
Scalable Computation of Stream Surfaces on Large
Scale Vector Fields

Kewei Lu∗, Han-Wei Shen∗ and Tom Peterka†
∗Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210

Email: {luke,hwshen}@cse.ohio-state.edu
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

Email: tpeterka@mcs.anl.gov

Abstract—Stream surfaces and streamlines are two popular
methods for visualizing three-dimensional flow fields. While
several parallel streamline computation algorithms exist, rela-
tively little research has been done to parallelize stream surface
generation. This is because load-balanced parallel stream surface
computation is nontrivial, due to the strong dependency in
computing the positions of the particles forming the stream
surface front. In this paper, we present a new algorithm that
computes stream surfaces efficiently. In our algorithm, seeding
curves are divided into segments, which are then assigned to
the processes. Each process is responsible for integrating the
segments assigned to it. To ensure a balanced computational
workload, work stealing and dynamic refinement of seeding
curve segments are employed to improve the overall performance.
We demonstrate the effectiveness of our parallel stream surface
algorithm using several large scale flow field data sets, and show
the performance and scalability on HPC systems.

I. INTRODUCTION

Effective visualization of flow fields plays an important
role in analyzing data generated from scientific simulations,
for which displaying streamlines and stream surfaces are two
popular methods. A streamline is the trajectory of a mass-
less particle traced from a seed point in the field, and a
stream surface is a surface traced from seeds originated form
a curve. A stream surface can be seen as the union of an
infinite number of streamlines, and is typically approximated
by a polygonal mesh that connects streamlines seeded from
selected positions on a seeding curve. As the size of data
continues to grow, efficient computation of streamlines and
stream surfaces becomes increasingly more difficult. To ad-
dress the challenge, researchers have proposed various parallel
computation algorithms, most of which are for streamline
computation [1] [2] [3] [4] with a few for stream surfaces
[5]. Generally speaking, stream surface computation is more
complicated than computing streamlines since stream surface
integration requires seeds to be inserted or deleted dynami-
cally across the stream surface front when the flow diverges
or converges. This dynamic insertion and deletion of seeds
requires synchronization among the computation of individual
streamlines, and thus makes parallel computation of stream
surfaces much more challenging.

Algorithms for parallel streamline computation can
be divided into two types: parallelizing-over-seeds and
parallelizing-over-data methods. For the parallelizing-over-
seeds methods, seeds are distributed across all processes, and
then each process computes the streamlines originated from the
assigned seeds and loads the required data when necessary. For

the parallelizing-over-data methods, data are first decomposed
into blocks, and these data blocks are distributed to the
processes. Each process computes the streamlines in its own
blocks and sends the streamlines to the other processes once
the streamlines hit the block boundaries. Applying these two
strategies directly to parallel stream surface computation is
nontrivial because of the dependency in the adjacent stream-
lines that form a stream surface. When using the parallelizing-
over-seeds strategy, for example, if two adjacent seeds are
distributed to different processes, a considerable amount of
communication is needed to connect the streamlines to a
surface. On the other hand, if parallelizing-over-data is used,
challenges arise when the same seeding curve passes multiple
data blocks that belong to different processes.

In this paper, we present a scalable parallel stream surface
computation algorithm based on a front-advancing approach
that is also used by several sequential stream surface algo-
rithms [6] [7] [8]. The main contribution of this paper is an
efficient algorithm to compute stream surfaces for large scale
vector fields that can handle flow convergence, divergence
and split. We show that our algorithm is highly scalable
when running on large supercomputers. We use a hybrid
parallelizing-over-data and parallelizing-over-seed strategy to
ensure a balanced workload distribution for machines with
large processor counts. In our algorithm, we divide the seeding
curve into segments and then assign these segments to different
processes so that each process computes a part of the surface.
For each seeding segment, the seeds at the boundary are
duplicated so that each seeding segment can be advanced
independently by the processes. We divide the entire data set
into blocks which are distributed across the processes. During
integration, when a process needs a data block not in its local
memory, the process will get the block from the other process
over the network on demand. Load balancing is ensured by
a work stealing mechanism combined with a runtime seeding
curve partitioning scheme.

The rest of the paper is organized as follows. In Section II,
we review the related works in parallel streamline and stream
surface algorithms. In Section III, we describes our algorithm
in detail, including preprocessing, parallel computation, and
load balancing. Section IV presents several experimental re-
sults to study the scalability of our method. Conclusion and
future work are presented in Section V.



II. BACKGROUND

Since steam surfaces are closely related to streamlines,
in this section we first briefly review parallel streamline
generation techniques and the common parallel strategies that
are used. Then we discuss the existing algorithms for stream
surface generation and the previous work for parallel stream
surface computation.

A. Parallel Streamline Computation

A streamline is defined as a curve traced from a seed
location in the flow field and is tangential everywhere to the
local flow direction. It is computed by applying numerical
integration techniques such as the Runge-Kutta methods to
obtain a sequence of positions starting from a user-specified
seed location. To parallelize streamline computation, two
strategies are often used. One is to decompose the entire
data set into a number of disjoint blocks and then distribute
those blocks to the processes. With the block assignment, each
process will compute the streamline segments only if they pass
through their own blocks. This parallelizing-over-data strategy
was used in an early parallel streamline computation method
proposed by Sujudi and Haimes [9]. Based on this idea, Peterka
et al. [4] presented a study of parallel particle tracing for both
streamline and pathline generation for steady and unsteady
flow fields. Kendall et al. [10] proposed a MapReduce [11]
like system called DStep for parallel streamline computation.
Nouanesengsy et al. [3] addressed the load balancing issue in
the parallelizing-over-data approach and proposed a workload-
aware partitioning algorithm based on a graph representation
of the original flow field. The second strategy of parallel
streamline computation is parallelizing-over-seeds, where each
process computes streamlines from the seeds that are assigned
to it and loads the data blocks required to complete the integra-
tion of the seeds on demand. Pugmire et al. [2] reviewed both
strategies and presented a new hybrid approach for streamline
computation.

B. Parallel Stream Surface Computation

A stream surface is defined as a surface traced from a
seeding curve inside the flow field. An ideal stream surface can
be constructed by densely sampling an infinite number of seeds
on the seeding curve and connecting the resulting streamlines
together. The streamlines originated from the seeding curve can
be parametrized by their arc length t ∈ [0, N ]. For a constant
t, the positions of all streamlines form a front, sometimes
referred to as a time line, and can be parameterized by another
parameter s ∈ [0, 1], which indicates the originating position
of the streamline on the seeding curve. These two sets of
curves, streamlines and the fronts, define the stream surface
parametrized over s and t. Any point on a stream surface can
be represented as:

Υ(s, t) = XC(s)(t) (1)

where C is the seeding curve parametrized by s, XC(s)(t) de-
fines a curve traced from a seed C(s) on C and parametrized by
t; and Υ defines the stream surface constructed by advancing
C and is parametrized by s and t. Figure 1 illustrates the
parameterization of a stream surface.

