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Abstract—In addition to their role as simulation engines,
modern supercomputers can be harnessed for scientific visual-
ization. Their extensive concurrency, parallel storage systems,
and high-performance interconnects can mitigate the expanding
size and complexity of scientific datasets and prepare for in
situ visualization of these data. In ongoing research into testing
parallel volume rendering on the IBM Blue Gene/P (BG/P), we
measure performance of disk I/O, rendering, and compositing
on large datasets, and evaluate bottlenecks with respect to
system-specific I/O and communication patterns. To extend the
scalability of the direct-send image compositing stage of the
volume rendering algorithm, we limit the number of compositing
cores when many small messages are exchanged. To improve
the data-loading stage of the volume renderer, we study the I/O
signatures of the algorithm in detail. The results of this research
affirm that a distributed-memory computing architecture such
as BG/P is a scalable platform for large visualization problems.

Keywords–Distributed scientific visualization; Parallel volume
rendering; image compositing, parallel I/O

I. INTRODUCTION

As data sizes and supercomputer architectures approach
petascale, visualizing results directly on parallel supercomput-
ers becomes a compelling approach for extracting knowledge
from data. Benefits of this approach include the elimination
of data movement between computation and visualization
architectures; the economies of large-scale, tightly coupled
parallelism; and the possibility of visualizing a simulation
while it is running [1]. This paper is a continuation of ongoing
work, where we examine the use of large numbers of tightly
connected processor nodes in the context of a parallel ray
casting volume rendering algorithm implemented on the IBM
Blue Gene/P (BG/P) system at Argonne National Laboratory
[2].

In this paper, we further evaluate the scalability of this
method by testing on the largest structured grid volume data
and system scales published thus far without resorting to out-
of-core methods. Our goal is to expose bottlenecks in the three
stages of the algorithm–I/O, rendering, and compositing–at
very large scale. Performance results are analyzed in terms of
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scalability and time distribution between the three algorithm
stages. The BG/P architecture and its parallel file system are
examined in depth to help understand the results.

Our largest tests include 32K cores, 44803 data elements,
and 40962 image pixels. At this scale, performance bottlenecks
are the result of both algorithms and systems issues; algorithms
must be tuned to take advantage of particular system character-
istics such as I/O and interconnect parameters. Thus, we must
be prepared to adapt rendering and compositing algorithms
to high-performance computing (HPC) system characteristics
such as communication topology and storage infrastructure,
just as computational scientists do when using these resources.

Hence, this study is a combination of both visualization
algorithms and HPC systems research; our contributions are
reduced compositing time and improved I/O performance
when reading time steps from storage, allowing us to scale
parallel volume rendering to the largest in-core problem and
system sizes published to date.

II. BACKGROUND

Beginning with a description of our dataset, we then dis-
cuss prior parallel volume rendering literature. We review, in
particular, sort-last compositing algorithms.

Fig. 1. Visualization of the X component of velocity in a core-collapse
supernova.



TABLE I
PUBLISHED PARALLEL VOLUME RENDERING SYSTEM SCALES

Dataset System
Size(CPUs)

Billion
Elements

Image
Size

Year Reference

Fire 64 14 8002 2007 [3]
Blast
Wave

128 27 10242 2006 [4]

Taylor-
Raleigh

128 1 10242 2001 [5]

Molecular
Dynamics

256 .14 10242 2006 [4]

Earthquake 2048 1.2 10242 2007 [1]
Supernova 4096 .65 16002 2008 [2]

A. Dataset

The dataset in Figure 1 shows X velocity from time step
number 1530 of a supernova simulation. The data are courtesy
of John Blondin at the North Carolina State University and
Anthony Mezzacappa of Oak Ridge National Laboratory [6],
through the U.S. Department of Energy’s SciDAC Institute for
UltraScale Visualization [7]. The model seeks to discover the
mechanism of core collapse supernova, the violent death of
short-lived, massive stars. The supernova dataset was chosen
to be representative of the scale of computational problems
encountered today.

