A. Choudhary, R. Ross, and R. Latham,
“Combining I/O operations for multiple array variables in
parallel netCDF,” in IASDS ‘09: Proceedings of the IEEE
Cluster Workshop on Interfaces and Architectures for Scientific
Data Storage, 2009.

[6] T. Peterka, R. Ross, B. Nouanesengsey, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang, “A study of parallel particle tracing
for steady-state and time-varying flow fields,” in IPDPS ‘11:
Proceedings of the IEEE International Symposium on Parallel
and Distributed Processing, 2011.

[7] M. E. Maltrud and J. L. McClean, “An eddy resolving global
1/10 ocean simulation,” Ocean Modelling, vol. 8, no. 1-2, pp.
31–54, 2005.