In practice, tracing an infinite number of streamlines to
construct the stream surface is not feasible. A front-advancing

S(0) S(1)S(0)

T(0)

T(N)

Fig. 1: A stream surface parametrized by s and t. The blue
curve is the initial seeding curve. The red curves, also called
time lines, can be seen as the front of the seeding curve moved
by the flow direction.

algorithm for generating a stream surface was first presented
by Hultquist [6]. In the algorithm, the seeding curve is dis-
cretized by a number of seed points, which are then advanced
by integrating these seed points with a numerical method.
Adjacent pairs of streamlines form stream ribbons which are
triangulated by a greedy method. Adaptive refinement such
as insertion and deletion of streamline seeds is employed in
Hultquist’s algorithm to control the resolution of the advancing
front. Splitting of the surface is handled by comparing the
advancing direction of adjacent seeds in Hultquist’s algorithm.
While Hultguist’s algorithm is simple to implement, it may
not perform well when the flow in local regions has large
variations in direction and magnitude. Later, an improved
algorithm was proposed by Garth et al. [7]. In their algorithm,
the authors employ an arc length based streamline integration
scheme. Also, additional front refinement criteria such as
surface curvatures were introduced.

In addition to Hultquist’s and Garth’s algorithms that
construct stream surfaces explicitly, there exist methods that
construct stream surfaces implicitly [12] [13]. In the method
by van Wijk [12], continuous scalar values are specified for
the grid points on the boundaries of the flow field, and then
the scalar values for the interior grid points are computed by
backward tracing of streamlines. With the scalar field, stream
surfaces can be constructed by extracting isosurfaces. Stöter
et al. [13] extended van Wijk’s approach to stream, path,
streak, and time surfaces for 3D time-varying flow fields and
solve some limitations of van Wijk’s approach such as limited
domain coverage and limited control of the seeding curve.

Compared with streamlines, parallelization of stream sur-
faces is more challenging because of the dependency in
computing the streamline points that form the stream surface
front. This dependency can be seen from the sequential stream
surface algorithms [6] [7] [8], which construct stream surface
by advancing the stream surface front step by step across the
seeding curve and applying adaptive refinement at every step
to ensure the accuracy of the stream surface. This dependency
makes both the parallelizing-over-data and parallelizing-over-
seed strategies inefficient because excessive communication
between processes may occur. Previously, Camp et al. pre-
sented a parallel stream surface algorithm [5] that does not
utilize the front-advancing method. Instead, in their method
the stream surface is approximated by tracing streamlines from



Seeding Curve
Generation

Seeding Curve
Segmentation

Vector Field
Decomposition

Data Blocks
Assignment

Seeding Curve
Assignment

Stream Surface
Computation

Seeding Curve
Stealing

Stream Surface
Writing

Preprocessing Initialization Computation

Data Blocks
Loading

Fig. 2: An overview of the pipeline used in our algorithm.
The preprocessing stage runs in serial, and the initialization
and computation stages run in parallel.

seed points on the seeding curve and triangulation is performed
afterwards. Surface refinement is achieved by inserting new
seeds between two adjacent seed points if the distance between
the streamlines originating from these two seeds is larger than
a predefined threshold. This refinement process stops when no
adjacent pair of streamlines exceeds the threshold. Since it is
likely that the discontinuities in the flow field may prevent the
refinement of a stream surface from stopping, the algorithm
does not insert new seeds if the distance between the adjacent
seed points is less than a threshold.

In this paper, we present a parallel algorithm utiliz-
ing the front-advancing scheme for explicit stream surface
computation. We present a hybrid parallelizing-over-data and
parallelizing-over-seed algorithm to keep the I/O cost low and
to ensure a balanced workload distribution. With the front-
advancing scheme, our algorithm can address some of the
limitations of Camp’s algorithm such as no seed deletion
is done when flow begins to converge, resulting too many
unnecessary points being generated on the stream surface.
Also, in Camp’s algorithm, seed insertion only takes place on
the original seeding curve, and hence no adaptive refinement is
performed across the surface. Below we describe our algorithm
in detail.

III. METHOD

In this section, we present our parallel algorithm for stream
surface computation based on a front-advancing method. Our
algorithm is closely related to Garth’s algorithm [7], but other
front-advancing methods [6] [8] can also benefit from our
parallelization strategy. In our implementation, we are using
OSUFlow, a parallel particle advection library [4] developed by
The Ohio State University and Argonne National Laboratory.
In our implementation, the Runge-Kutta-Crash-Karp(RK45)
numerical integration scheme is used. DIY [14] is used to
decompose the domain, assign data blocks, and perform inter-
process communication. The Block I/O layer (BIL) library is
used to achieve high I/O efficiency when loading disjoint data
blocks across the processes [15]. By using BIL, each process
posts requests for the required data blocks, and then a single
collective I/O is issued to read the data in parallel. MPI-I/O is
used to write the final results to disk in parallel.

An overview of the pipeline in our algorithm is shown
in Figure 2, which can be divided into three main stages:
preprocessing, initialization and stream surface computation.

P0

P1
P2

P3
P4

P0

P1
P2 P2

P3

P4

Fig. 3: An example of our seeding curve segmentation. Given
a seeding curve with five particles P0 to P4 shown at the top,
we uniformly divide it into two pieces at particle P2. The
particle P2 is the boundary particle after the cutting, and is
duplicated for both of the two seeding curve segments.

Algorithm 1 Seeding Curve Generation

1: Let n be the number of seeding curves, m be the maximum
number of seeds per seeding curve, and s be the distance
between adjacent seeds on the seeding curves

2: for i = 1 to n do
3: Randomly generate two seeds p0 and p1
4: dir ← normalized vector points from p0 to p1
5: d ← distance between p0 and p1
6: Initialize l to be an empty list
7: Initialize curDistance ← 0
8: for j = 0 to m do
9: p ← p0 + j × s× dir

10: curDistance ← curDistance+ s
11: Push p to l
12: if curDistance > d then
13: Break
14: end if
15: end for
16: Add l to the seeding curve pool
17: end for

The preprocessing stage does not need run in parallel since the
computation cost of this stage is negligible compared with the
initialization and computation stages. In our implementation,
the preprocessing stage runs in serial, and the initialization and
computation stages run in parallel.