Blondin et al.’s hydrodynamics code VH-1 stores five time-
varying scalar variables, in 32-bit floating-point format in
a single file for each time step. The file type is Network
Common Data Format (netCDF), and in current large-scale
runs, a single time step is 27 gigabytes (GB). The data are
represented in a structured grid of 11203, or approximately 1.4
billion elements. To visualize a single variable, we can extract
it during an offline preprocessing step and save it in a single,
32-bit raw data file of 5.3 GB. Or, we can read the entire
27 GB netCDF file in parallel, directly from the visualization
code.

B. Parallel Volume Rendering

Parallel volume rendering is not new. Beginning with
Levoy’s classic ray casting in 1988 [8], parallel versions began
to appear soon after, for example, [9]. Table I summarizes
more recent examples of large dataset parallel volume render-
ing, on the order of one billion data elements.

Parallel algorithms can be classified according to when
partial results are sorted: sort-first, sort-middle, or sort-last
[10]. In sort-first, the image space is divided among processes,
and the data space is replicated. The opposite occurs in sort-
last: the data are divided among processes, and the entire
image space is replicated in each process. Sort-middle is a
hybrid combination of the two, but it is difficult to implement
and uncommon in practice. In the case of large scientific
visualizations, the sort-last approach is appropriate because
data size is the dominant concern; data sizes are usually three
orders of magnitude larger than image sizes.

C. Image Compositing

Image compositing is the reduction of multiple partial im-
ages created during the parallel rendering stage, into one final

image. Like rendering, image compositing techniques have
been widely published. We use the direct-send compositing
approach [11], where each process takes ownership for a
subregion of the final image, and receives partial results from
those processes that contribute to this subregion. Cavin et al.
[12] analyze relative theoretical performance of a number of
compositing methods.

Because image compositing can be modeled as a data
reduction problem, the image compositing methods used by
the visualization community are similar to the collective
communication algorithms in the message passing community.
For example, tree methods such as Ma et al.’s binary swap
algorithm [13] have counterparts in system communication
space, such as the butterfly algorithm of Traff [14]. Analyses of
the costs of collective algorithm can be found in [15]. Recent
collective optimizations can be found in [16], [17].

There are also numerous studies specific to the Blue Gene
architecture that evaluate the relationship between message
sizes, numbers of messages, and link contention. Kumar and
Heidelberger [18] show that in all-to-all tests when the mes-
sage size drops below 256 bytes, bandwidth falls off rapidly
away from the theoretical peak line. Davis et al. [19] report
hot spots, where multiple senders send messages to the same
recipient, and they report bandwidth at these locations to be
three times slower than elsewhere. Hoise et al. [20] show
that the fraction of peak bandwidth drops from near 100%
to around 10% as the contention level increases. Almasi et al.
[21] perform a benchmark of MPI Allreduce(), and conclude
that aggregate bandwidth drops by a factor of three when the
message size decreases.

D. Parallel I/O

Traditionally, the subject of I/O has been ignored in the
scientific visualization literature. This is beginning to change.
For example, Yu and Ma [22] overview I/O techniques for
visualization in [22]. As simulation and visualization grow in
scale, data size and data movement become limiting factors
in overall performance. Parallelism in accessing storage can
improve this bottleneck; for example, multiple processes can
read from the same file via collective I/O constructs.

Thus, visualization researchers need to educate themselves
in systems storage concepts such as parallel I/O. This means
understanding the parallel I/O software stack, beginning with
the underlying storage architecture, parallel file systems such
as PVFS [23]. I/O-related issues are further encountered in
middleware and APIs such as ROMIO and MPI-IO [24], up
to high-level storage libraries and file formats such as parallel
netCDF [25] and HDF5 [26]. The I/O patterns in our algorithm
will be examined in considerable detail in the remainder of this
paper.