A. Preprocessing

The preprocessing stage includes seeding curve genera-
tion and seeding curve segmentation. Seeding curves can be
either provided by the user or randomly generated. In our
implementation, we randomly generate the seeding curves,
where the user specifies how many seeding curves to generate,
the maximum number of seeds on each seeding curve, and
the distance between adjacent seeds on the seeding curve.
Generating seeding curves is shown in Algorithm 1.

Given a set of seeding curves, we partition them into
segments that have an equal number of seeds to balance the
computational workload. The seeds at the boundaries of the
seeding curve segments, referred to as the boundary seeds,
are duplicated so that they are in both the left and the
right segments as shown in Figure 3. The duplication of the
boundary seeds eliminates the need to communicate when



advancing the surface fronts between different processes.

B. Initialization

The purpose of initialization in our algorithm is to dis-
tribute the data and the seeding curve segments to the pro-
cesses. In this stage, first the vector field is decomposed into
axis-aligned 3D blocks, where the number of blocks should
be greater or equal to the number of processes. To allow a
continuous interpolation of data in each block independently,
one layer of ghost cell is added to the boundary of each
dimension. After the data decomposition, different blocks
assignment strategies can be used such as the round-robin and
the processes-order continuous schemes [4]. The round-robin
assignment scheme tends to perform better than the processes-
order continuous assignment scheme for parallel streamline
computation as illustrated by Peterka in [4] because a better
computation load balancing can be achieved. However, in our
parallel stream surface algorithm since we use runtime seeding
curve segment partitioning and work stealing to solve the load
balancing problem, the choice of data assignment scheme is
not as important. In our implementation, we use a simple
round-robin data assignment scheme, in which data blocks are
assigned to processes by using a block-cyclic distribution.

Besides the data blocks, seeding curve segments also need
to be distributed to the processes. Similarly, we can employ
various strategies to assign the seeding curve segments. In our
algorithm, we assign seeding curve segments to processes in
round-robin order.

C. Parallel Stream Surface Computation

The next stage in our algorithm is to compute the stream
surfaces by parallelizing the computation of stream surface
patches originated from the seeding curve segments. Then, the
individual stream surface patches computed by different pro-
cesses are combined together to form a complete stream sur-
face. Our parallel algorithm employs Garth’s front-advancing
algorithm to complete each stream surface patch, with several
strategies to ensure a scalable parallel performance. We discuss
these strategies below.

1) Data Loading On Demand: Our algorithm is paral-
lelized over seeding curve segments. Seeding curve segments
are first distributed across the processes evenly, and then the
processes integrate the assigned stream surface patches in
parallel until the maximum number of steps for each patch is
reached or the patch goes out of bounds. During integration,
data blocks are loaded into memory when necessary. Unlike the
load on demand implementation presented in [2] where data
blocks are loaded from disk and I/O can become a bottleneck,
we load all the data blocks from disk in the initialization stage
as described in section III-B, and then during integration, if the
required block is not available locally it will be requested from
the process who owns it via communication. In our algorithm,
a new data block is needed when the particle (the current
position of a streamline) on the stream surface front requires it
for the integration. Because all particles on the stream surface
front need to be integrated one step together to test the flow
divergence or convergence condition, when a particle needs a
new block, we need to immediately obtain it to continue the
surface patch computation. When no more local memory is

0 1 2 3

4 5 6 7

8 9 10 11

Fig. 4: An example that shows the data access pattern of
stream surface integration. The blue curve is the seeding curve
segment with five particles. Since the front of the seeding
curve segment is advanced one step at a time by integrating
the particles. Data blocks are repeatedly accessed.

available to accommodate the new block, one of the in-core
blocks needs to be evicted to make room for the block.

In our algorithm, each process maintains a list of the
assigned seeding curve segments {c0, c1, ..., cn} and computes
the stream surface patches one at a time. During the compu-
tation, particles on the seeding curve segment are integrated
one step further to advance the stream surface front. When
process Pi integrates a particle, it first checks which data block
this particle needs, and then checks whether this data block is
already in memory. The block is available in the local memory
either because this block was loaded in the initialization stage,
or it has already been requested from another process. If the
block is not available locally, first Pi checks which process
has the data block and then sends a message to that process
say Pj asking for the data block. When process Pj receives
the request, it sends the data block to Pi, and in the mean time
still keeps the original copy of the data block.

2) Cache: To minimize the number of times it requests
data blocks from the other processes, each process maintains
a small cache to store the data blocks after they are received.
The Least Recently Used (LRU) replacement policy is
employed. As will be shown in section IV, the cache helps
reduce the number of data requests a process issues to the
other processes; this is because our method does not access
data blocks randomly but has a specific data access pattern
which is favored by the cache. Given a seeding curve segment,
the front of the segment is advanced by iteratively integrating
all the particles on the seeding curve segment together, which
means each data block is accessed repeatedly during the
computation of a stream surface patch in a short amount of
time. A 2D example is shown in Figure 4. The 2D vector
field data is decomposed to 12 blocks with ID from 0 to 11.
The blue curve is the initial seeding curve segment with five
particles on it, and it is advanced for four steps. Suppose we
integrate from left to right, blocks {0, 1, 2, 2, 3} are accessed
in the first iteration. In the next iteration, we still access
blocks {0, 1, 2, 2, 3}, the same blocks as before. Considering
all these four steps, the order of data blocks to be accessed is:
{0, 1, 2, 2, 3, 0, 1, 2, 2, 3, 4, 5, 6, 2, 3, 9, 5, 6, 7, 7, 9, 10, 10, 11, 7}.
Notice that data blocks are repeatedly accessed frequently
which makes a cache beneficial.

3) Dynamic Load Balancing: In this section, we discuss
our dynamic load balancing strategies, namely work stealing



Algorithm 2 Main Structure

1: Partition domain and tasks
2: for all data blocks assigned to my process do
3: read the data blocks
4: end for
5: for all tasks assigned to my process do
6: read the tasks to my task pool Tp

7: end for
8: while My task pool Tp is not empty do
9: Get a task from the head of Tp and execute

10: end while
11: Steal tasks from other processes until no task can be stolen

and runtime seeding curve segment subdivision. A high level
description of our algorithm is listed in Algorithm 2.