III. IMPLEMENTATION

To test scalability and performance at high numbers of
processes, we implemented the volume rendering algorithm
on a 160,000-core Blue Gene/P machine. A brief description



Fig. 2. The storage system and its connection to BG/P. The parallel file
system includes 17 SANs; each contains four or eight servers for failover
capability. Total storage capacity is 4.3 PB. The file system communicates
with BG/P via I/O nodes. One I/O node handles 64 compute nodes.

of that architecture is followed by implementation details of
this application on BG/P.

A. Blue Gene Architecture

The Blue Gene/P system at the Argonne Leadership Com-
puting Facility is a 557-teraflop machine with ample oppor-
tunities to experiment with parallel rendering. Four PowerPC-
450 850-MHz cores share 2 GB RAM to form one compute
node. 1K nodes are contained within one rack, and the entire
system consists of 40 racks. The total memory footprint is 80
TB.

Application processes execute on top of a microkernel
that provides basic OS services. The Blue Gene architecture
has two separate interconnection networks: a 3D torus for
interprocess point-to-point communication and a tree network
for collective operations. The 3D torus maximum latency
between any two nodes is 5 µs, and its bandwidth is 3.4
gigabits per second (Gb/s) on all links. BG/Ps tree network
has a maximum latency of 5 µs, and its bandwidth is 6.8
Gb/s per link.

The tree also communicates with I/O nodes that serve
as bridges to the storage system. BG/P has one I/O node
for every 64 compute nodes. The total storage capacity of
BG/P’s parallel file system is 4.3 petabytes. The storage system
consists of a physical array of storage nodes and servers,
connected to BG/P by high-speed networks. The hardware
structure, shown in Figure 2, consists of 17 racks of storage
area network (SAN) storage. Each rack has eight servers
attached, with a separate logical unit per server. File servers
may take over on behalf of one another in the event of a server
or network failure.

In theory, each SAN can deliver 5.5 gigabytes per second
(GB/s) of peak storage bandwidth, and tests show that current
aggregate peak bandwidth is approximately 50 GB/s. Our
application exhibits considerably lower bandwidth, in part
because it uses only 23% of the total system, and in part

because it accesses a noncontiguous 3D data volume. We
will analyze the I/O performance of individual file formats
in greater detail later in this paper.

B. Algorithm Stages

Our parallel volume rendering algorithm is a sort-last imple-
mentation that divides the data space into regular blocks and
statically allocates a small number of blocks to each process.
The algorithm consists of three steps that occur sequentially:
I/O, rendering, and compositing; this sequence is performed
among many cores in parallel.

Both the first and last steps of this sequence occur collec-
tively. That is, no single process reads the entire data file and
redistributes it. Rather, each process logically reads only its
portion of the data from the file. Likewise, no one process is
responsible for compositing the results. Rather, compositing
occurs via a many-to-many communication pattern.

To instrument the algorithm, we define the time that a frame
takes to complete as the time from the start of reading the time
step from disk to the time that the final image is completed.
We further divide the frame time into three components: I/O
time, rendering time, and compositing time.

1) I/O: MPI processes read the data file collectively. In the
case of raw file format, MPI-2 [27] (MPI-IO) performs data
staging. This allows each process to read its own portion of the
volume in parallel with all of the other processes. In the case of
netCDF format, the Parallel-NetCDF library performs similar
collective functions. This way, data are read quickly in parallel,
and there is no need for the application to communicate data
between processes.

Moreover, collective I/O permits large datasets to be pro-
cessed in-core because the entire dataset never resides within
the memory of a single process. For example, in raw mode our
file size is over 5 GB per variable, per time step; in netCDF
mode the size is 27 GB. BG/P contains only 2 GB of memory
per node. With collective I/O, the total memory footprint of
the entire machine (80 TB) dictates the maximum data that
can be processed in-core, without resorting to processing the
data in serial chunks.

Underlying the programming interface is a parallel file
system such as PVFS. By striping data across multiple disks
controlled by a number of file servers, application programs
can access different regions of a file in parallel. Performance
varies with the number of I/O nodes being used and on the
processes’ pattern and size of accesses. Performance can also
be tuned by means of hints passed to MPI-IO, adjusting
such parameters as internal buffer sizes and number of I/O
aggregators [28].

2) Rendering: The computation of local subimages requires
no interprocess communication. To render its subimage, a pro-
cess casts a ray from each pixel through its data subdomain. As
data values are sampled along the ray in front-to-back order,
they are converted into color and opacity values according to
a transfer function and accumulated. The resulting pixel value
is the blending of sampled colors and opacities along the ray.
This is the pixel value for a single process. This rendering step



is strictly local; all of the processes still need to blend their
local values for that pixel in order to determine its final value.
This blending occurs in the next stage of the algorithm, image
compositing.

3) Image Compositing: Compositing of parallel volume
rendered subimages is implemented with the direct-send
method as follows. At the start of compositing, each of n
processes (renderers) owns a completed subimage of its por-
tion of the dataset. Of the n rendering processes, m processes
(compositors) are also assigned responsibility for 1/m of the
final image area. Normally, direct-send implementations use
n = m. Each of the renderers send their subimage to all of the
compositors that require it. The average number of messages
in the entire compositing process is O(mn1/3) because on
average, n1/3 messages are sent to each of m recipients.

IV. END-TO-END PERFORMANCE ANALYSIS

To evaluate the performance of our supernova dataset on
BG/P, we measured the time to render a frame across a range
from 64 to 32K cores. The first set of results are for a single
variable in raw data format, a single time step, 11203 grid size,
and 16002 pixels image size. We then evaluate larger data and
image sizes.

A. Total and Component Time

Figure 3 shows a log-log plot of time to read, render,
and composite one time step using raw I/O mode. The best
all-inclusive frame time of 5.9 s was achieved with 16K
cores. For comparison with other published data that may
exclude I/O time, our visualization-only time (rendering +
compositing) is 0.6 s. The rendering curve is approximately
linear. Rendering is embarrassingly parallel–no interprocess
communication is required. Minor deviations in the curve are
due to load imbalances between rendering processes.
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Fig. 3. Total frame time as well as individual components I/O, rendering, and
compositing times plotted on a log-log scale. Two versions of compositing
time are shown; the total frame time includes the faster, improved compositing.
The file is raw data format, 11203, and the image size is 16002.

Figure 3 shows two compositing curves: original and
improved. The original compositing time remains constant
through 1K cores. Beyond that, compositing time increases
sharply due to the large number of messages, and beyond 8K
cores, the compositing time is greater than the rendering time.
To address the performance degradation beyond 1K cores, we
limit the number of compositors. The total time curve reflects
the improved compositing method.

Customarily in direct-send, the number of compositors is the
same as the number of renderers, but this need not be the case.
So, we used 1K compositors when the number of renderers is
between 1K and 4K and then 2K compositors beyond that. We
arrived at these values empirically after testing combinations
of renderers and compositors. From the original compositing
times, we knew that contention was not an issue below 1K
compositors. After a small number of trials, we determined
that 2K compositors were sufficient for up to 32K renderers,
and that 4K renderers was an appropriate point to increase
the number of compositors. Finer control over the number of
compositors did not improve the results.

The number of compositors is known at initialization time,
and the schedule of messages is built around this number from
the beginning. During compositing, n renderers transmit their
messages to m compositors, where n ≥ m. The reduction from
n to m occurs automatically as part of the compositing step
and incurs no additional cost. The number of messages still
has the same theoretical complexity, but the smaller constant
is significant.

At 32K renderers, the compositing time improved by a
factor of 30 times over the original scheme. By limiting the
number of compositors, the overall frame time decreases by
24%. We presume that link contention causes the original
compositing performance to degrade at large system scale, be-
cause communication bandwidth degrades with large numbers

 10

 100

 1000

 10000

 100000

 1e+06

256 512 1024 2048 4096 8192 16384 32768

40K 20K 10K 5000 2500 1250 625 312

Co
m

m
un

ica
tio

n 
Ba

nd
wi

dt
h 

(M
B/

s)

Number of processors

Composite Bandwidth
Message Size (B)

peak
improved
original

Fig. 4. Communication bandwidth plotted against message size and number
of processors. As the number of processors increases and message size
decreases, the bandwidth falls away from the peak theoretical curve. The
drop-off is more severe in the original compositing scheme and alleviated by
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of small messages. Figure 4 shows this trend, plotting commu-
nication bandwidth against message size for the compositing
portion of the previous test results. For comparison, BG/P’s
peak bandwidth is also shown.