As mentioned in section III-C1, each process maintains
a list, referred to as the task pool Tp, to store the assigned
seeding curve segments {c0, c1, ..., cn}, each of which in the
pool is a task. To improve load balancing of our algorithm, a
dynamic load balancing scheme based on work stealing [16]
is employed. We call the process who steals tasks a thief and
the process whose tasks are stolen a victim. When a process
finishes all its tasks, it steals tasks from the other processes.
To do this, the thief must first select a victim that has extra
unfinished tasks. This selection of victim is done based on a
random selection method that has been proven optimal [17].
Once a victim is selected, an MPI message is sent to the victim
to ask for tasks. When the victim receives the message, it
checks its task queue to see whether there are extra tasks. If
there are available tasks, half of the tasks starting from the
end of the victim’s task queue are sent to the thief. Previously
researchers have shown that stealing half of the available tasks
each time can generate satisfactory results. Since tasks are
distributed to more processes, it is easier for the idle processes
to find tasks to steal [16]. On the other hand, If the victim
has no tasks available, it sends a message back to inform the
thief. The thief will then select a new victim randomly and
repeats the process until either it finds available tasks or a
global termination of the program is detected. Work stealing
is shown in Algorithm 3.

Runtime seeding curve segment subdivision means that
during integration, if a seeding curve segment grows too wide
as the result of flow expansion, the segment is split and
half of the segment is pushed to the end of the task pool
Tp. The purpose of seeding curve segment subdivision is to
split the seeding curve segments that have high workload into
smaller pieces, which allows better workload distribution when
combined with our work stealing scheme. In our experiments,
we found that the number of particles on a seeding curve
segment provides a good approximation of the workload. To
incorporate this idea, in our implementation we check the
number of particles on the seeding curve segments after every
integration step. If it is greater than a user defined cut threshold
Thcut, the middle particle on the segment is selected as the
partitioning particle. As in the segmentation of the seeding
curves in the preprocessing stage, the partitioning particle is
duplicated to the two resulting seeding curve segments. We
continue advancing one of the two new seeding curve segments
and put the other one to the end of the task pool. Runtime

Algorithm 3 Work Stealing

1: while my task pool is empty and no global termination do
2: Randomly select a victim pv
3: Send a message to pv to ask for tasks and wait for a

reply
4: if pv has tasks available then
5: Get half of tasks t from the tail of pv’s task pool
6: Put t to my task pool
7: end if
8: end while

 







Fig. 5: An example that shows the structure of a seeding
curve segment. The yellow header includes three floating point
numbers representing the number of steps this seeding curve
segment has advanced, the ID of the original seeding curve it
comes from, and the number of particles on the seeding curve.
The red part is the particles. The green part is the current step
size for each particle and the blue part is the number of steps
that have been integrated for each particle.

subdivision is shown in Algorithm 4.

4) Global Termination Detection: To issue a global ter-
mination of the parallel program, we have to detect when
all the processes are idle and have no more work to do. In
our algorithm, we adopted Francez’s algorithm [18] for this
purpose. We organize the processes into a binary tree, and
the termination process involves sending messages up and
down the tree in multiple rounds. In each round, messages
are propagated from bottom up first. When the ’root’ receives
messages from its children, it determines whether the program
should be terminated or not and propagates the decision up
and down. This multi-round communication continues until
a global termination condition is detected, which means all
processes become thieves and no process is a victim since the
last round.

5) Data Structure: Since the original seeding curves are
partitioned into multiple segments and these segments may
further be subdivided later, when a seeding curve segment
is stolen, additional information such as the original seeding
curve it belongs to needs to be sent to the thief with the
seeding curve segment. In our implementation, the data stored
in the data structure of a seeding curve segment include four
parts as shown in Figure 5. The yellow header in Figure 5
contains three floating point numbers that record the number
of steps this seeding curve segment has advanced, the ID of
the original seeding curve it comes from, and the number
of particles on the seeding curve. For n particles on the
seeding curve, the next n × 3 floating point numbers shown
in red color record the 3D positions of the particles on the
seeding curve segment. The green part contains n floating point
numbers recording the current step size for each particle on the
seeding curve segment. Because we use the RK45 integration
scheme with adaptive step size, the step size of each particle
is dynamically changed based on the flow complexity. If a
seeding curve is stolen by another process, this information



Fig. 6: By sending the current step size of each particle along
with the seeding curve segment to the thief, the boundaries of
different patches match with each other.




Fig. 7: An example that shows the structure of the message
containing the tasks stolen by the thief. Suppose the thief
stole N seeding curve segments. The yellow part is the header
that includes N + 1 floating point numbers. The first number
represents the number of the seeding curve segments. The
following N numbers are the length of each seeding curve
segment. The remainder is the N seeding curve segments.

is needed for the thief to continue to integrate the particles
with the right step size so that the boundary of each patch
matches as shown in Figure 6. The last n floating point
numbers store the number of steps that each particle has
integrated. In either Hultquist’s or Garth’s algorithm, as the
stream surface front moves forward, whether a particle should
advance or not for this iteration depends on whether the flow
is divergent, convergent or neither. This makes it necessary
to record the number of steps that each particle has integrated
since different particles may have traveled a different distance.
Given this seeding curve segment data structure, each seeding
curve segment is a 5× n+ 3 floating point array.

As explained above, the work stealing victim sends half
of its seeding curve segments from its task queue to the
thief. These seeding curve segments are organized as a single
message. The structure of this message is shown in Figure 7.
Suppose the message contains N seeding curve segments, the
header shown in yellow color contains N + 1 floating point
numbers. The first number records how many seeding curve
segments are contained in this message. The next N numbers
record the length of each segment. The rest are the seeding
curve segments. So each stealing operation results in a length
of N + 1 +

∑N
i=0(5 × Ni + 3) floating point numbers to be

communicated between processes, where Ni is the number of
seeds on the ith seeding curve segment.

IV. RESULTS

In this section, we present the performance of our parallel
stream surface algorithm. We conducted several experiments
using four steady flow field datasets of different resolutions.
The dataset Isabel models a strong hurricane in the West
Atlantic region in September 2003. Its size is 287MB with
a resolution of 500×500×100. We randomly generated 256
seeding curves, each with a maximum 128 seeds and the

Algorithm 4 Runtime Subdivision

1: Given a seeding curve segment in the task pool Tp

2: while The maximum number of steps is not reached and
the seeding curve segment has not hit the global boundary
do

3: Advance one step further
4: if The number of particles on the current seeding curve

segment > Thcut then
5: Divide the seeding curve segment at the middle seed

resulting in two new seeding curve segments C1 and
C2

6: Set the current seeding curve segment to C1

7: Put C2 to the tail of the task pool
8: end if
9: end while

distance between the seeds was 0.5 cell. Madden-Julian Oscil-
lation(MJO) is a dataset simulating the Madden-Julian oscil-
lation effect over the Indian and Pacific Oceans. It is 926MB
with a resolution of 2699×599×50. 256 seeding curves were
randomly generated, each with a maximum of 128 seeds and
0.5 cell between the seeds. The Plume data set is generated
from a simulation of solar plume on the surface of the sun
with a resolution of 504×504×2048. The data size is 5.9GB.
64 seeding curves were generated, each with a maximum of
512 seeds and 0.5 cell sample distance between the seeds.
The last test dataset, referred to as Nek, is a simulation of
thermal hydraulics generated by the Nek5000 solver. It was
created from a large-eddy simulation of the Navier-Stokes
equation for the MAX experiment [19]. It has a resolution of
2048×2048×2048 for a total size of 96GB. 64 seeding curves
were generated, each with a maximum of 2048 seeds and 0.5
cell between the seeds. Figure 8 shows images of the stream
surfaces computed from these four datasets.