B. Large Data and Image Size

The preceding subsection documents the performance of
the volume rendering algorithm on a data size of 11203 and
an image size of 16002. This represents the current scale of
hydrodynamics simulations such as VH-1. In an effort to look
ahead to future growth of simulations, we tested the volume
rendering algorithm on two larger data sizes. Because data
in the desired scale do not exist, at least from any of our
collaborators, we upsampled the existing supernova raw data
format. Upsampling preserves the structure of the data, and
resulting images are similar to those from the original data.
The upsampling was performed efficiently, in parallel, with the
same BG/P architecture and collective I/O, but as a separate
step prior to executing the visualization.

We produced a time step of the supernova data in two new
grid sizes: 22403 with 11 billion elements and 44803 with 90
billion elements. Each time step occupies 41 GB and 335 GB
of storage space on disk, respectively. In order to faithfully
reproduce the resolution of the dataset, the size of the image
should scale with data size. Thus, for these tests, we generated
20482 images for the 22403 volume and 40962 images for the
44803 volume. To our knowledge, these are some of the largest
in-core volume rendering results published to date.

Table II shows the detailed timing results of volume render-
ing these datasets using 8K, 16K, and 32K cores. One time
step of the 22403 dataset can be volume rendered end-to-end
in 35 seconds. Of this time, 96% is I/O, with an aggregate
I/O bandwidth of 1.3 GB/s. Compositing and rendering both
complete in less than 1 second. For the 44803 dataset, a frame
requires 211 seconds or about 3-1/2 minutes to visualize end-
to-end. I/O again requires 96% of the total time, at 1.6 GB/s
aggregate storage bandwidth.
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TABLE II
VOLUME RENDERING PERFORMANCE AT LARGE SIZES

Grid
Size

Time
step
(GB)

Image
(pix-
els)

#
Procs

Tot.
Time
(s)

%
I/O

%
Com-
posite

Read
B/W
(GB/s)

22403 42 20482 8K 51.35 96.1 1.0 .87
16K 43.11 97.4 1.0 1.02
32K 35.54 95.8 2.7 1.26

44803 335 40962 8K 316.41 96.1 0.5 1.13
16K 272.63 96.8 1.5 1.30
32K 220.79 95.6 2.6 1.63

Figure 5 summarizes the overall frame time, including I/O,
rendering, and compositing, for all three data and image sizes,
over all of the system sizes that we tested. The graph shows
that even at 2K or 4K cores, any of the problem sizes can be
visualized, given enough time. The configuration that produces
the shortest run time might not always be viable; for example,
one might choose to wait a few more minutes longer for
a result to execute if it means that a smaller subset of the
machine is available earlier.

V. I/O ANALYSIS

Figure 6 is a stacked graph of the time spent in the three
stages of the volume rendering algorithm as the system scale
increases. It shows that rendering time is not the bottleneck
when parallelizing large-scale volume rendering on the BG/P.
Rather, the most critical stage is I/O, which is why much
of our visualization research is directed at understanding and
increasing I/O performance.

Thus far we have concentrated on the results of reading
a single variable in raw 32-bit format. Blondin et al. store
their dataset in netCDF record variable format. Reading the
netCDF file directly in the visualization has advantages, such
as eliminating preprocessing and having multiple variables
simultaneously available for rendering. Figure 7 compares the
I/O rates for raw and netCDF modes. NetCDF is approxi-
mately 4-5 times slower than raw mode at low numbers of
cores. At high core counts, netCDF mode is 1.5 times slower.
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To understand the causes of the slowdown in netCDF
access rate compared to raw format, and before attempting to
improve it, we need to understand how netCDF writes multiple
variables within a file and the implications to accessing a
single variable. Then, we compare the performance of netCDF
to other file formats such as HDF5.