For all the experiments, we measured the time spent
on stream surface computation and communication for each
process. The computation time, referred to as Comp, is the total
amount of time spent on advancing seeding curve segments
using the Runge-Kutta-Crash-Karp integration scheme. The
reported computation times are the average computation time
per process. The communication time, referred to as Comm,
measures the time for sending and receiving messages to get
data blocks from the other processes, work stealing, global
termination detection, and the time to manage communication.
The average communication time per process is reported.

A. Parameter Setting

There are several parameters which influence the perfor-
mance of our parallel stream surface computation algorithm:
the block size, the cache size, the threshold used to divide
the seeding curves in the preprocessing stage (referred to as
the preprocessing threshold), and the threshold used to divide
the seeding curves at run time (referred to as the runtime
threshold). We conducted experiments to study the influence
of these parameters to the performance of our algorithm. All
tests were conducted on the Blue Gene/Q Vesta system at
the Argonne Leadership Computing Facility. Vesta has 2,048
nodes, each holding 16 PowerPc A2 1600MHz cores sharing
16 GB of RAM and utilizes the General Parallel File System.



(a) Isabel (b) MJO (c) Plume (d) Nek

Fig. 8: Images of a single stream surface computed from the datasets Isabel, MJO, Plume, and Nek respectively.

1 2 3 4 Infinity
0

500

1000

1500

Isabel: Comm Time

Cache Size

tim
e
 (

se
co

n
d
s)

 

 

5X5X5
10X10X10
25X25X25
50X50X50

(a)

1 2 3 4 Infinity
0

500

1000

1500

2000

2500

3000

MJO: Comm Time

Cache Size

tim
e
 (

se
co

n
d
s)

 

 

5X5X5
10X10X10
25X25X25
50X50X50

(b)

2 4 8 16
0

50

100

150

200

Plume: Comm Time

Cache Size

tim
e
 (

se
co

n
d
s)

 

 

8X8X8
16X16X16
32X32X32
64X64X64

(c)

2 4 8 16
0

50

100

150

200

250

Nek: Comm Time

Cache Size

tim
e
 (

se
co

n
d
s)

 

 

32X32X32
64X64X64
128X128X128

(d)

1 2 3 4 Infinity

10

100

1000

10000

100000

1000000

Isabel

Avg. Total Size of Blocks Transferred

Cache Size

M
e
g
a
b
yt

e
s 

(M
B

)

 

 

5X5X5
10X10X10
25X25X25
50X50X50

(e)

1 2 3 4 Infinity
10

100

1000

10000

100000

1000000

MJO

Avg. Total Size of Blocks Transferred

Cache Size

M
e
g
a
b
yt

e
s 

(M
B

)

 

 

5X5X5
10X10X10
25X25X25
50X50X50

(f)

2 4 8 16

10

100

1000

10000

Plume

Avg. Total Size of Blocks Transferred

Cache Size

M
e

g
a

b
yt

e
s 

(M
B

)

 

 

8X8X8
16X16X16
32X32X32
64X64X64

(g)

2 4 8 16
10

100

1000

10000

100000

Nek

Avg. Total Size of Blocks Transferred

Cache Size

M
e
g
a
b
yt

e
s 

(M
B

)

 

 

32X32X32
64X64X64
128X128X128

(h)

1 2 3 4 Infinity

10

100

1000

10000

100000

1000000

Isabel

Avg. Number of Blocks Transferred

Cache Size

N
u
m

b
e
r 

o
f 
L
o
a
d
s

 

 

5X5X5
10X10X10
25X25X25
50X50X50

(i)

1 2 3 4 Infinity
10

100

1000

10000

100000

MJO

Avg. Number of Blocks Transferred

Cache Size

N
u
m

b
e
r 

o
f 
L
o
a
d
s

 

 

5X5X5
10X10X10
25X25X25
50X50X50

(j)

2 4 8 16
10

100

1000

10000

Plume

Avg. Number of Blocks Transferred

Cache Size

N
u

m
b

e
r 

o
f 

L
o

a
d

s

 

 

8X8X8
16X16X16
32X32X32
64X64X64

(k)

2 4 8 16
10

100

1000

Nek

Avg. Number of Blocks Transferred

Cache Size

N
u

m
b

e
r 

o
f 

L
o

a
d

s

 

 

32X32X32
64X64X64
128X128X128

(l)

Fig. 9: Top row: The cache size versus communication time under different block sizes. Middle row: The cache size versus
the average total size of data blocks transferred per process under different block sizes. Bottom row: The cache size versus the
average number of block loads per process under different block sizes.

The total memory is 32 TB.

1) Block size Versus Cache Size: Among the four param-
eters mentioned above, the block size and the cache size
influence the time to load data blocks from the other processes
the most. To study the impact of these two parameters, we
performed a sequence of experiments using all four datasets.
For Isabel and MJO, the block sizes tested were 53, 103, 253,
and 503. Blocks of 83, 163, 323, and 643 were tested for Plume,
and blocks of 323, 643, 1283 were tested for Nek. These sizes
do not include the ghost layer, although the actual data block
loaded has one layer of ghost cells in each dimension. In our
tests, 128, 512, 1024, and 1024 processes were used for Isabel,
MJO, Plume, and Nek respectively. The size of the cache is
controlled by the number of blocks N that it can hold. For the
Isabel data set, for example, a cache that can hold N blocks
means the amount of memory allocated to the cache is N

× 503 vectors. Therefore, with the same amount of memory,
more than N blocks that have a smaller size such as 53,103

and 253 can fit to the cache. In our experiments, the cache size
was varied with values of 1, 2, 3, 4, and infinity for Isabel and
MJO, where infinity means the amount of memory allocated
to the cache is able to hold the entire dataset. For Plume and
Nek, the cache size was varied with values of 2, 4, 8, and 16.
As for the stream surfaces generated in our test, the maximum
number of integration steps was set to 400, 200, 600, and 500
for Isabel, MJO, Plume, and Nek, respectively. The seeding
curve partitioning thresholds, i.e., the width of the seeding
curve segment in the preprocessing stage, and the threshold
for the run time seeding curve partitioning were fixed across
all experiments. The influences of these two parameters on our
algorithm will be studied in section IV-A2.