A. NetCDF File Format

The netCDF file format allows for storage of multiple
multidimensional, typed variables in a single file, along with
attributes assigned to that data. Variables stored in this format
may be defined as one of two types: nonrecord or record.

Nonrecord variables are variables for which all dimensions
are specified. These variables are stored as a contiguous block
of data in the file, which favors high-performance access.
Unfortunately, the current netCDF format limits the total size
of a nonrecord variable to 4 GB. The current output size for
our application exceeds this limit, forcing the scientists to use
record variables.

In the netCDF record variable format, the logical 3D vari-
ables are stored as records of 2D data and interleaved record
by record for each variable (Figure 8). Our dataset contains
five variables: pressure, density, and velocity in X, Y, and Z.
The result of formatting is that individual variables are split
into noncontiguous regions (about 5 MB in size) spread out
regularly through the file, with a file size approximate five
times as large as a single variable in our raw format.

To understand I/O performance in the context of this file
format, we need to recognize that the Parallel netCDF library is
using MPI-IO internally and that the MPI-IO implementation
(ROMIO) uses a two-phase optimization that reads in a large
contiguous region of data and then distributes the small,
noncontiguous regions of interest to the appropriate MPI
process [24], [28]. In the ideal case, the “density” of relevant
data in the contiguous region is high; but in our case, only
one record out of every five contains the data we want, so a
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great deal of undesired data are read, reducing our effective
bandwidth.

Besides showing original (untuned) netCDF performance,
Figure 7 shows that tuning I/O parameters to a particular
data layout can result in significant gains. Setting MPI-IO
hints based on our knowledge of the file layout allows us
to optimize the read pattern over the default behavior of the
MPI-IO library. In this case, setting the read buffer size to the
netCDF record size (11202 x 4 bytes) improved the netCDF
I/O performance in some cases by a factor of two over the
untuned performance, eliminating reads of data we would not
be processing. (Recall from Figure 8 that the record size is
that of a 2D slice of the volume.)

In the case of raw data, we also experimented with the
size of the read buffer, but in the case of the netCDF data,
understanding the file layout allowed us to exactly match the
buffer size to the data record size. We are continuing to study
the effects of this hint, as well as others such as the number of
collective aggregators. Tuning parallel I/O is an active research
area in our group, and we plan to continue to develop and
share I/O performance models that can be used to optimize an
applications’ collective I/O requests.

To better grasp how much extra data are read when ac-
cessing data stored in the netCDF record variable format, and
how tuning can improve this overhead, we graphically depicted
the access patterns of our I/O options in Figure 9. The dark
regions are the file blocks that are read, while light blocks are
untouched. The left panel depicts the file accesses, without
any tuning, required to read a single variable, pressure, from
the netCDF file. Clearly most of the file is being accessed in
order to read only one out of five variables contained within.
In this case, the collective read of the pressure variable results

Fig. 8. The organization of variables within the netCDF file.



in approximately 3,000 actual accesses, each roughly 15 MB
in size.

The center panel of Figure 9 shows the improved access
pattern that can be achieved by setting MPI-IO hints described
above. Now 2,600 accesses are performed, but each has an
average size of 4.5 MB. In total, 11 GB are accessed in
order to read 5 GB of useful data. This is still a significant
overhead, but it is four times less than the untuned access
pattern. The amounts of extra access needed in order to
read usable data help to explain the overall I/O bandwidth
in Figure 7 that tuning enables. A more sophisticated two-
phase optimization could perform even better [29], and we
are looking to improving the two-phase algorithm in ROMIO.

B. Alternative File Formats

A number of scientists use the HDF5 standard in their
work, so we converted the netCDF file to HDF5 and retested.
The right panel of Figure 9 shows the HDF5 performance.
Log files show that the data blocks for a single variable are
better collocated in HDF5 compared to netCDF record variable
access; the HDF5 read requires 8 GB of physical I/O in order
to read a 5 GB variable from the file. We did no tuning
to attain this rate. There is some initial overhead when the
dataset is opened, and every process performs 11 very small
metadata accesses of no more than 600 bytes. Beyond that,
the data appear to be written contiguously within the file, so
that accesses are more efficient.