Figure 9 shows the results of our tests. Besides the com-



2 8 32 128 512 2048
0

50

100

150

200

250

300

Isabel: Comp Time

Runtime Cutting Threshold

tim
e
 (

se
co

n
d
s)

 

 

2
4
8
16
32
64
128

(a)

2 8 32 128 512 2048
0

2

4

6

8

10

12

Plume: Comp Time

Runtime Cutting Threshold

tim
e
 (

se
co

n
d
s)

 

 

2
4
8
16
32
64
128

(b)

2 8 32 128 512 2048
0

2

4

6

8

10

Isabel: Relative Percentage Imbalance

Runtime Cutting Threshold

re
la

tiv
e

 p
e

rc
e

n
ta

g
e

 im
b

a
la

n
ce

 (
%

)

 

 

2
4
8
16
32
64
128

(c)

2 8 32 128 512 2048
0

20

40

60

80

100

Plume: Relative Percentage Imbalance

Runtime Cutting Threshold

re
la

tiv
e
 p

e
rc

e
n
ta

g
e
 im

b
a
la

n
ce

 (
%

)

 

 

2
4
8
16
32
64
128

(d)

Fig. 10: Top row: Runtime cutting threshold versus computa-
tion time under different static cutting thresholds. Bottom row:
Runtime cutting threshold versus relative percentage imbalance
under different static cutting thresholds.

munication time, we also measured and reported the average
amount of data transferred by each process, and the average
number of data blocks loaded by each process. Previously
Peterka et al. [4] reported that for parallel streamline computa-
tion, using small block size and round-robin block assignment
will distribute workload more evenly, but the downside is that it
incurs more communication. In our tests, we found that smaller
block sizes did not improve load balancing since the workload
of a process mainly depends on the seeding curve segments
instead of the block size. In general, a smaller block size
results in less data to be transferred among processes because
smaller blocks pack the stream surface front more tightly and
hence less unnecessary data are transferred. This is shown in
Figure 9(e)-9(h).

As the cache size increases, the number of blocks that
were loaded decreases. When the cache size is large enough
or goes to infinity, using a larger block size requires fewer
loads compared with a smaller block size, because a smaller
block size implies the stream surface front will pass through
more blocks. Figure 9(i)-9(l) show this trend. The influence of
block size for the communication cost is shown in Figure 9(a)-
9(d). For a fixed cache size, using a large block size will
increase the data loading time, if the cache is not large enough
to load the required blocks to cover the stream surface front.
As cache size increases, the difference between different block
sizes vanishes.

2) Seeding Curve Cutting Thresholds: The seeding curve
cutting thresholds in the preprocessing stage and at run time
also can influence performance and load balance. Hereafter
we refer to the threshold used in the preprocessing as static
cutting threshold, and the threshold used at run time as runtime
cutting threshold. We conducted tests using Isabel and Plume

with 128 and 1024 processes to study the impact of these
two thresholds. The block size was set at 253 for Isabel and
323 for Plume. For both tests, we used a large cache size to
minimize the number of data loads so that we can focus on the
computation time and workload balance. Cache size for Isabel
was 1600 and for Plume was 200. Other parameters used are
identical to those in section IV-A1.

The results of our test are shown in Figure 10, where curves
of different colors represent the computation times using
different static cutting thresholds, and the x axis represents
the runtime cutting threshold. As can be seen in Figure 10(a)
and 10(b), as we increase the value of the runtime cutting
threshold, i.e., making the seeding curve segments wider,
the decreases in the computation time are noticeable at the
beginning but then stop later. This is because when the runtime
cutting threshold is too small, such as 2, too many seeds are
duplicated, hence increasing the computation time. On the
other hand, when the runtime cutting threshold increases, the
number of duplicated seeds decreases, decreasing the compu-
tation time. When the runtime cutting threshold becomes even
larger, such as 32, the duplicated seeds are only a small fraction
of the total number of seeds, so the decrease in computation
time becomes negligible.

We use the formula (
tmax − tavg

tmax
) × 100%, referred to

as the relative percentage imbalance, to measure the load
balancing of our algorithm, where tmax is the maximum
computation time taken by a process and tavg is the average
computation time over all processes. The relative percentage
imbalance are shown in Figure 10(c) and 10(d). The increase
of relative percentage imbalance when the runtime cutting
threshold becomes larger indicates that workloads among the
processes become imbalanced. The reason for this is that when
using a larger threshold, fewer seeding curve segments are
produced so that it is harder for a process to find work to steal.
Also, larger thresholds produce longer seeding curve segments
with larger differences between the workload of each. From
the figures, we can also see that the static cutting threshold
does not have a significant impact on the performance of
our algorithm compared with the runtime cutting threshold.
However, we note that the static cutting threshold should not
be too small, such as 2. This is because if the flow converges,
different seeding curve segments can not be merged at runtime.
Generally speaking, extremely small or large cutting thresholds
degrade the performance. Considering the tradeoff between
having more work and being less load balanced, in our
experiments, a value between 32 and 128 was best.

3) Cache Size Versus Runtime Cutting Threshold: In this
section we investigate the relationship between the runtime
cutting threshold and the cache size. We conducted tests using
MJO and Nek with 512 and 1024 processes, respectively. The
block size was 253 for MJO and 323 for Nek. Different runtime
cutting thresholds were tested for each dataset. The cache size
was represented by the maximum number of blocks that can
be stored and varied for each runtime cutting threshold. Other
parameters are identical to those in section IV-A1.