Some of the members of our team, in conjunction with K.
Gao, W.-K. Liao, and A. Choudhary of Northwestern Univer-
sity, are working on a future netCDF format that addresses
some of the limitations of the current version of netCDF. By
expanding all of the fields to 64 bits, the new implementation
permits nonrecord variables of virtually unlimited size. We
also tested this version using nonrecord variables, and the
result was the same as HDF5. The right panel of Figure 9
shows a single image for both HDF5 and the new netCDF
with 64-bit addressing.

Figure 10 reinforces the conclusion that file layout influ-
ences the number of blocks needed to be read, and in turn
I/O performance. These are results of a synthetic benchmark
based on the I/O pattern of the volume rendering code. It

Fig. 9. Reading netCDF without tuning (left) results in very inefficient access,
apparent in this visualization of the data access pattern generated from I/O
logs of a PnetCDF read of the 11203 dataset by 2K cores. The dark regions
signify file blocks that were read in order to access a single variable. Using
MPI-IO hints (center) to tune the access pattern results in a more efficient
access pattern. The best patterns result from HDF5 and a new release of
netCDF that features 64-bit addressing (right).

shows the comparison between five data formats: raw, untuned
netCDF, tuned netCDF, HDF5, and the future release of the
new netCDF format. We read 11203 data elements using 2K
cores. There is a strong correlation between the overall read
time and the data density, which we define as the physical
size in bytes of the desired data divided by the number of
bytes that are actually read by the underlying collective I/O
infrastructure.

VI. DISCUSSION AND FUTURE WORK

Our tests show that parallel software volume rendering can
be performed on the IBM Blue Gene/P at scales of tens
of billions of data elements, millions of pixels, and tens of
thousands of processor cores. We presented performance data
for several problem sizes, across a range of processor cores
spanning nearly three orders of magnitude and examined how
total and component times vary, as well as timing distributions
between component phases of the algorithm.

I/O limits performance. We studied five I/O modes in
an effort to understand and optimize the performance of
multivariate data formats such as netCDF. Reading these
formats directly in the visualization eliminates the need for
costly preprocessing and affords the possibility to perform
multivariate visualizations in the future.

In compositing, we improved link contention by realizing
that the number of renderers need not be the same as the
number of compositors. When the number of rendering cores
grows to several thousand, compositing time can be reduced
significantly by compositing with fewer cores. We also upsam-
pled our dataset to produce larger time steps and increased the
image size commensurate with volume size.

BG/P has the needed tools to perform large volume render-
ing. These include numerous processor cores each capable of

Fig. 10. From a synthetic benchmark, five I/O modes appear in order from
fastest to slowest for a test read of 11203 data elements using 2K cores
to perform the collective I/O. We define the data density as the number of
blocks needed divided by the number of blocks actually read. There is a strong
correlation between the time and the data density.



software rendering a small subset of the total data, intercon-
nected by an efficient network, and served by a high-capacity
parallel storage system. These characteristics are necessary
enablers for future in situ visualization. We hope that in situ
techniques will enable scientists to see early results of their
computations, as well as eliminate or reduce expensive storage
accesses, because, as our research shows, I/O dominates large-
scale visualization.

We are continuing to study the I/O signature, that is, the
striping pattern across I/O servers, of this and other algorithms.
We are also comparing against other codes and benchmarks.
The effect of the file system on performance is an active area
of research; we are conducting similar experiments on Lustre.

In the future, we plan to implement and test other visu-
alization algorithms at these scales. We plan to extend these
algorithms to unstructured and adaptive mesh refinement grid
data. We will research how to best overlap executing simula-
tions with visualizations as we apply the lessons learned to in
situ visualization. We plan to also conduct similar experiments
on other supercomputer systems such as the Cray XT.
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