The results in Figure 11(a) and 11(b) show that as the
cache size increases, the communication time decreases at the
beginning and then becomes stable. When a smaller cache size
is used, fewer number of blocks could be loaded which are



2 4 8 16 32 64 128 256 512
0

50

100

150

MJO: Comm Time

Cache Size

tim
e
 (

se
co

n
d
s)

 

 

8
32
128
512
2048

(a)

2 4 8 16 32 64
0

20

40

60

80

100

Nek: Comm Time

Cache Size

tim
e

 (
se

co
n

d
s)

 

 

8
32
128
512

(b)

8 32 128 512 2048

10000

20000

30000

40000

50000

MJO

Avg. Number of Blocks Transferred

Runtime Cutting Threshold

N
u
m

b
e
r 

o
f 
L
o
a
d
s

 

 

2
4
8
16
32
64
128
256
512

(c)

8 32 128 512

1000

2000

3000

4000

5000

6000

7000

8000

Nek

Avg. Number of Blocks Transferred

Runtime Cutting Threshold

N
u
m

b
e
r 

o
f 
L
o
a
d
s

 

 

2
4
8
16
32
64

(d)

Fig. 11: Top row: Cache size versus communication time under
different runtime cutting thresholds. Bottom row: Runtime
cutting threshold versus average number of block loads under
different cache sizes.

not enough to cover the entire stream surface front, resulting
in too many data blocks to be loaded on the fly. Increasing
the cache size allows more data blocks are loaded, resulting
a decreased number of data block loads. As we continue to
increase the cache size, at some point the performance is
not improved. This is because the current cache size is large
enough to load sufficient blocks to cover the surface front.
This point depends on the runtime cutting threshold because a
larger runtime cutting threshold produces longer seeding curve
segments which generally need more data blocks.

B. Discussion

Among these four parameters, the runtime cutting threshold
determines the total amount of particle tracing to be done and
the load balancing of our algorithm. Our experiments suggest
that the runtime cutting threshold should not be too small;
otherwise, it will increase the total amount of work due to seed
duplication. On the other hand, if the threshold is too large,
load imbalance occurs. In our experiments, a value between
32 and 128 was best. The static cutting threshold should be
smaller than the runtime cutting threshold to avoid immediately
partitioning at runtime but not extremely small such as 2. The
cache improves the performance of our algorithm by holding
the recently used data blocks and reducing the number of data
blocks loads. The cache size is related to the block size. Given
a fixed amount of memory allocated to the cache, more blocks
of smaller sizes could be loaded compared with blocks of large
sizes. Given a fixed block size, the ideal cache size is to be
able to load the blocks that cover the stream surface front,
which is related to the runtime cutting threshold. In general, a
smaller block size is preferred since it incurs less data transfer
among the processes and also they can cover the stream surface

front more tightly. However, a side effect of using a smaller
block size is that it will cause more data loading operations.
When an extremely small block size is used, a larger number
of data loading will take place, and hence the performance will
be impacted negatively because of the overhead of each data
loading.

C. Scalability

Strong scaling tests were conducted to show the scalability
of our algorithm. We measured the total time for running our
algorithm, including time for stream surface integration, com-
munication and runtime seeding curve segment subdivision.
Disk I/O time was not included, because it was done in the
initialization stage through the library BIL [15]. For all four of
our datasets, the cache size was 16. The static cutting threshold
and the runtime cutting threshold were 16 and 128 for Isabel,
MJO, and Nek respectively. For Plume, they were set at 16 and
32. For Isabel, up to 1K processes were used. The maximum
number of integration steps was 400, and 253 block size was
used. For MJO, up to 4K processes were used. The maximum
number of integration steps was 200 and the block size was
253. For Plume, up to 8K processes were used. 900 was the
maximum number of integration steps and the block size was
323. For Nek, up to 8K processes were used. The maximum
number of integration steps was 650, and the block size was
323.

The results of strong scaling tests are shown in Figure 12.
The top row shows the scalability of our algorithm. The results
demonstrate a good scalability of our algorithm up to a large
process count. The bottom row shows the percentage of time
spent on different components: computation, communication
and runtime seeding curve segment subdivision. Overall, a
majority of the time was spent on computation. For all of the
four datasets, the time for seeding curve segment subdivision is
negligible. Also, as the process count increases, the percentage
of communication increases and this is because with a large
number processes, the time spent on work stealing increases.

D. Load Balancing

As described in Section III-C3, work stealing and runtime
seeding curve subdivision are employed in our algorithm to
balance the computational workload of different processes. To
demonstrate the effectiveness of our load balancing algorithm,
we computed the relative percentage imbalance under different
process count and the results are shown in the top row of
Figure 13. Perfect computational load balancing was observed
for Isabel, MJO and Nek. For Isabel and MJO, the relative
percentage imbalance was below 5% for up to 1K and 4K
processes. For Nek, the imbalance was below 10% for up to
8K processes. Plume has a relative percentage imbalance value
below 10% for up to 4K process. When 8K processes were
used for Plume, the relative percentage imbalance increased
to around 40% and this was because there were not enough
tasks for this large number of processes. We also measured the
computation time for each process when 1K processes were
used for Isabel and 4K processes for MJO, Plume, and Nek.
The results are shown in the bottom row of Figure 13. The
small difference in the computation time among the different
processes indicates the effectiveness of our load balancing
algorithm.



8 16 32 64 128 256 512 1024

100

1000

10000
Isabel: Strong Scaling

number of processes

tim
e

 (
se

co
n

d
s)

 

 

Actual Scaling
Optimal Scaling

(a)

64 128 256 512 1024 2048 4096

100

1000

10000

MJO: Strong Scaling

number of processes

tim
e

 (
se

co
n

d
s)

 

 

Actual Scaling
Optimal Scaling

(b)

64 128 256 512 1024 2048 4096 8192

100

1000

10000

Plume: Strong Scaling

number of processes

tim
e

 (
se

co
n

d
s)

 

 

Actual Scaling
Optimal Scaling

(c)

512 1024 2048 4096 8192
100

1000

10000

Nek: Strong Scaling

number of processes

tim
e

 (
se

co
n

d
s)

 

 

Actual Scaling
Optimal Scaling

(d)

8 16 32 64 128 256 512 1024

25

50

75

100

Isabel: Percentage of Time

number of processes

p
e
rc

e
n
ta

g
e
 (

%
)

 

 

Comp
Comm
Subdivision

(e)

64 128 256 512 1024 2048 4096

25

50

75

100

MJO: Percentage of Time

number of processes

p
e
rc

e
n
ta

g
e
 (

%
)

 

 

Comp
Comm
Subdivision

(f)

64 128 256 512 1024 2048 4096 8192

25

50

75

100

Plume: Percentage of Time

number of processes

p
e
rc

e
n
ta

g
e
 (

%
)

 

 

Comp
Comm
Subdivision

(g)

512 1024 2048 4096 8192

25

50

75

100

Nek: Percentage of Time

number of processes

p
e
rc

e
n
ta

g
e
 (

%
)

 

 

Comp
Comm
Subdivision

(h)

Fig. 12: Strong scaling results. The top row graphs the time for running our algorithm, including time for stream surface
computation, communication and runtime seeding curve segment subdivision for different number of processes. The bottom row
contains the percentage of time spent on each component.

8 16 32 64 128 256 512 1024

10

100

Isabel: Relative Percentage Imbalance

number of processes

re
la

tiv
e
 p

e
rc

e
n
ta

g
e
 im

b
a
la

n
ce

 (
%

)

 

 

5%

(a)

64 128 256 512 1024 2048 4096

10

100

MJO: Relative Percentage Imbalance

number of processes

re
la

tiv
e

 p
e

rc
e

n
ta

g
e

 im
b

a
la

n
ce

 (
%

)

 

 

5%

(b)

64 128 256 512 1024 2048 4096 8192

10

100

Plume: Relative Percentage Imbalance

number of processes

re
la

tiv
e
 p

e
rc

e
n
ta

g
e
 im

b
a
la

n
ce

 (
%

)

 

 

5%
10%
40%

(c)

512 1024 2048 4096 8192

10

100

Nek: Relative Percentage Imbalance

number of processes

re
la

tiv
e

 p
e

rc
e

n
ta

g
e

 im
b

a
la

n
ce

 (
%

)

 

 

5%
10%

(d)

0 255 511 767 1023

5

10

15

20

25

30

35

40

45

50

Isabel: Comp Time of 1024 processes

process(ID)

tim
e
(s

e
co

n
d
s)

(e)

0 1023 2047 3071 4095

10

20

30

40

50

60

70

80

90

100

MJO: Comp Time of 4096 processes

process(ID)

tim
e

(s
e

co
n

d
s)

(f)

0 1023 2047 3071 4095

5

10

15

20

25

30

35

40

45

50

Plume: Comp Time of 4096 processes

process(ID)

tim
e

(s
e

co
n

d
s)

(g)

0 1023 2047 3071 4095

20

40

60

80

100

120

140

160

180

200
Nek: Comp Time of 4096 processes

process(ID)

tim
e

(s
e

co
n

d
s)

(h)

Fig. 13: The top row shows the relative percentage imbalance under different process count. The bottom row contains the
computation time for each process when 1K processes were used for Isabel and 4K processes were used for MJO, Plume, Nek.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a new algorithm for parallel
stream surface computation. By partitioning seeding curves
into segments, stream surfaces are split into small stream sur-
face patches, and processes integrate different stream surface
patches in parallel. Several strategies are applied to improve
the overall performance of our algorithm. Loading data from
other processes instead of from disk reduces the I/O cost.
Cache is used to reduce the number of data loads. Runtime
seeding curve segment subdivision and work stealing is used
to improve the load balancing of our algorithm dynamically.
Several experiments were conducted to study different pa-

rameters’ influence on the performance of our algorithm and
their relationships. Based on these experiments, we provided
some guidance for parameter setting. We also demonstrated the
scalability of our algorithm up to a large number of processes.

In the future, we plan to extend our algorithm to unsteady
flow fields. For time-varying flows, the memory requirement
would increase because multiple time steps are involved. The
constraint in the amount of memory will prevent us from
loading all data blocks to memory in the initialization stage,
and hence a more complicated I/O strategy will be required.



REFERENCES

[1] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. Joy, “Streamline inte-
gration using mpi-hybrid parallelism on a large multicore architecture,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 17,
no. 11, pp. 1702–1713, 2011.

[2] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. Weber, “Scalable
computation of streamlines on very large datasets,” in High Performance
Computing Networking, Storage and Analysis, Proceedings of the
Conference on, 2009, pp. 1–12.

[3] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen, “Load-balanced parallel
streamline generation on large scale vector fields,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 17, no. 12, pp. 1785–
1794, 2011.

[4] T. Peterka, R. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang, “A study of parallel particle tracing for
steady-state and time-varying flow fields,” in Proceedings of the 2011
IEEE International Parallel & Distributed Processing Symposium, ser.
IPDPS ’11, 2011, pp. 580–591.

[5] D. Camp, H. Childs, C. Garth, D. Pugmire, and K. Joy, “Parallel stream
surface computation for large data sets,” in Large Data Analysis and
Visualization (LDAV), 2012 IEEE Symposium on, 2012, pp. 39–47.

[6] J. P. M. Hultquist, “Constructing stream surfaces in steady 3d vector
fields,” in Visualization, 1992. Visualization ’92, Proceedings., IEEE
Conference on, 1992, pp. 171–178.

[7] C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G. Scheuermann,
“Surface techniques for vortex visualization,” in Proceedings of the
Sixth Joint Eurographics - IEEE TCVG Conference on Visualization,
ser. VISSYM’04, 2004, pp. 155–164.

[8] T. McLoughlin, R. S. Laramee, and E. Zhang, “Easy integral surfaces:
A fast, quad-based stream and path surface algorithm,” in Proceedings
of the 2009 Computer Graphics International Conference, ser. CGI ’09,
2009, pp. 73–82.

[9] D.Sujudi and R.Haimes, “Integration of particles and streamlines in a
spatially-decomposed computation,” in Proceedings of Parallel Compu-
tational Fluid Dynamics, 1996.

[10] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erickson,
“Simplified parallel domain traversal,” in Proceedings of 2011 Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’11. ACM, 2011, pp. 10:1–10:11.

[11] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[12] J. van Wijk, “Implicit stream surfaces,” in Visualization, 1993. Visual-
ization ’93, Proceedings., IEEE Conference on, 1993, pp. 245–252.

[13] T. Stter, T. Weinkauf, H.-P. Seidel, and H. Theisel, “Implicit integral
surfaces,” in Proc. Vision, Modeling and Visualization, November 2012,
pp. 127–134.

[14] T. Peterka, R. Ross, A. Gyulassy, V. Pascucci, W. Kendall, H.-W. Shen,
T.-Y. Lee, and A. Chaudhuri, “Scalable parallel building blocks for
custom data analysis,” in Large Data Analysis and Visualization (LDAV),
2011 IEEE Symposium on, 2011, pp. 105–112.

[15] W. Kendall, M. Glatter, J. Huang, T. Peterka, R. Latham, and
R. Ross, “Terascale data organization for discovering multivariate
climatic trends,” in High Performance Computing Networking, Storage
and Analysis, Proceedings of the Conference on, 2009, pp. 1–12.

[16] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha, “Scalable work stealing,” in Proceedings of the Con-
ference on High Performance Computing Networking, Storage and
Analysis, ser. SC ’09, 2009, pp. 53:1–53:11.

[17] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, 1999.

[18] N. Francez, “Distributed termination,” ACM Trans. Program. Lang.
Syst., vol. 2, no. 1, pp. 42–55, 1980.

[19] E. Merzari, W. Pointer, A. Obabko, and P. Fischer, “On the numerical
simulation of thermal striping in the upper plenum of a fast reactor,”
Proceedings of ICAPP, 2010.


